

Quality Field Collection Techniques for Microbial Sampling

Katie Strothman
Sanders Laboratories
TNI FAC Chair

Quality Starts in the Field

The goal is to create records that can be traced, verified, and allow the work product to be reproduced.

When that goal is achieved, the work can be defended in the face of a potentially adversarial assessment...

Without the benefit of you explaining what exactly was done.

That review may happen in a few days, weeks, months or even years!

The use of recognized, validated, and generally accepted Standard Operating Procedures ensures the creation of good records.

Session Roadmap

- ▶ Aseptic Technique Fundamentals
- ▶ Common Sampling Methods
- ▶ Typical Issues & Quick Fixes
- ▶ Transportation & Holding
- ▶ Documentation & COC Perfection

Sampling Event Workflow

PLAN &
BRIEF

PREP
SUPPLIES

COLLECT
SAMPLES

RECORD
DATA

QC CHECKS

DROP-OFF &
REVIEW

Sample Plan

- Sample & QC Needs: Number, schedule, transport, and custody procedures
- Method Requirements: Test methods, analytes, units, reporting/action limits, accreditations
- Subcontractors: Contacts, agreements, and communication protocols
- Handling & Preservation: Containers, storage, preservation, and holding times
- Contamination Control: Decontamination, collection order, storage segregation
- Shipping & Transport: Responsible personnel and chain of custody
- Environmental Conditions: Impact on sample validity and mitigation plans
- Site & Safety: Address, access, PPE, safety, and training requirements
- Documentation: Deviations, client contracts, labeling, and regulatory compliance
- Contingency Planning: Protocols for unforeseen situations

Pre-Event Checklist

Item	Description
Work Order Reviewed	Verify locations, sample types, tests required, dates
SOPs and Permits	Ensure latest SOPs and any required access permits are on hand
Sample Bottles/Containers	Correct types, preservatives (if applicable), expiration dates
COC Forms & Labels	Pre-filled or blank, waterproof pens, label printer if needed
Field Equipment	Calibrated instruments (chlorine, pH, etc.), batteries charged
Cooler & Ice	Clean cooler, fresh ice/ packs or dry ice (if applicable)
Field QC Supplies	Trip blanks, field blanks, duplicates, reagent water
PPE	Gloves, safety vests, boots, safety glasses, hard hats (as needed)
Decontamination Supplies	70% alcohol, bleach, wipes, clean foil
Emergency Kit	First aid kit, phone, water, sunscreen, allergy meds if needed
Weather/Route Check	Forecast reviewed, alternate routes planned

Equipment

Before Use & Documentation

- ▶ Verify equipment meets requirements
- ▶ Document calibration method, calculations, and criteria
- ▶ Retain raw calibration data and curves
- ▶ Establish and follow acceptance criteria
- ▶ Take corrective actions if calibration fails
- ▶ Ensure off-site equipment remains compliant

Handling, Maintenance & Usability

- ▶ Set procedures for transport, storage, and use
- ▶ Maintain service intervals to detect drift
- ▶ Use independent standards for verification
- ▶ Evaluate drifted readings for usability
- ▶ Ensure unattended equipment has special protocols

Calibrations

ICV- Lower than
lowest read

CCV- Higher than Highest read

LCS- Around sample range

Everyday sampling or possible data loss

Clean your meters

DOCUMENT

Instrument:	Instrument S/N:		
Parameter: pH			
Ratio: Y N			
Chemical Lot	Standard Value	Response	Deviation P or F
	4		
	7		
	10		
	ICV		
	CCV		
			Acceptable +/- 0.2 SU
Instrument S/N: _____			
specific Conductance			
Y N			
Chemical Lot	Standard Value	Response	Deviation P or F
	UHMDS PPT	UHMDS PPT	
	ICV	ICV	
	ICV	ICV	
	CCV	CCV	
	CCV	CCV	
			Acceptable: +/- 5%
Instrument S/N: _____			
N			
Chemical Lot	Standard Value	Response	Deviation P or F
	1000		
	10		
	0.02		
	ICV		
	CCV		
			Acceptable +/- 5 NTU or
Instrument:	Instrument S/N: _____		
Parameter: DO			
Parameter: DO	Temperature	% DO	Saturation from
Parameter: DO	Parameter: DO	Parameter: DO	Parameter: DO

