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The PFAS Universe
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Strictly speaking, these substances are not fluorotelomers, as they are not derived from the telomerization process. Despite this, they are termed here “no fluorotelomer-based” substances for readability. Future work may consider to identify more proper terminology

for this group of PRASS

Mote that for many compounds such as HFF and TFE, there are different symthesis routes with different starting materials, and here shows only one of them.
" Mate that there are three synthesis routes shown here for manufacturing of PFCAs, from PACFs, PRAlS and n:z FTIs. Note that different synthesis routes may generate PFCAs with different perflucrocarbon chain lengths.
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Figure 10. An overview of some common synthesis routes of different individual or groups of PFASs based on publicly accessible source
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The Analytical Instrumentation Universe for PFAS

A Koch et al [ Trends in Anelytical Chemdstry 123 (2020) 115423
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Growing Interest in Neutral and Volatile PFAS

Established PFAS analytical methodologies « Unfortunately, LCMS is unable to measure
currently include EPA Methods 533, 537.1, some PFAS.

8327, and 1633A, as well as Other Test

Methods (OTMs) 45 and 50. Most of these « Bach et al. in Journal of Chromatography A
methods are LCMS based methods used to indicate that using LCMS, the

measure neutral PFAS. simultaneous analysis of non-ionic and

ionic PFAS (FTOH) is impeded by
lonization suppression caused by the
buffered mobile phase.

 In addition, compounds such as FTls
cannot generate protonated and
deprotonated molecules by electrospray-
lonization.

LC/MS Triple Quadrupole Mass Spectrometer
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GC-MS for Volatile PFAS Analysis

 Unlike LCMS, GCMS is suitable to analyze
these problematic compounds. Therefore, GCMS

& IS paramount as a complementary technique to
LCMS in providing a total solution for
=i — measurement of PFAS.
’E e ol . | - « GCMS Advantages:

« Capable of analyzing volatile PFAS
* Minimal sample preparation
* Automated SPME

GCMS-NX Series

) SHIMADZU



Sample Introduction Techniques for GC/MS

Sample Introduction Technique Sensitivity (GC-MS) Extraction Mode Ligt:)ir::;j;gtlon
Static Headspace (SHS) ppb-ppm level Static equilibrium gas extraction \/
Dynamic Headspace (DHS)* ppt-ppb level Dynamic non-equilibrium gas extraction \/
Solid Phase Microextraction (SPME) ppt-ppb level Sorptive extraction \/
Thermal Desorption (TD) ppt-ppb level Sorptive extraction
Direct Thermal Desorption (Direct-TD) ppt-ppm level Direct thermal extraction
Liquid Injection (Liq) ppb level v/
Pyrolysis (Py) Mg level Destructive thermal decomposition
Direct Injection (DI) ng level

* Purge & Trap

) SHIMADZU



Thermal Desorption — GC/MS

Direct Air Sample Analysis
 Avoids solvent-related contaminations and losses

* Preserves analyte integrity, especially for volatile and
semi-volatile PFAS

Increased Sensitivity and Lower Detection Limits
« Concentrates large air volumes onto sorbent tubes

* Enables detection of trace-level PFAS (ppt or lower)
not easily captured by liquid injection

Minimizes Sample Handling and Contamination Risk

* Fewer steps = less chance of background PFAS
contamination (e.g., from labware or solvents)

Imeroved Recovery of Volatile and Thermally Labile
PFAS

* Gentle desorption conditions reduce analyte
degradation

» Ideal for ultra-volatile or thermaII%/ sensitive
compounds (e.g., FTOHSs, fluorotelomer acrylates)

] SHIMADZU 7



Head Space — Solid Phase Micro Extraction — GC/MS

g Occurrence of volatile PFAS in liquid and A

solids samples of diverse origin
N ? k(environmental, food, consumer products)/

® o \
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Experimental Plan

« Compound identification [} =
« Chromatographic and MS methods: | l ]" |
development by liquid injection ﬂ E!L \ d ——y

