

OPTIMIZING LABORATORY OPERATIONS THROUGH THE USE OF METHOD, REGULATORY, AND STANDARD FLEXIBILITY

Valerie Slaven
VP, Customer Experience
Pace Analytical Services
Valerie.slaven@pacelabs.com

Flexibility when applied correctly can optimize operations without compromising quality or compliance.

Common Challenges In Environmental Labs

Rigid processes causing inefficiencies

Misinterpretation of regulatory and standard constraints

Fear of audits/assessments leading to overly burdensome procedures

AGENDA

DISCUSSION POINTS:

1. Understanding Flexibility in Context
2. Method Flexibility: Unlocking Efficiency in Procedures
3. Regulatory Flexibility: Navigating the Gray Areas
4. Standard Flexibility: Making the TNI Standard Work for You
5. Putting it all Together: The Optimization Roadmap
6. Guardrails: Staying Compliant and Defensible
7. Key Takeaways and Call to Action

What is “flexibility” in the lab?

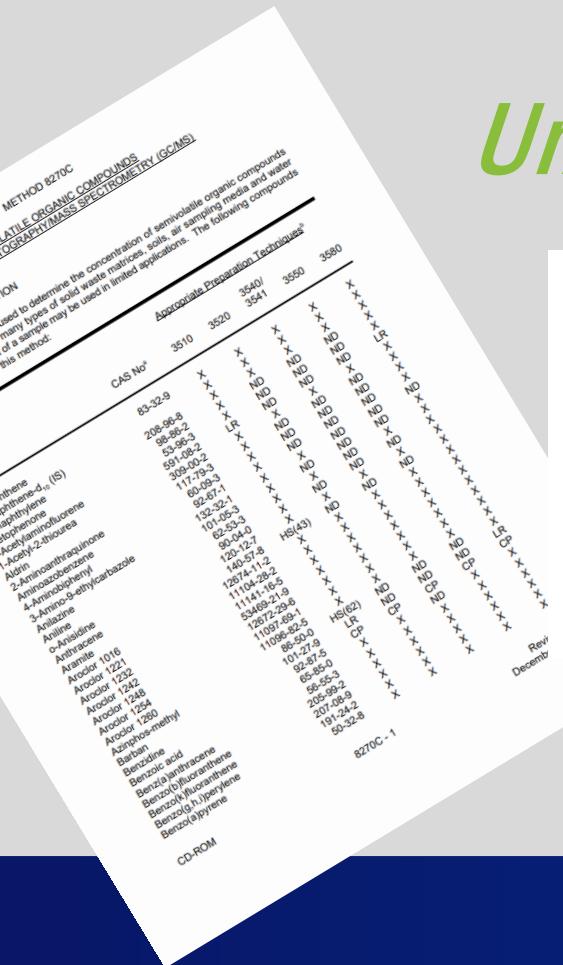
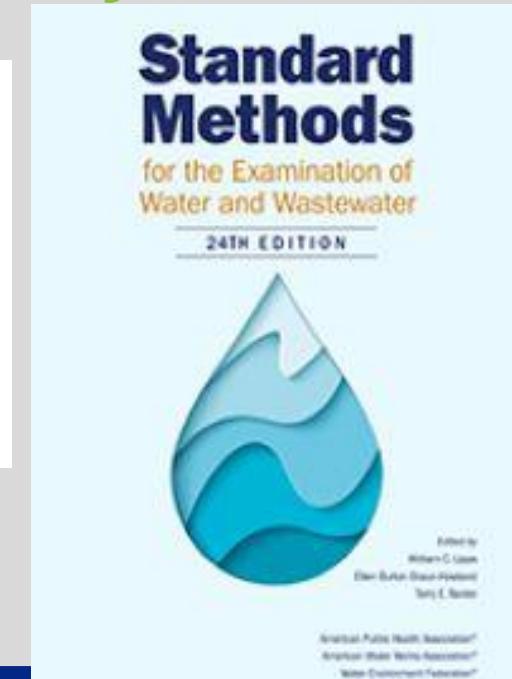
Method Flexibility

- Allowed adjustments that do not affect data quality or regulatory acceptability