Instrument Calibration & Use

Daily calibration
log for pH, DO, Cl
meters

Use certified
standards (e.g.,
pH 4, 7, 10)

Document
calibration time &
user

Calibrate in clean
area, before
sampling

Calibration & Verification

Core Calibration Program

- Maintain and adjust calibration programs
- Document procedures with calculations & statistics
- Retain raw data (method, ID, analyte, source)
- Set criteria for verification
- Perform checks per SOP

Equipment Control & Nonconformance

- Label calibration status
- Remove or repair defective equipment
- Evaluate impact and follow nonconforming work procedure
- Perform intermediate checks
- Prevent unauthorized adjustments
- Update correction factors when required

FT 1100 pH Calibration

The acceptance criterion for the initial calibration or the calibration verification is a reading of the standard within +/- 0.2-unit of the expected value.

On a weekly basis, check the calibration to ensure the % theoretical slope is greater than 90% (if applicable to your instrument type).

- Note the % slope in the calibration records.
- A % slope of less than 90% indicates a bad electrode that must be changed or repaired.
- If % slope cannot be determined on your meter, or the manufacturer's optimum specifications are different, follow the manufacturer's recommendation for maintaining optimum meter performance.

Ft 1100 pH Samples

Measuring pH in Samples: After an acceptable initial calibration or calibration verification, follow these procedures to take a pH reading of a freshly collected sample (within 15 minutes of collection).

- Pour enough of the fresh sample into a clean cup to take the reading.
- Place the pH electrode in the sample (in the cup) and swirl the electrode.
- Wait for stabilization, and read the pH value.
- Turn the meter off after the last sample reading, rinse the electrode thoroughly with de-ionized water and replace the electrode's cap.

FT 2010 Chlorine Initial Calibration

If instrument is not already factory Calibrated

Use the primary standards (see 2.4.1 above) for initial calibration. An initial calibration must be performed if verification attempts are not successful (see 3.2.4 and 3.2.6 below).

- Use a minimum of a blank and two standards that bracket the range of the sample measurements.
- If the instrument cannot be calibrated with a blank and two standards, calibrate with a blank and one standard that bracket the range of the sample measurements.
- Verify instruments with pre-set or factory calibrations against primary standards per 3.2.3 below.
- The correlation coefficient of the standard calibration curve must be greater than or equal to 0.995 for all calibrations.

FT 2030 Initial Calibration

Initial Calibration Verification:

- Immediately after calibrating an instrument, perform an initial calibration verification by reading at least one primary standard in “read” or “run” mode as a sample.
- The value of this standard must be within quantitative calibration bracket established in 3.2.2 above. The instrument reading from this standard **must be within 10% of its standard value.**

FT 2030 Chlorine Residual

Perform a continuing calibration verification using at least one primary or secondary standard, by reading the standard in “read” or “run” mode as a sample. The concentration of the CCV standard should be within the initial calibration bracket established in 3.2.2 above and cannot be a zero or blank standard.

CCV measurement must be within **10%** of the known standard value

Perform a CCV after the last sample measurement has been taken, but no longer than 24 hours after the previous verification