« SPME parameters - optimization

« Calibration curve and linear range ]I

. Carry-over e

* PFAS in the background

* Analysis of different liquid samples SN Series
* Precision and accuracy :

 Matrix effects
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Background on Workflow
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Method condition

Gas Chromatography Nexis GC-2030

Injection port mode Splitless

Carrier gas Helium

Injection port temperature (°C) 240

Column SH-1-624Sil MS Capillary, 30 m x 0.25 mmID x 1.40 um

Flow control mode (cm/sec)

Linear velocity: 45

Oven Temperature

40 °C (7 min.), 5 °C/min. to 190 °C (0 min.), 40 °C/min. to

300 °C, (5 min.)

Mass Spectrometer

GCMS-TQ8040 NX

Interface Temperature (°C) 280

lon Source Temperature (°C) 200

Detector Voltage (kV) Relative to Tune 0.4
Threshold 0

Acquisition mode

Acquisition mode: MRM, Loop time: 0.5 sec.

Tuning mode

Normal mode

SPME analysis

AOC-6000 Plus

SPME Fiber

50/30 um DVB/CAR/PDMS

Incubation time (min) 5
Extraction time (min) 30
Desorption time (min) 7
Agitation speed (rpm) 300
Extraction Temperature (°C) 50
Sample volume (mL) 10
Desorption temperature (°C) 240

Sampling salinity

2% NaCl (w/v)

) SHIMADZU
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Compound table and ISTD grouping for drinking water matrix

Ret. Time Quantifier Qualifier #1 Qualifier #2 Internal
Compound CE CE CE standard
(min) (m/2) (m/2) (m/z) group

PFHxI 6.7 119.0>69.0 12 319.0>69.1 24 319.0>231.0 6 3
PFOI 12.5 169.0>69.0 21 119.0>69.0 21 419.0>69.1 27 3
4:2 FTI 15.0 373.9>227.0 9 373.9>163.1 21 373.9>113.1 27 3
6:2 FTI 19.6 473.9>326.9 12 69.0>50.0 27 473.9>263.0 21 1
8:2 FTOH 22.5 95.0>69.0 15 127.1>77.1 15 95.0>45.1 27 1
6:2 FTAC 23.1 418.1>99.1 15 99.1>43.1 9 99.1>57.1 12 2
Targets 8:2 FTI 23.5 574.0>426.9 15 169.0>69.0 9 574.0>65.1 24 2
10:2 FTOH 25.7 95.0>69.0 15 127.1>77.1 15 95.0>45.1 27 3
6:2 FTMAC 25.6 86.1>68.1 6 432.1>113.1 12 432.1>86.1 21 1
8:2 FTAC 26.4 518.0>99.1 15 99.1>57.1 12 99.1>43.1 9 1
8:2 FTMAC 28.7 86.0>68.1 6 86.0>41.1 15 532.00>113.1 21 2
MeFOSA 33.6 131.1>69.1 24 169.0>69.0 12 94.00>91.8 57 4
EtFOSA 34.2 108.1>80.0 6 448.0>69.1 27 108.10>44.1 3 4
8:2 FTOH 13C, 22.4 98.0>69.0 15 131.1>81.1 15 98.00>48.1 27 1
Internal 6:2 FTACd, 23.1 101.1>57.1 12 101.1>45.0 9 102.00>45.0 9 2
Standards 10:2 FTOH 13C, 25.6 98.0>69.0 12 131.1>81.1 12 98.00>48.1 27 3
EtFOSA d, 34.1 113.1>81.0 6 81.0>64.0 24 450.10>69.0 27 4

) SHIMADZU
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Results — Laboratory Control Samples (LCS) Accuracy and Repeatability
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Results — Environmental and Bottled Water Samples

% Accuracy
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From Simple to Complex: Expanding Matrix Complexity

l‘ Proven Durability Across Drinking Water Introducing a More Complex Matrix:

