Streamlining Environmental Data Analysis: A Deep Learning Approach

Introduction

per- and polyfluoroalkyl substances (PFAS), a class of
emerging persistent organic pollutants (POPs), are
present at trace level not only in the environment
(water, soil and air) but also in food. The quantitative
analysis of PFAS is typically performed using
liquid/gas chromatography-tandem mass
spectrometry (LC-MS/MS, GC-MS/MS). However,
even with these highly sensitive instruments, PFAS
analysis remains challenging.

The data analysis of PFAS often involves time-
consuming manual steps for the elimination of false
positive or negative quantifier/qualifier peaks of the
corresponding compound. This includes, but not
limited to:

« Adjusting peaks from early eluting PFAS (e.g.
PFBA, PEMPA),

« Combining partially or fully separated peaks of
linear and branched isomers of some PFAS (e.g.
PFOS, PFHXS), while accounting for variations in
their ratio

« Removing false positive or negative peaks caused
by matrix interferences or contamination.

In this work, a redesigned pipeline-originally for the
GC/MS data-is adapted for the LC-MS/MS MRM
mode data. Chemically relevant metadata, such as
retention time shifts, quantifier-qualifier correlation,
are considered during the design of the data
preprocessing workflow. Data acquired for the
analysis of PFAS in different environmental matrices
following the EPA 1633 method, and from different
LC-MS/MS instruments with varying sensitivities, are
used for the model training and validation. A CNN and
a transformer model are evaluated and their
performance compared. Results show that both
models perform well. When a trained deep learning
(DL) model is deployed, data review time can be
significantly reduced by eliminating most of the
manual steps, as mentioned above, on a compound-
by-compound base.
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Experimental

Two different datasets are collected internally, one
following the EPA 1633, and the other following AOAC
Standard Method Performance Requirements (SMPR)
2023.003.12

During the model training period, samples are
analyzed normally in MassHunter Quantitative
Analysis software (12.7 update 2, Quant-My-Way Ul, M
version), following the conventional data analysis
workflow in the software, as shown in Figure 2, left
column. Data moves between the local PC and the
infrastructure in the cloud. A schema of the
components of the pipeline is shown in Figure 3.
Various DL architectures have been adapted to handle
LC-MS/MS MRM mode data.3”

After the model is trained and deployed to the local
environment, the user can start using the model
prediction in the workflow (Figure 2, right column),
minimizing manual adjustments for the loaded
samples.
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Figure 3. Simplified pipeline.
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Results and Discussion

New Features (Al Flag & Al Confidence score)

The new Al prediction flag proposal enables users to easily identify how each peak was integrated: by the built-in
integrator (Scenario 1), by the Al model (Scenario Il), or manually (Scenario Il1), as illustrated in Figure 4. Both the original
MI flag and the Al prediction flag are displayed for each individual peak. In contrast, the Al Confidence score provides an
overall assessment of the confidence at the compound level.
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Results and Discussion

Model performance

The results of the prediction time for a batch with 2, 5, 10, 25, 50 and 100 samples are summarized in Figure 6. The
average prediction time per sample was about 5 to 6 seconds. The prediction time didn't include the data upload and
updating integrations in MassHunter. The conventional approach requires on average 60 t0120 seconds per sample
(illustrated in Figure 6, orange area).
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Figure 4. Schema of Al Confidence score and Al flag.

Model Prediction Accuracy

The hallmark of a well-trained machine learning (ML) model is its ability to provide reliable and accurate predictions
consistently. Achieving this level of performance allows the model to streamline data analysis, reduce costs, and boost
laboratory throughput. Figure 5 demonstrates an excellent example of how a properly trained model can handle tricky
peak integrations, which otherwise usually need manual integration from the user after applying the integration from the
built-in integrator of choice.
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Figure 5. MRM chromatograms for the quantifier (top row) and qualifier (bottom row) transition of PFOS, with
increasing concentration from left to right. Al Peak Integration results (marked as dark green) compared with the
original results (dashed red line) from the built-in integrator.

Figure 6. Al Peak Integration processing speed vs. number of samples per batch (n = 3). MI: manual integration, ML:
machine learning.

Model Training and Validation

Figure 7 shows the positive trend in the Peak Screening
Correctness Metrics during the training and validation
phase. All metrices including F1 score, Positive Predictive
Value (PPV) and Negative Predictive Value (NPV) were
stabilized and above 0.95 after 20 epochs for the
implemented model.

Conclusions

» A deep learning-assisted training and prediction
procedure was successfully evaluated for the LC-
MS/MS MRM PFAS data analysis, reducing manual
integration to a minimum.

» The trained model can provide reproducible and reliable
peak prediction.

 The following peak integration challenges can be
handled by the trained model:

0.9

validation/mrm/F1

0.8 — ““:f:a:f“'“i"“mjgﬁ o Early eluting PFAS with peak trailing/bordering
— training/mrm/F1 o Linear and branched PFAS

0.7 —— training/mrm/PPV

— training/mrm/MNPV

o False positive and negative peaks due to matrix

0.6 interferences or contamination

0 5 10 15 20 25

» The data analysis time can be dramatically reduced

Figure 7. Schema of Al Confidence score and Al flag. using the trained model.
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