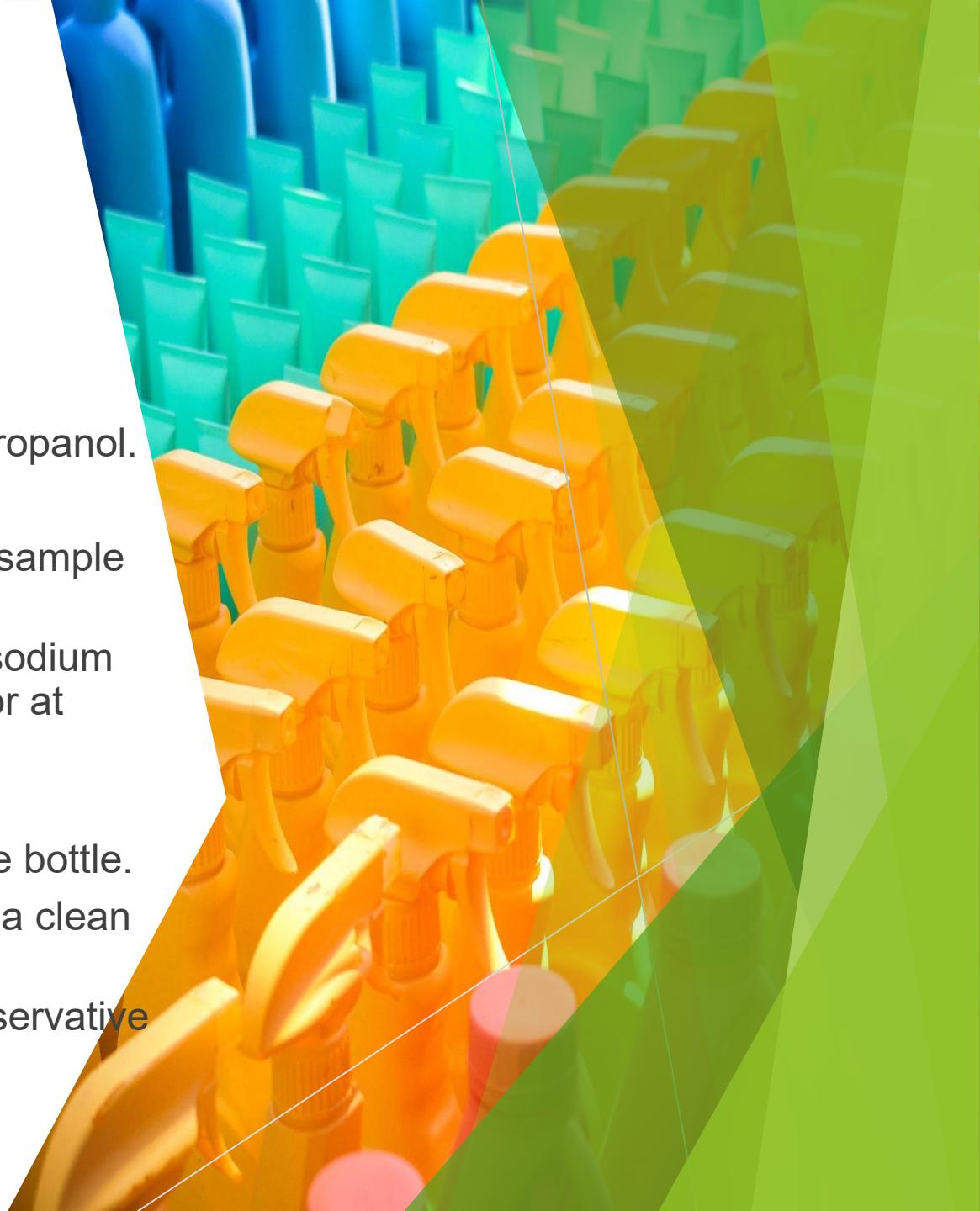
Sampling Order & Decon

Start clean → dirtier

Equipment rinse: 0.1 % HCl
between sites

Glove change each sample

Store blanks on top of
cooler


Aseptic Technique Fundamentals

•Preparation Before Sampling

- Wash hands thoroughly with soap and water or use 70% Isopropanol.
- Assemble all supplies on a clean, disinfected surface.
- Wear clean, non-powdered gloves—change gloves between sample locations or if contamination is suspected.
- Disinfect sample valve/spigot: Use 70% isopropyl alcohol or sodium hypochlorite (per SOP), allow proper contact time, and flush for at least 2-3 minutes or per method/SOP.

