
Improved Performance with Hydrogen Carrier Gas Methods for SVOC and Organochlorine Pesticides Analysis by GC/MS/MS

Is there a Helium Shortage?

- World Demand Increasing Past 20 Years
 - Electric vehicle manufacturing
 - Semi-conductor manufacturing
 - Medical device cooling
- World Supply Decreasing Over Past 20 Years
 - Geopolitical concerns
 - Sale of US Strategic Reserves and Enrichment
- Significant Increase in Cost
 - Doubled in past 5 Years
 - Increased more than 600% in past 20 years

Sources of Helium

- Helium cannot be effectively manufactured artificially
- Two sources of Helium
 - Nuclear fusion reactions in stars (the Sun)
 - Decay of radioactive elements in the Earth's crust
- World supply of helium today comes from mining and enriching helium from the earths crust

Sources of Helium

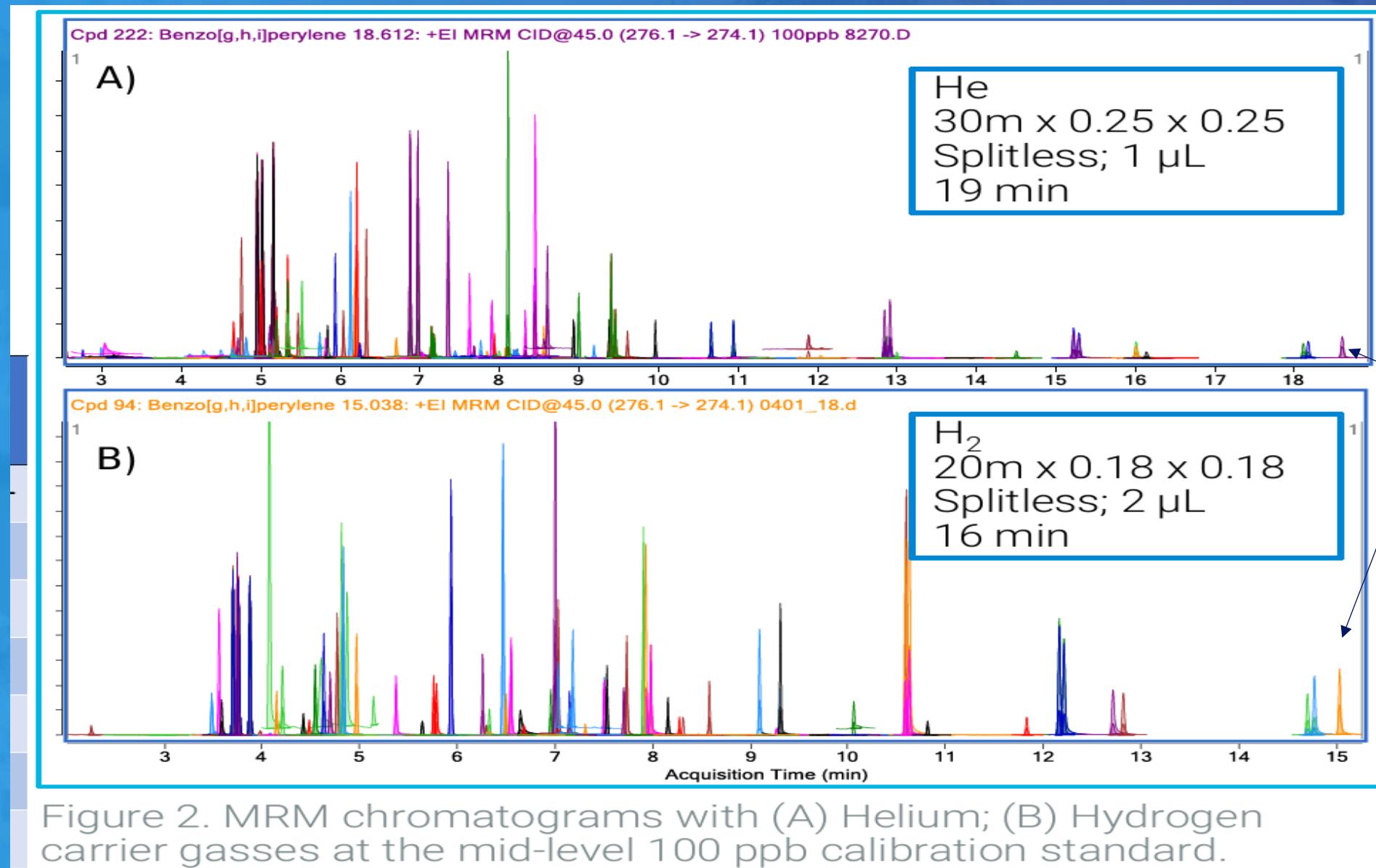
Sources of Helium

Sources of Helium

Environmental Analytical Concerns

- Critical Carrier Gas for GCMS Applications
- Continued Supply-Chain Issues
- Significantly Increasing Cost
- Single Quadrupole Mass Spectrometers have not historically allowed other carrier gasses due to ionization and reaction issues
- Significant Increase in Cost
 - Doubled in past 5 Years
 - Increased more than 600% in past 20 years

Experimental Approach


- GC/TQ method adapted from current helium-based method to hydrogen using method translation tools.
- This work defined the use of hydrogen as carrier gas
- based on four parameters:
 - Calibration linearity and dynamic range
 - Reactivity as measured by DDT and Endrin breakdown in an injection of a standard containing each compound at 100 ug/L
 - Chromatographic separation measured by separation of benzo(b)fluoranthene and benzo(k)fluoranthene from a 100 ug/L standard
 - The evaluation of peak shape determined from pentachlorophenol and benzidine tailing factors.