Regulatory Flexibility

- Intentional allowances for alternative approaches within federal/state rules

Standard Flexibility



- TNI or similar standards written to cover diverse lab setups

OPTIMIZING LABORATORY OPERATIONS THROUGH THE USE OF METHOD, REGULATORY, AND STANDARD FLEXIBILITY

Method Flexibility: Unlocking Efficiency in Procedures

Method Flexibility:

Unlocking Efficiency in Procedures

Allowed Flexibility

- Permitted within Method/regulatory intent
- Supported by performance based language
- Changes are documented, validated, and defensible
- Maintains or improves precision, accuracy, detection limits

Allowed Flexibility vs. **Prohibited Deviations**

Prohibited Deviations

- Not allowed under method, regulation or standard language
- Alters core chemistry or analytical procedures
- No supporting validation or justification
- Jeopardizes data quality, traceability or defensibility

Allowed Flexibility

Substituting Equivalent Reagents

Shortening purge/extraction time with supporting data

Reduced Volume(s)

Updating instrument or adding automation

Examples

Prohibited Deviations

Skipping required QC

Modifying HT or preservation

Changes to method defined parameters

Changes in detection technology where specified

OPTIMIZING LABORATORY OPERATIONS THROUGH THE USE OF METHOD, REGULATORY, AND STANDARD FLEXIBILITY

Method Flexibility: Unlocking Efficiency in Procedures

EPA 350.1(Ammonia, Automated Phenate Method)

Aspect of Method	Allowed Flexibility	Example Modification	Required Justification/Validation	Operational Benefit
Sample Preservation & Holding Time	Sample preservation method may vary if equivalent results are demonstrated	Using acidified sample vials prepped in advance vs. adding acid at receipt	Demonstrate equivalency of preservation effectiveness	Saves analyst time during sample receipt
Reagents & Standards	Reagents may be prepared in different volumes or stabilized forms if equivalent	Preparing larger batches of phenate reagent with extended shelf life	Show reagent stability over the new timeframe	Reduces reagent prep frequency, lowers workload
Instrument Configuration	Automated analyzers may be substituted if they meet required detection limits	Switching from a segmented flow analyzer to a discrete analyzer	Document calibration, MDL, LCS recovery comparability	Allows newer technology with less maintenance
Calibration Frequency	Daily calibration not always required if continuing calibration verification (CCV) meets criteria	Using a weekly calibration with daily CCVs instead of full recalibration	Demonstrate stability of calibration curve	Reduces daily setup time, fewer standards used
QC Acceptance Criteria	Method allows performance-based QC within specified limits	Adjusting matrix spike recovery range based on historical performance data	Statistical justification with historical QC data	Avoids unnecessary rework of compliant samples
Detection Limit Study	Method allows lab-specific MDL determination	Performing MDL studies using site-specific matrices	Documentation of MDL study procedure & results	More realistic MDL for your lab's workflow
Glassware & Sample Prep	Substitution of equivalent containers acceptable	Using disposable polypropylene tubes instead of glass	Show no adsorption or contamination difference	Saves time on washing glassware, reduces breakage
Data Processing & Reporting	Alternative software acceptable if it meets audit requirements	Using LIMS-integrated calculations instead of manual spreadsheets	Show validation of software calculations	Reduces transcription errors, improves efficiency

Regulatory Flexibility:

Navigating the Gray Areas

OPTIMIZING LABORATORY OPERATIONS THROUGH THE USE OF METHOD, REGULATORY, AND STANDARD FLEXIBILITY

Regulatory Flexibility: Navigating the Gray Areas

OPTIMIZING LABORATORY OPERATIONS THROUGH THE USE OF METHOD, REGULATORY, AND STANDARD FLEXIBILITY

Regulatory Flexibility: Navigating the Gray Areas

Regulation	Applies To	Where Flexibility Exists	Examples of Flexibility	Non-Negotiable Areas
40 CFR Part 136	Clean Water Act (wastewater, NPDES)	Alternate Test Procedures (ATPs); performance-based method modifications called out in 40CFR	Use of modified digestion techniques for metals if validated; alternate calibration curve model	Holding times for VOCs; omission of required QC (blanks, LCS, MDL); preservation requirements
40 CFR Part 141	Safe Drinking Water Act (drinking water compliance)	Minor modifications allowed if equivalent performance is demonstrated and approved by the state or EPA	Switching to more sensitive detectors; changing sample volumes for low-concentration analytes (with approval)	MCLs; approved methods list; reporting outside calibration range
40 CFR Part 260–265 (RCRA)	Hazardous waste analysis	Broad flexibility via SW-846 Performance-Based Measurement System (PBMS)	Substituting instruments; adjusting purge parameters in VOCs; non-standard surrogates	Failure to meet QC objectives (e.g., surrogate recovery); reporting unvalidated data