•Avoiding Contamination

- Never touch the inside of sample bottles, lids, or the rim of the bottle.
- Do not place lids down—hold them facing downward or have a clean surface ready (e.g., foil or sanitized tray).
- Do not rinse the sample bottle—especially if it contains a preservative like sodium thiosulfate.

Aseptic Technique Fundamentals

- **Collecting the Sample**

- Open the bottle just before sample collection.
- Hold the bottle at a slight angle to avoid back-splash.
- Fill to the required volume (usually marked), allowing for proper headspace if instructed (especially for microbial samples).

- **Post-Collection Handling**

- Cap the bottle immediately—ensure the cap is secure but not over-tightened.
- Wipe exterior of the bottle if any spills occur.
- Label the bottle clearly with waterproof marker or pre-printed label (include site ID, date, time, sampler initials).
- Place bottle into a clean cooler with ice (not submerged in water).

Potable Water: Coliform/E. coli

Pre-Sample Checks

Review your work order and ensure correct bottle type ($\text{Na}_2\text{S}_2\text{O}_3$ -preserved).

Verify expiration date on the bottle.

Record site info and date/time in field log.

Select Sample Tap

Choose a clean, dedicated sampling tap (no hoses, aerators, or swivels).


Remove any attachments and disinfect the faucet (70% isopropyl or 10% bleach). Let sit for 1 minute, then flush tap for 2-3 minutes (or per SOP).

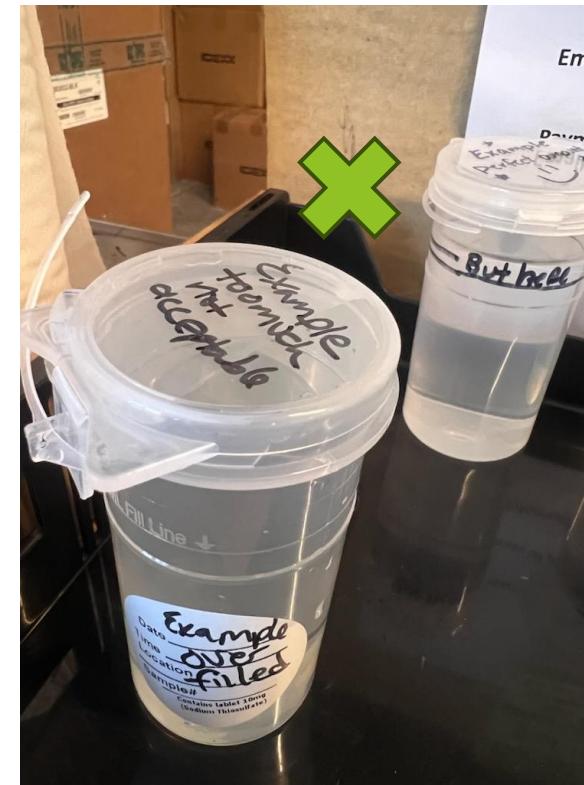
Aseptic Technique

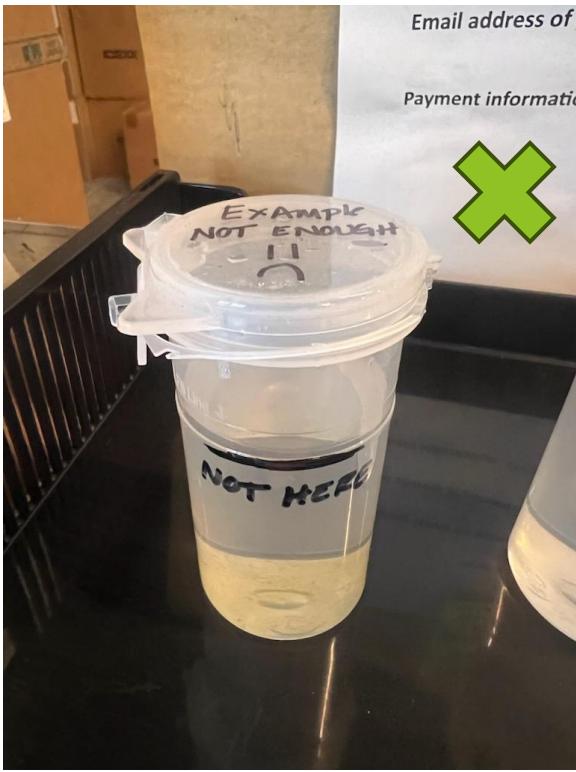
Put on clean gloves. Avoid touching the inside of the cap or bottle rim.