Instrument Settings

<u>Parameter</u>	<u>Value</u>
MS	Agilent 7010D GC/TQ
Column	Agilent J&W DB-5ms UI, 20 m, 0.18 mm, 0.18 µm
Inlet	Split/Splitless Inlet Ultra Inert, universal mid-frit liner
Injection volume	2 µL Splitless
Injection mode	Pulsed splitless (0.7 min, pulse @40 psi for 0.7 min) Pulsed split 40:1 (pulse @30 psi for 0.5 min)
Inlet temperature program	280 °C
Oven temperature program	40 °C for 1 min; 25 °C/min to 260 °C, 5 °C/min to 280 °C; 25 °C/min to 320 °C, 1.6 min hold
Carrier gas	Hydrogen
Column flow	0.9 mL/min constant flow
Transfer line temperature	320 °C
Quadrupole temperature	150 °C
Source temperature	300 °C

Chromatographic performance

Results: Calibration Linearity

Carrier Gas	Helium	Hydrogen Low-to-Mid- Concentrations	Hydrogen Mid-to-High Concentrations
Injection	Splitless, 1 μ L	Pulsed Splitless, 2 μ L	Pulsed Split 40:1, 1 μ L
Calibration Range	0.5-1000 μ g/L	1-500 μ g/L	100-10000 μ g/L
On-column loading	0.5 pg - 1 ng	2 pg - 1 ng	2.5 pg - 250 pg
No. Analytes with Average RF RSD < 20	52	54	58
No. Analytes with Linear Cal. Fit	5	2	1
No. Analytes with Quadratic Cal. Fit	6	7	4

Results: Reactivity

DDT Area Count	DDE Area Count	DDD Area Count	% Breakdown DDT	Method Limit (%)
1736665	10554	13377	1.4	15
Endrin Area Count	Endrin Ketone Area Count	Endrin Aldehyde Area Count	% Breakdown Endrin	Method Limit (%)
74952	1455	1390	3.7	15

Results: Peak Shape

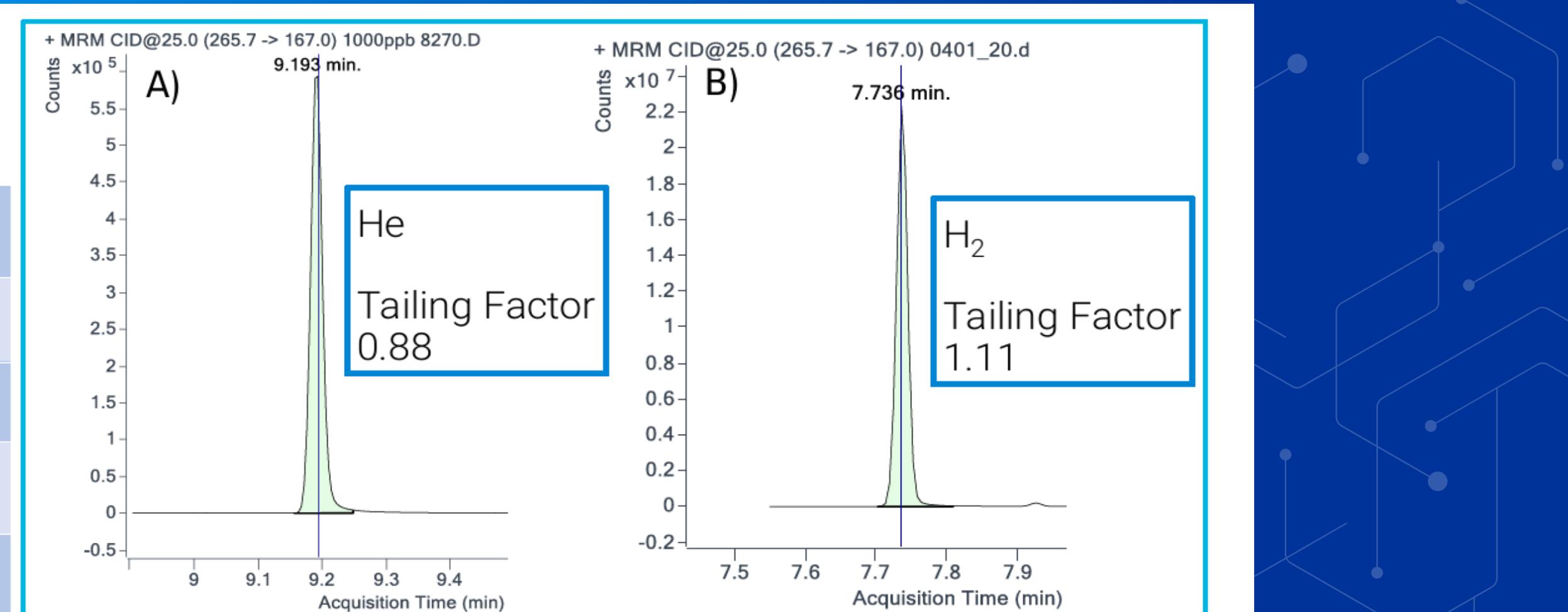


Figure 3. MRM chromatograms for pentachlorophenol at the highest calibration levels with (A) helium, 1000 ppb and (B) hydrogen, 500 ppb.

