

Simplified and cost-effective approaches for the determination of volatile organics in water using GC-MS with static headspace and In-tube Extraction Dynamic Headspace coupled to hydrogen carrier gas

Andy Fornadel¹; Ed George²; Adam Lada²; Jason Cole²; Rick Phillips³; Jerry Holycross³; Matthew Menesini³; Amit Gujari³; Giulia Riccardino⁴; Daniela Cavagnino⁴; Manuela Bergna⁴, and Xin Zheng³

¹Thermo Fisher Scientific, Bannockburn, IL, ²Thermo Fisher Scientific, Macclesfield, UK, ³Thermo Fisher Scientific, San Jose, CA, ⁴Thermo Fisher Scientific, Milan, Italy

Overview

• Static headspace (SHS) and In-Tube Extraction Dynamic Headspace (ITEX-DHS) sampling techniques combined with the use of hydrogen (H_2) as carrier gas were evaluated in the context of the applicable regulations as per the European Parliament Directive (EU) 2020/2184 on the quality of water intended for human consumption.

• These sampling techniques use a syringe-based approach that allows for a simplified hardware configuration delivering high robustness and ease of use. In contrast to purge and trap (P&T), often a reference method for preconcentration of volatile analytes, both solutions do not require the installation of transfer lines or switching valves.

• The results demonstrated that both SHS and ITEX-DHS techniques achieved sensitive detection of VOCs with method detection limits (MDLs) below 1.4 $\mu\text{g/L}$ and coefficients of determination (R^2) greater than 0.990. The reliability of the sampling workflows was confirmed with absolute peak area repeatability (RSD) below 20% over multiple injections of matrix-matched standards.

Introduction

Volatile organic compounds (VOCs) are significant environmental pollutants found in many commercial, industrial, and household products. These compounds, including solvents, degreasers, and gasoline components, can be released during manufacturing, usage, or disposal processes. When VOCs enter groundwater, they can persist for long periods due to their low water solubility, leading to the production of toxic byproducts and posing serious health risks. Exposure to VOCs has been linked to a range of adverse health effects, including respiratory problems, neurological damage, and an increased risk of cancer.

VOCs require extraction and pre-concentration prior to analysis to ensure accurate detection and quantification. Common techniques for analyzing VOCs in aqueous samples include P&T and SHS sampling. Recently, ITEX-DHS came to the scene as an alternative alternative to traditional extraction techniques for VOCs. The ITEX-DHS system consists of a glass tube body filled with a solvent material to efficiently trap and concentrate the volatile compounds from the sample headspace, allowing for low detection limits combined with a simplified hardware that does not require transfer lines or switching valves (Figure 1).

H_2 was selected as carrier gas as it reduces running costs significantly, is renewable, and provides high optimal linear velocity, which translates to shorter analysis times and increased productivity without compromising efficiency.

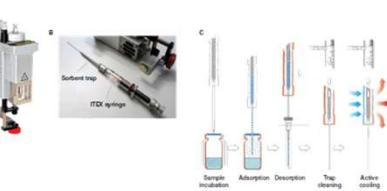


Figure 1. TriPlus RSH SMART ITEX-DHS tool (A) and ITEX syringe (B) as well as a schematic of the ITEX-DHS sample extraction and desorption process (C)

Materials and methods

Standard and sample preparation

Multi-component standards were diluted to 0.5, 0.05, and 0.005 mg/L , and internal standard/surrogate to 0.625 mg/L . Aliquots were dispensed into 20 mL headspace vials previously filled with 10 mL ultra-pure water to obtain 7-point calibration curves ranging from 0.05 to 5 $\mu\text{g/L}$ for ITEX-DHS and from 0.1 to 100 $\mu\text{g/L}$ for SHS. Each vial was spiked with internal standard/surrogate solution (final concentration 2.5 $\mu\text{g/L}$ for ITEX-DHS and 25 $\mu\text{g/L}$ for SHS) and added with 0.5 mg NaCl to enhance headspace transfer.

Test Method(s)

A Thermo Scientific™ TriPlus™ RSH SMART Headspace sampler equipped with ITEX-DHS and SHS components was used. The system was connected to a Thermo Scientific™ iConnect™ equipped HeSaver-H2 Safer mode, and a Thermo Scientific™ iConnect™ programmed temperature vaporizer (iConnect-PTV) injector, and to a Thermo Scientific™ ISQ™ 7610 single quadrupole mass spectrometer. The PTV injector was equipped with a liner packed with Tenax TA (P/N 45312145-U), suitable for a cryogenic re-refocusing of the most volatile compounds. The iConnect-PTV was connected to the ITEX-DHS via a Thermo Scientific™ TraceGOLD™ TG-40 SILMS, 60 m \times 0.25 $\mu\text{m} \times 1 \mu\text{m}$ column whereas for SHS a Thermo Scientific™ TraceGOLD™ TG-624 SILMS, 20 m \times 0.18 mm \times 1 μm column was used.