Potable Water: Coliform/ E. coli Sample Collection

REDUCE TAP
FLOW TO A
GENTLE,
STEADY
STREAM.

HOLD THE
BOTTLE
MOUTH
FACING INTO
THE FLOW.





FILL BOTTLE TO
THE $\frac{3}{4}$ MARK
(TYPICALLY ~100
ML LINE) TO
ALLOW HEADSPACE
FOR MIXING.

DO NOT RINSE THE
BOTTLE. IT
CONTAINS SODIUM
THIOSULFATE TO
NEUTRALIZE
CHLORINE.

Just the right amount

Surface Swab (FDA BAM)

Template 10×10 cm

Vertical then horizontal
strokes

Sponge into 10 mL
Lethen

Ship ≤24 h, 0-10 °C

Air: Bacteria & Fungi Plates

Plate Exposure

Place the agar plate on a sterile surface or tripod at breathing zone height (about 3-4 feet from the floor).

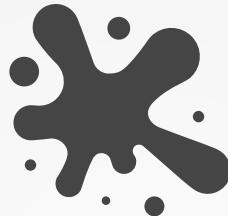
Remove lid carefully and place it face-down beside the plate (or cover loosely).

Expose the plate to air for 15-60 minutes (follow SOP for specific exposure time).

Post-Exposure Handling

Replace lid without touching the agar surface.

Double-check label is intact and legible.


Place plate in a clean transport container (ideally in an upright rack or box).

Soil/Sediment Microbes

Sample Collection - Soil

Use sterile scoop/spatula or corer.
Collect from top 6-12 inches unless deeper soil is specified.
Avoid touching inside of sample jar or lid.
Place ~50-100 grams of soil in sterile container (do not overfill—leave headspace).

4. Sample Collection - Sediment

For stream/lakebeds: gently insert sterile scoop or corer into the sediment.
Target undisturbed, depositional areas.
Avoid water pooling on top of sediment unless the method requires slurry.

Containers & Preservatives

**STERILE 120 ML +
THIOSULFATE (MICRO)**

**HDPE 500 ML + HNO₃
(METALS)**

**VOA 40 ML VIALS, ZERO
HEADSPACE (VOCS)**

**SPONGE SWABS WITH
LETHEEN (SURFACES)**

Homogenization & Fill Technique

- ▶ Leave 10% headspace unless otherwise noted
- ▶ Do not overfill VOA or sterile bottles
- ▶ Shake gently or invert slowly
- ▶ Avoid pouring between containers