@

Matrices Juice
« Tap water * Natural product with high complexity
- Bottled water  Contains:
— Sugars & salts
But These Are Relatively Simple Matrices — Food colorings
— Preservatives & vitamins
* Low in matrix complexity _ Other additives

* Fewer interfering substances

Increase
Complexity

] SHIMADZU

15



Compound table and ISTD grouping for drinking water matrix

Internal Ret. Time

standard Compound Quantifier (m/z) CE Qualifier #1 (m/z) CE Qualifier #2 (m/z) CE
group (min)

6:2 FTI 19.6 473.9>326.9 12 69.0>50.0 27 473.9>263.0 21
8:2 FTOH 22.5 95.0>69.0 15 127.1>77.1 15 95.0>45.1 27
1 6:2 FTMAC 25.6 86.1>68.1 6 432.1>113.1 12 432.1>86.1 21
8:2 FTAC 26.4 518.0>99.1 15 99.1>57.1 12 99.1>43.1 9
8:2 FTOH 13C, 22.4 98.0>69.0 15 131.1>81.1 15 98.00>48.1 27
6:2 FTAC 23.1 418.1>99.1 15 99.1>43.1 9 99.1>57.1 12
5 8:2 FTI 23.5 574.0>426.9 15 169.0>69.0 9 574.0>65.1 24
8:2 FTMAC 28.7 86.0>68.1 6 86.0>41.1 15 532.00>113.1 21
6:2 FTACd, 23.1 101.1>57.1 12 101.1>45.0 9 102.00>45.0 9
PFHXxI 6.7 119.0>69.0 12 319.0>69.1 24 319.0>231.0 6
PFOI 12.5 169.0>69.0 21 119.0>69.0 21 419.0>69.1 27
3 4:2 FTI 15.0 373.9>227.0 9 373.9>163.1 21 373.9>113.1 27
10:2 FTOH 25.7 95.0>69.0 15 127.1>77.1 15 95.0>45.1 27
10:2 FTOH 13C, 25.6 98.0>69.0 12 131.1>81.1 12 98.00>48.1 27
MeFOSA 33.6 131.1>69.1 24 169.0>69.0 12 94.00>91.8 57
4 EtFOSA 34.2 108.1>80.0 6 448.0>69.1 27 108.10>44.1 3
EtFOSA d. 34.1 113.1>81.0 6 81.0>64.0 24 450.10>69.0 27

) SHIMADZU
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Accuracy is drastically different with different ISTD

8:2 FTMAC accuracy results using multiple isotopic labelled internal standards

H LCS, 100 ppt, n=4 ® Brand Y Carton Apple Juice, 100 ppt, n=3
Brand X Bottled Apple Juice, 100 ppt, n=3 ¥ Brand X Carton Berry Juice, 100 ppt, n=3
B Brand X Carton Apple Juice, 100 ppt,n=3  ===-=-= Accuracy method criteria

Error bars: W%RSD
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vt Al AE

8:2 FTMAC-dg 6:2 FTMAC-ds 8:2 FTOH-13C, 6:2 FTAC-ds 10:2 FTOH-13C, EtFOSA-ds 8:2 FTAC-dg M-MeFOSA-d;

120
100
a0
g0
40
20
0

] SHIMADZU



Accuracy is drastically different with different ISTD /

8:2 FTMAC accuracy results using multiple isotopic labelled internal standards

= LCS, 100 ppt, n=4 = Brand ¥ Carton Apple Juice, 100 ppt, n=3
Brand X Bottled Apple Juice, 100 ppt, n=3 ¥ Brand X Carton Berry Juice, 100 ppt, n=3
B Brand X Carton Apple Juice, 100 ppt, n=3  ===== Accuracy method criteria

Error bars: %RSD

320 Own

% Accuracy

S

e el -l

8:2 FTMAC-d;s 68:2 FTMAC-ds 8:2 FTOH-13C, 6:2 FTAC-d4 10:2 FTOH-"3C, EtFOSA-ds B:2 FTAC-dy MN-MaFOSA-d;
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Accuracy is drastically different with different ISTD