Data Analysis

Data were acquired, processed, and reported using the Thermo Scientific™ Chromelox™ Chromatography Data System (CDS) software, version 7.3. Integrated instrument control ensures full automation of the analytical workflow combined with an intuitive user interface for data analysis, processing, customizable reporting, and storage in compliance with the U.S. Food and Drug Administration (FDA) Title 21 Code of Federal Regulations Part 11 (Title 21 CFR Part 11).

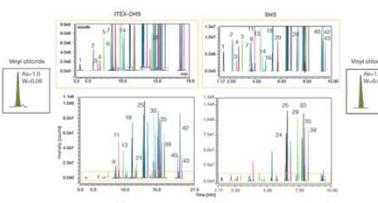


Figure 2. SIM traces showing an example of the chromatographic separation obtained for a matrix-matched standard using ITEX-DHS (concentration: 5 $\mu\text{g/L}$) and SHS (concentration: 100 $\mu\text{g/L}$) sampling. Peak asymmetry and width (calculated at 50% height) for the first eluting compound (vinyl chloride) are annotated.

Results

Chromatography

Peak broadening of early eluting compounds can occur due to a poor re-localization of the analytes at the head of the GC column. Focusing the analytes into the iConnect-PTV inlet at low temperature by using a PTV Tenax™ TA liner allowed for analyte transfer into a very narrow band ensuring Gaussian peak shapes for early eluting compounds. Moreover, the use of a carrier gas that does not react with the analytes, such as H_2 , is a reactant gas that can affect the ionization process resulting in some spectral differences, such as number of fragments and relative ion abundances, compared to helium. Figure 3 shows an example of spectral comparison between mass spectra acquired with H_2 for both PTV and HeSaver-H2 Safer injector as well as a comparison with the NIST23 mass spectral library. Overall, the search index scores (SIS) fit well to the NIST library, demonstrating that H_2 is not a concern in terms of spectral fidelity.

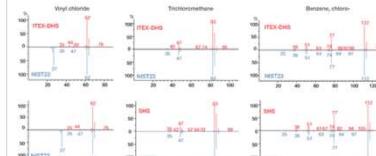


Figure 3. Examples of acquired spectra for PTV and HeSaver-H2 Safer injectors (carrier gas: H_2) versus NIST23 spectral library (carrier gas: helium). Acquisition range: m/z 35–300.

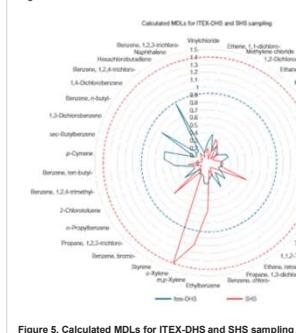


Figure 4. Calculated MDLs for ITEX-DHS and SHS sampling

Linearity and method detection limits (MDLs)

Linearity was assessed by injecting seven calibration levels ranging from 0.05 to 5 $\mu\text{g/L}$ for both SHS and ITEX-DHS. The data are shown in Figure 5. The RSD for both sampling techniques with $\text{N} = 9$ replicates of average response factors $<20\%$ (Figure 4). MDLs and precision were assessed using $\text{N} = 9$ replicates of matrix-matched standards spiked with VOC solution at 1.0, 2.0, and 2.5 $\mu\text{g/L}$. ITEX-DHS provided better sensitivity with calculated MDLs for all analytes $<0.9 \mu\text{g/L}$, whereas calculated MDLs for SHS sampling ranged from 0.05 to 1.4 $\mu\text{g/L}$ (Figure 5).

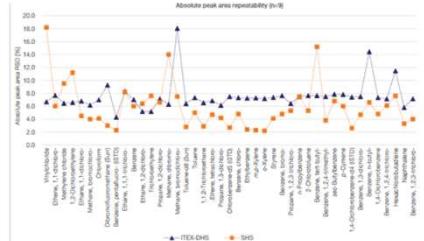



Figure 6. %RSD obtained for $\text{N} = 9$ matrix-matched standards spiked at 1.0 $\mu\text{g/L}$ (ITEX-DHS) and 2.0 $\mu\text{g/L}$ (SHS).

Conclusions

- ITEX-DHS and SHS sampling offer robust and powerful extraction of volatiles. Based on a syringe approach, both sampling techniques allow for simplified hardware configuration and straightforward operations.
- H_2 carrier gas provides a cost-effective alternative to helium, allowing for reliable GC-MS performance in compliance with the current EU regulation and ensuring spectral fidelity with matches to commercial libraries commonly used for spectral search.
- Sensitive detection of VOCs was achieved for both sampling techniques with overall calculated MDLs $<1.4 \mu\text{g/L}$ and $R^2 > 0.990$ with residual values $<20\%$.
- The reliability of both sampling workflows was demonstrated with absolute peak area repeatability (RSD) $<20\%$ over $\text{N} = 9$ injections of matrix-matched standards spiked at 1.0 $\mu\text{g/L}$ (ITEX-DHS) and 2.0 $\mu\text{g/L}$ (SHS).

References

- Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption. EUR-Lex-32020L2184 - EN - EUR-Lex (europa.eu)

Trademarks/licensing

© 2025 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. This information is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others.

For the full application note
scan here