Transportation & Holding Times

0-10 °C for micro

6 h water/soil, 24 h swabs

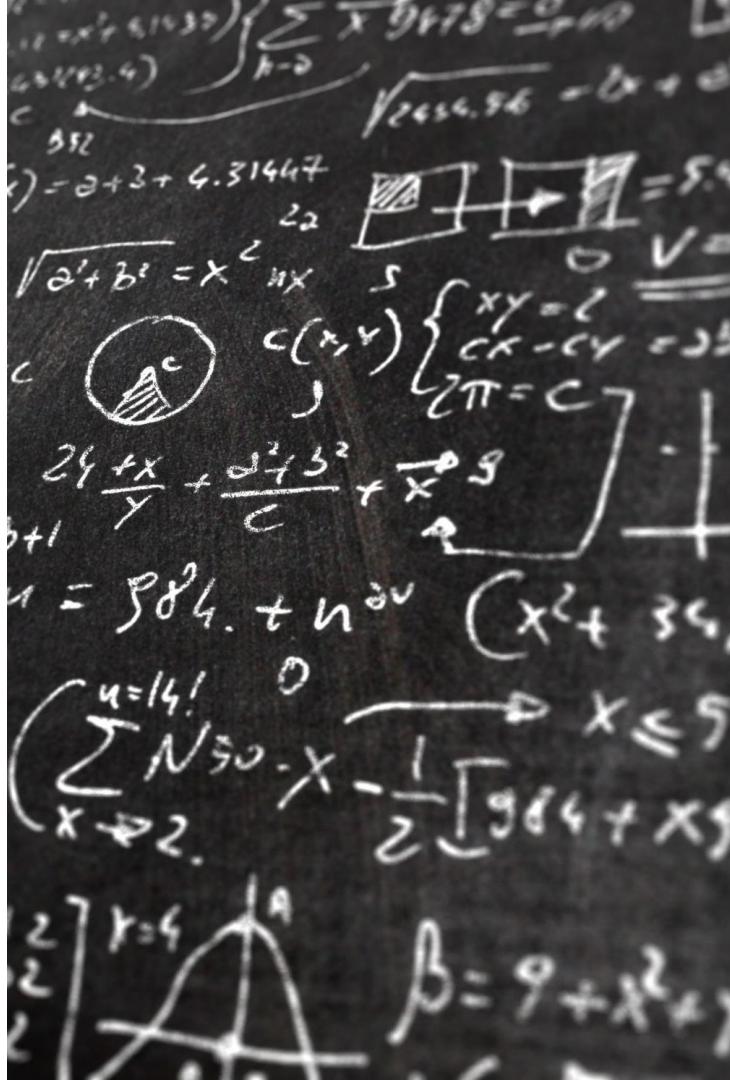
Document cooler temps on arrival

Avoid frozen microbiological samples

Field Log Best Practices

Ink only, no pencil or white-out

Initials & time on every entry


Avoid arrows or cross-outs

Pre-label forms before field event

No Interpretation Necessary

- ▶ “Record enough information so that clarifications, interpretations, or explanations of the data are not required from the originator of the documentation.”