% Accuracy

8:2 FTMAC accuracy results using multiple isotopic labelled internal standards

® LCS, 100 ppt, n=d4 ® Brand ¥ Carton Apple Juice, 100 ppt, n=3
Brand X Bottled Apple Juice, 100 ppt, n=3 ® Brand X Carton Berry Juice, 100 ppt, n=3
Oth B Brand X Carton Apple Juice, 100 ppt, n=3  -=-=--= Accuracy method criteria
er

IS TD Error bars: %RSD

i i HiE

EtFOSA-ds B:2 FTAC-d, N-MeFOSA-d;

o

vt £ AR 0

6:2 FTMAC-ds  8:2 FTOH-"C; 6:2 FTAC-d5 10:2 FTOH-13C,
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Accuracy is drastically different with different ISTD

8:2 FTMAC accuracy results using multiple isotopic labelled internal standards

B LCS, 100 ppt, n=4 = Brand Y Carton Apple Juice, 100 ppt, n=3

2 8 0 Brand X Bottled Apple Juice, 100 ppt, n=3 B Brand X Carton Berry Juice, 100 ppt, n=3
2 60 B Brand X Carton Apple Juice, 100 ppt, n=3  ===== Accuracy method criteria

2‘10 - Error bars: %RSD
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Compound table and ISTD grouping for complex matrix

Ret. Time Quantifier Qualifier #1 Qualifier #2 Internal
Compound CE CE CE standard
(min) (m/z) (m/2) (m/2) group

6:2 FTI 19.6 473.9>326.9 12 69.0>50.0 27 473.9>263.0 21 1
8:2 FTOH 22.4 95.0>69.0 15 127.1>77.1 15 95.0>45.1 27 1
6:2 FTAC 23.1 418.1>99.1 15 99.1>43.1 9 99.1>57.1 12 2
8:2 FTI 23.5 574.0>426.9 15 169.0>69.0 9 574.0>65.1 24 2
Targets 10:2 FTOH 25.6 95.0>69.0 15 127.1>77.1 15 95.0>45.1 27 3
6:2 FTMAC 25.6 86.1>68.1 6 432.1>113.1 12 432.1>86.1 21 5
8:2 FTAC 26.4 518.0>99.1 15 99.1>57.1 12 99.1>43.1 9 6
8:2 FTMAC 28.7 86.0>68.1 6 86.0>41.1 15 532.00>113.1 21 7
MeFOSA 33.5 430.00>91.10 33 94.00>91.80 57 448.00>78.00 33 8
EtFOSA 34.1 108.1>80.0 6 448.0>69.1 27 108.10>44.1 3 4
8:2 FTOH 13C, 22.3 98.0>69.0 15 131.1>81.1 15 98.00>48.1 27 1
6:2 FTAC d, 23.0 101.1>57.1 12 101.1>45.0 9 102.00>45.0 9 2
10:2 FTOH 13C, 25.5 98.0>69.0 12 131.1>81.1 12 98.00>48.1 27 3
Internal EtFOSA d. 34.1 113.1>81.0 6 81.0>64.0 24 450.10>69.0 27 4
Standards 6:2 FTMAC d; 25.6 91.1>73.1 6 437.1>118.2 12 437.1>91.1 18 5
8:2 FTAC d, 26.4 521.1>102.1 15 102.1>58.1 12 102.1>74.1 6 6
8:2 FTMAC d, 28.7 91.1>73.1 6 537.1>91.1 21 537.1>118.1 21 7
N-MeFOSA d, 33.5 433.1>114.0 25 433.1>94.3 33 97.1>94.1 57 8

Compounds in red bold font lack their own ISTD

) SHIMADZU
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Recovery in various complex matrices