Results: Separation

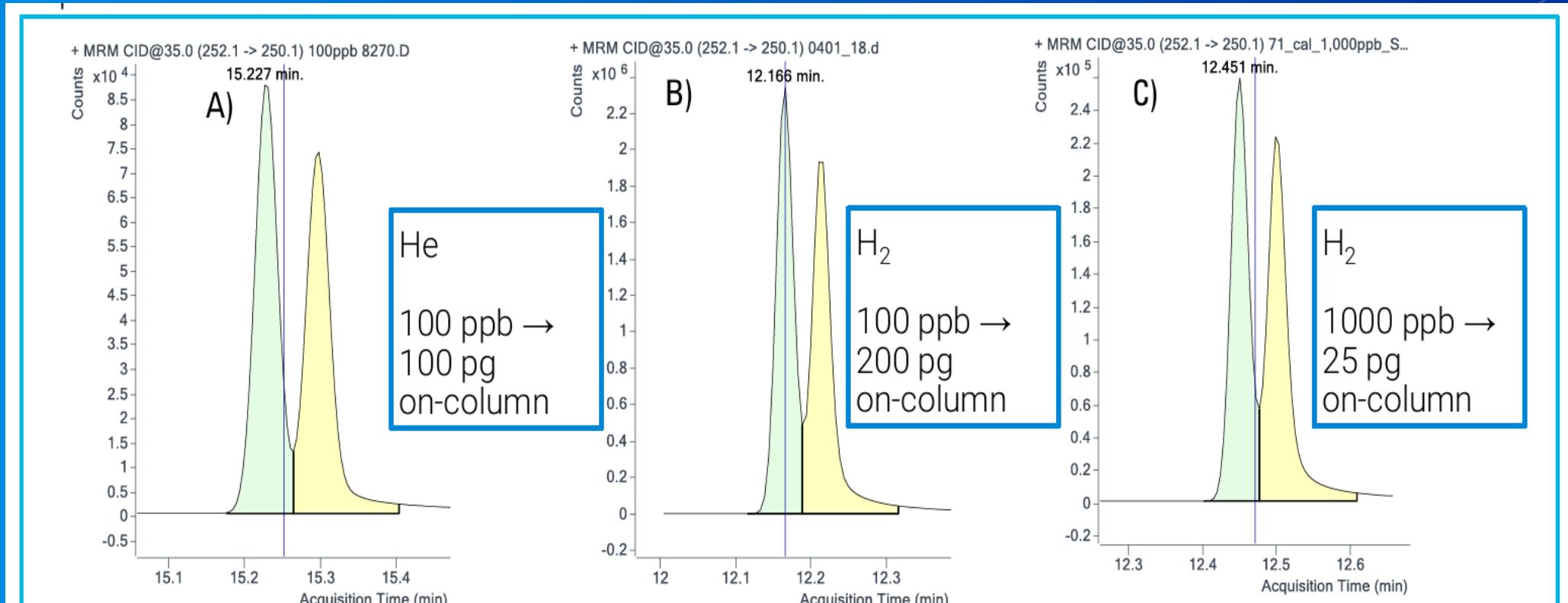


Figure 4. MRM chromatograms for Benzo(b)fluoranthene and Benzo(k)fluoranthene at the midpoint calibration level with (A) helium 100 ppb splitless; (B) hydrogen 100 ppb splitless; (C) hydrogen 1 ppm split 40:1.

Disadvantages of Hydrogen as an alternative to Helium for mass spectroscopy

- Potential reactivity with column or system components
- Potential reactivity with certain analytes of interest
- Highly flammable gas may pose increased safety concerns

Advantages of Hydrogen as an alternative to Helium for mass spectroscopy

- Improved chromatographic discrimination on heavier analytes
- Degradation / breakdown of analytes equivalent or superior to Helium
- Equivalent to superior peak shape and peak tailing
- Equivalent or superior peak separation

Advantages of Hydrogen as an alternative to Helium for mass spectroscopy

- **Reduced cost of analysis**
- **Increased certainty of supply**
- **Availability of hydrogen generators to generate supply on-site at the laboratory**
 - **Operational efficiency – continuous supply**
 - **Cost efficiency – no cylinder purchase costs**
 - **Enhanced safety – no storage or handling of high pressure cylinders**

Questions?

Johnny Mitchell
Pace®
Johnny.mitchell@pacelabs.com

William Lipps
Shimadzu Scientific Instruments, Inc.
wclipps@shimadzu.com