Field Documentation Best Practices

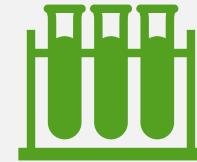
Waterproof logs or tablets

Record GPS, weather, lot # reagents

Immediate ink signatures

Photo of site/sample

Fill Out
Label
Bottle


Site location

Date and Time Collected

Analysis

Company info

Sample Receipt & Lab Acceptance

Lab checks temp, COC,
label integrity

Rejection reasons:
improper preservations,
broken seal

Lab notes deviations on
intake form

Perfecting the coc

Unique sample ID - no re-use

Preservative & filter logged

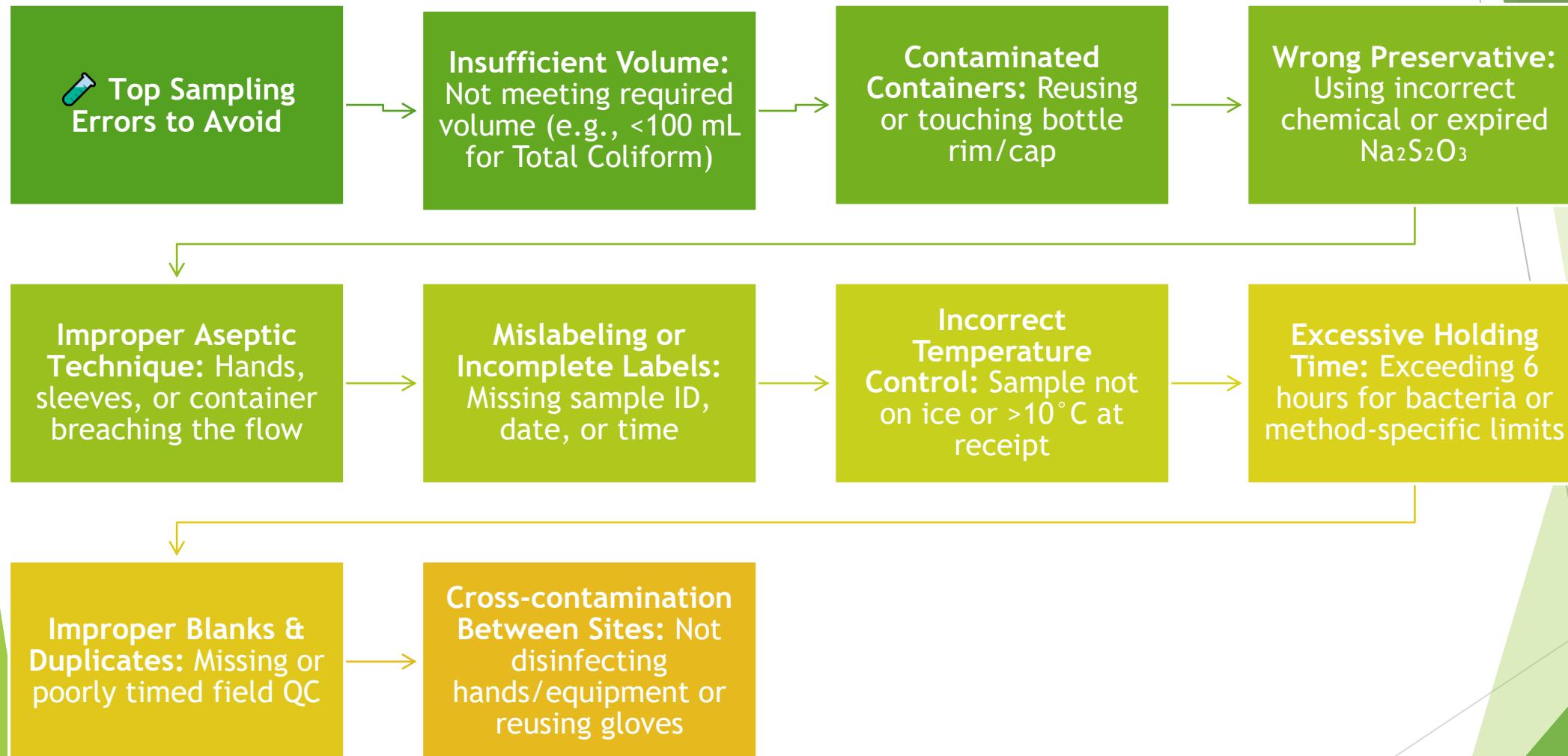
Relinquish & receive times

Seal cooler with tamper tape

Lab Drop-off Best Practices

Call ahead for
after-hours
fridge

Verify bottle
integrity
onsite



Signed copy
of COC left
with lab

Obtain
receipt/temp
erature log

Common Field Issues & Fixes

Field QA/QC Program

Field blank every lot/source

Equipment blank after decon

Duplicates 10 %

Matrix spikes if required

Field QC Protocols

Field Blanks: DI water, test for contamination

Trip Blanks: VOC sampling transport control

Equipment Blanks: after decon between sites

Duplicates: 10% of total sample count

Matrix Spikes: where applicable by method

Field Setup: Do's & Don'ts

- 1
- 2
- 3
- 4

Set up on clean surface, avoid trunks and tailgates

Designate clean vs dirty hands

Never place bottle caps face-down

Avoid opening coolers near dusty roads

Contamination Pathways

Field sampler

Unclean tools

Improper gloves

Poor storage

Container error

Key Takeaways

Aseptic technique = foundation

Use correct containers & volumes

Transport cold & fast

Document EVERYTHING

Audit Findings: What Goes Wrong

- ▶ COC missing times or incomplete IDs
- ▶ Holding times exceeded, not documented
- ▶ Duplicate labels or illegible handwriting
- ▶ Unlogged decontamination between sites

Wrap-Up & Resources

**ASK QUESTIONS BEFORE
YOU SAMPLE!**

**YOU'RE THE FIRST LINE
OF QUALITY!**

Questions?
Katie@sanderslabs.net
239-590-0337