Brand X Bottled AJ Brand X Carton AJ Brand Y Carton AJ Brand X Carton BJ

] ey | RS0 |l | o | o | o
6:2 FTI 105 3.3 120 3.8 76 1.4 84 4.2
8:2 FTOH 90 0.6 87 2.1 83 0.9 86 0.7
6:2 FTAC 70 3.0 69 5.8 74 2.9 79 5.5
8:2 FTI 88 7.9 79 10.9 70 2.5 91 11.6
6:2 FTMAC 95 0.3 95 1.4 99 1.7 94 2.2
10:2 FTOH 101 2.5 93 1.9 117 1.9 92 3.2
8:2 FTAC 115 1.9 114 2.7 104 0.4 112 2.6
8:2 FTMAC 75 1.0 79 5.1 95 3.1 80 0.8
MeFOSA 96 0.9 91 2.5 95 4.0 86 3.7
EtFOSA 87 1.3 88 0.5 88 0.3 86 0.2

) SHIMADZU

22



Conclusion /

 The HS-SPME GC-MS/MS method demonstrates an effective
and reliable workflow for the quantification of volatile PFAS in
complex matrices, as shown using juice as a representative
sample.

» The workflow offers key advantages in terms of simplicity,
speed, precision, and accuracy that is critical for routine
monitoring in challenging matrices.

] SHIMADZU 2



Conclusion

» Accurate quantification in complex matrices requires that each
target compound be paired with its own isotopically labeled
internal standard to account for compound-specific matrix
effects.

» For certain analytes (e.g., 6:2 FTl and 8:2 FTI), appropriate
internal standards are not commercially available. This
underscores the need for expanded availability of isotopically
labeled standards from suppliers.

» In the absence of compound-specific internal standards, those
with similar matrix behavior may be used cautiously, provided
their suitability is supported by thorough validation.

] SHIMADZU
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Take Home Message — How to Measure Volatile PFAS?

PFAS universe is vast

oOopoooo

| Multiple
— I instrumentation
R T is required:

LCMS is unable to measure some PFAS, such as
some volatile PFAS.

* various
matrices

* sample prep
techniques

LC/MS Triple Quadrupole Mass Spectrometer

] SHIMADZU 25



Take Home Message — GC-MS can be the Solution

PFAS universe is vast

GCMS is
suitable to
analyze volatile
PFAS
compounds.

§

]

b

£

i

B
goEooog

GCMS-NX Series

. - | Multiple
LCMS is unable to measure some PFAS, such as instrumentation
some volatile PFAS. . o
is required:
* various
matrices

* sample prep
techniques

LC/MS Triple Quadrupole Mass Spectrometer

) SHIMADZU
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A

Emerging Contaminants
Unknowns (QTOF)

For any questions, contact:
Alan Owens
amowens@shimadzu.com

Customizable Reports
Connection to LIMS

Ruth Marfil-Vega
rmmarfilvega@shimadzu.com

For more information, visit:
www.OnelLabOneEarth.com

OnelLabOneEarth.com

Connect with us:

X - @shimadzussi LinkedIn - /company/shimadzu-scientific-instruments/

Instagram - @shimadzussi YouTube - @ShimadzuScientificnstruments
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HS-SPME-GCMS
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Occurrence of volatile PFAS in liquid and
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with same set-up
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PFAS in the Background

Consumables and reagents

* HSvials

«  SPME fibers
e e « Salt
. - Solvents

» Commercial standards
Doy
-

S — v No fluorinated components
S— in sample flow path
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Background and carryover

* None of the target PFAS in the
laboratory blank samples
showed quantifiable results

 The area of peaks of in the
blanks were less than 1/5 of the
lowest calibration standard

* The carryover effect was
evaluated by analyzing a blank
immediately after the highest
calibration standard: <0.2%

] SHIMADZU
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Instrumentation and targets