Validate the Change

Calibration Curve

MDLs

RLs

Sample comparisons

Document and Communicate

Certifying Body or Regulator

SOPs

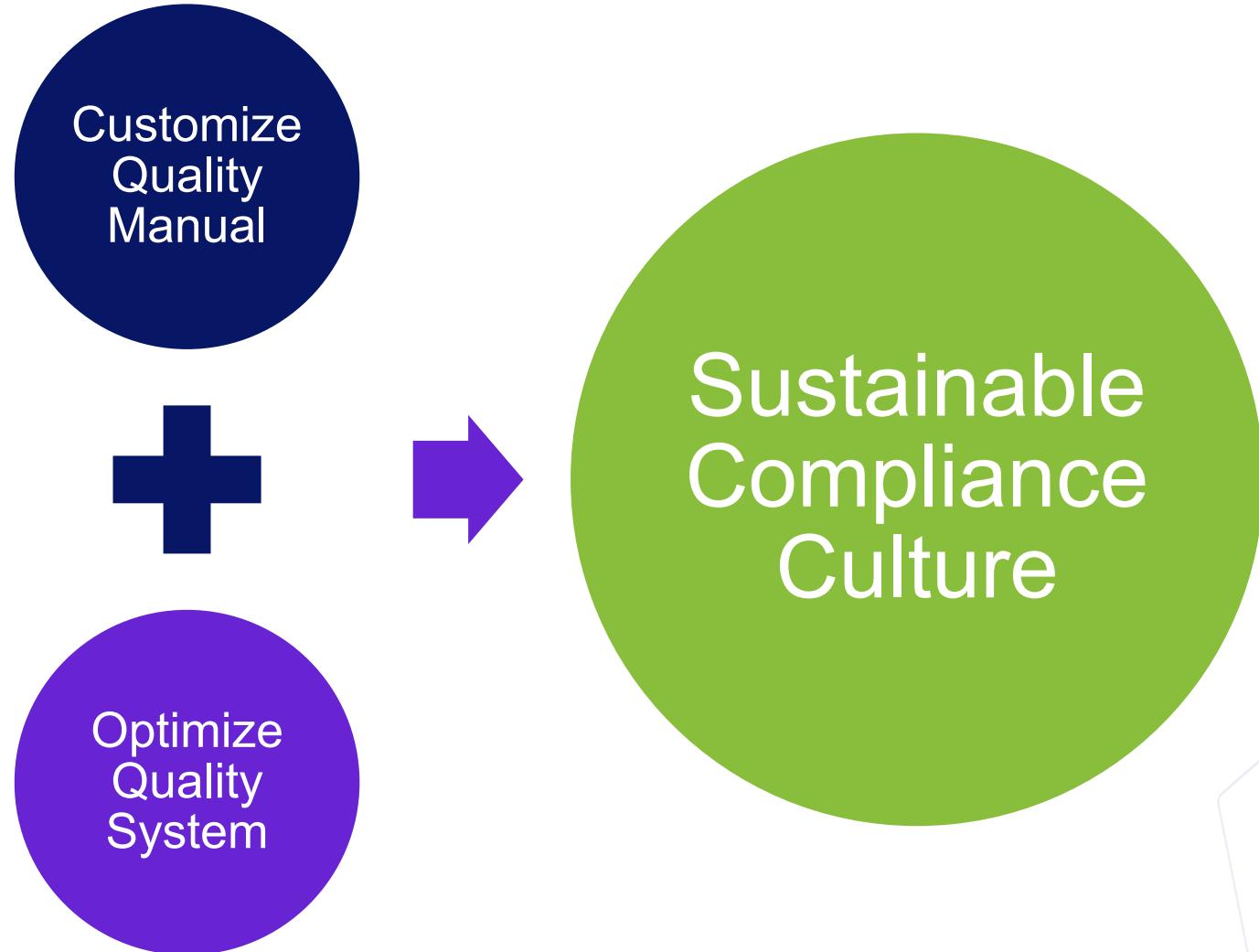
Method Validation Packet

Train Staff

Operational Benefits

Increase Efficiency

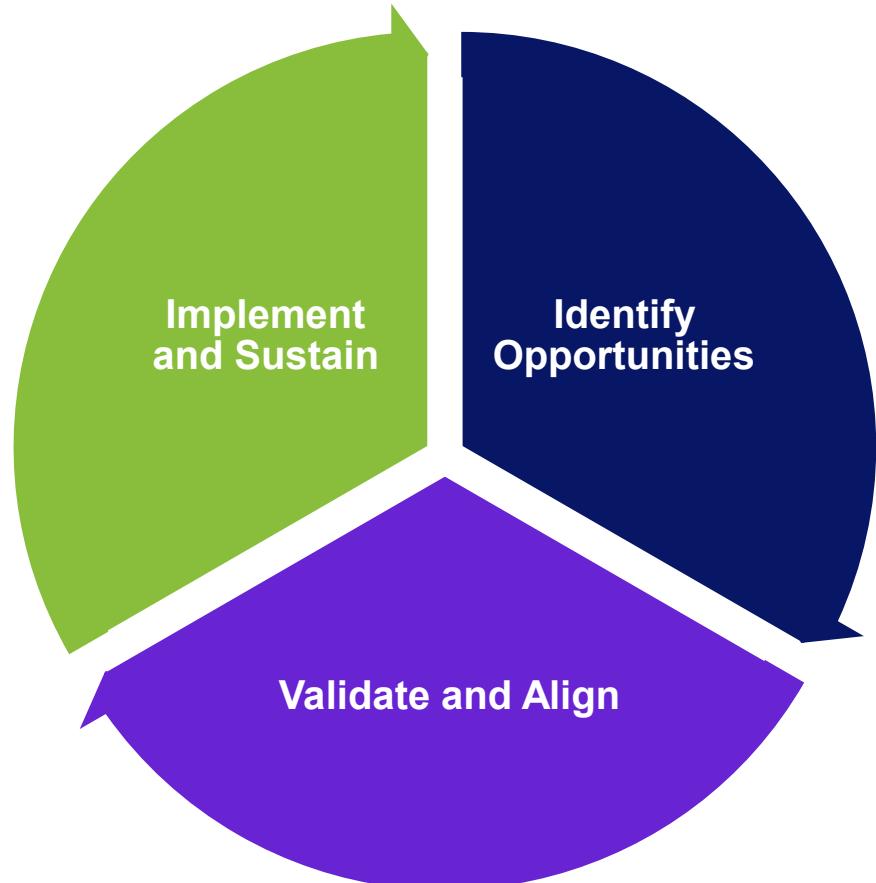
Reduced Cost


Increased Cross Training

Standard Flexibility:

Making the TNI Standard work for you

“the TNI Standard is not designed to tell you HOW you must do something. It is designed to tell you WHAT you must do.”



Putting it All Together: *The Optimization Roadmap*

OPTIMIZING LABORATORY OPERATIONS THROUGH THE USE OF METHOD, REGULATORY, AND STANDARD FLEXIBILITY

Putting it All Together: The Optimization Roadmap

Identify Flexibility Opportunities

- Map current workflows and expose pain points
- Review methods and CFRs for allowed optimizations
- Prioritize based on risk, impact and defensibility

Integrate Flexibility Across the Lab

- Engage QA, Technical Staff and Operations early in the process
- Validate all changes with side-by-side comparisons
- Update SOPs and train all impacted staff

RVT

Triple Quad

EZ Herb

Wet Chem
Automation

Metals
Digestions

Guard Rails:

Staying Compliant and Defensible

Flexibility

Cutting
Corners

Always maintain defensibility through:

Review of
Methods,
Regulations,
Standards

Validation of
Changes

Proper
Documentation

Management
Approval

Regulator
Engagement

Auditable proof of method equivalency and quality impact

Key Takeaways

Flexibility exists in methods, regulations, and standards
– *if you understand them deeply*

Smart use of flexibility leads to optimized workflows, reduced burden, and higher productivity

Always balance efficiency with defensibility

Call to Action

Re-examine your lab processes through the lens of “Is this required? Or just what we have always done?”

THANK YOU

Name

Valerie Slaven
VP – Customer Experience

Valerie.Slaven@pacelabs.com