(-0

Shimadzu’'s GCMS QP-2020NX

Shimadzu’'s GCMS TQ-8040

Chemical Class Compound Acronym CAS Number
" kvl iodid Perfluorohexyl iodide PFHXxI 355-43-1
Perfluoroalkyliodides (PFIs) 5 GrooctyT fodide BFOI 507631
2V Fl tel 4:2 Fluorotelomer iodide 4:2 FTI 2043-55-2
(n:2) Fluorotelomer 6:2 Fluorotelomer iodide 6:2 F1I 2043574
iodides (FTs) 82 Fluorotelomer fodide 82 1l 2043-53-0
6:2 Fluorotelomer acrylate 6:2 FTAC 17527-29-6
8:2 Fluorotelomer acrylate 8:2 FTAC 27905-45-9
(n:2) Fluorotelomer acrylates 11 IF 2H 2 Parfl
(FTACs) ,1H,2H,2H-Perfluoro-n- 6:2 FTAC d3 7527-29-6
octyl acrylate-d3
6:2 Fluorotelomer .
(n:2) Fluorotelomer methacrylate 6:2 FTMAC 2144-53-8
methacrylates (FTMACs 38:2 Fluorotelomer - _88-
y ( ) methacrylate 8:2 FTMAC 1996-88-9
8:2 Fluorotelomer alcohol 8:2 FTOH 678-39-7
10:2 Fluorotelomer alcohol 10:2 FTOH 865-86-1
2-perfluorooctyl-(1,1-2H2- 8:2 FTOH BC2 | 872398-73-7
(n:2) Fluorotelomer alcohols | 1,2- 13C2]-ethanol
(FTOHs) 2-perfluorodecyl-[1,1-2H2- 10:2 FTOH 3¢2 | 865-86-1
1,2- 13C2]-ethanol
N-Methyl perfluorooctane MeFOSA 31506-32-8
sulfonamide
Perfluoroalkane sulfonamides N-Ethyl pgrfluorooctane EtFOSA 4151-50-2
(FASAS) sulfonamide
n-ethyl-ds-perfiuoro-1- EtFOSA d5 936109-40-9
octanesulfonamide

) SHIMADZU
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Optimized Method Conditions

Gas Chromatography Nexis GC-2030
Injection mode Splitless
Carrier gas Helium
Injection port temperature (°C) 240

Mass Spectrometer

Common Parameters

High pressure injection

Auto, 250 kPa, 1 min

Interface temperature (°C)

280

Column

SH-I-624Sil MS Capillary, 30 m x 0.25 mmID x 1.40 um

lon source temperature (°C)

200

Flow control mode (cm/sec)

Linear velocity, 44.4

Detector voltage (kV)

Relative to Tune 0.4

Total flow (mL/min)

50

Threshold

0

Oven temperature

40°C (7 min.), 5°C/min. to 188°C (0 min.), 40°C/min. to 300°C, (5 min.)

Mass Spectrometer

QP-2020NX

SPME analysis

AOC-6000 Plus

Acquisition mode

Qualitative analysis:

Full scan: m/z 50 to 600
Quantitative analysis:
SIM, Event time 0.3 sec.

Tuning mode

High Sensitivity

Mass Spectrometer

TQ-8040 NX

Acquisition mode

Qualitative analysis:
Full scan: m/z 50 to 600
Quantitative analysis:

MRM, Loop time: 0.3 sec.

SPME Fiber 50/30 ym DVB/CAR/PDMS
Incubation time (min) 5
Extraction time (min) 30
Desorption time (min) 7
Agitation speed (rpm) 300
Extraction temperature (°C) 50
Sample volume (mL) 10
Desorption temperature (°C) 240

Tuning mode

Normal mode

Sampling salinity

2 % NaCl (w/v)

) SHIMADZU
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Results- SIM and MRM Chromatograms

QP-2020NX Chromatogram Results
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TQ-8040NX Chromatogram Results
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Results- SIM and MRM 8:2 FTOH Chromatograms

QP-2020NX SIM Chromatogram Results

TQ-8040NX MRM C

hromatogram Results
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Summary of Calibration Range and Linearity Results

QP-2020NX (SIM) TQ-8040 (MRM)

Compoung | CAPrEeNRanse | o el et ikl B o nan
PFHXxI 2.5-2000 0.993 10.89 2.5-2000 0.999 13.68
PFOI 2.5-2000 0.997 10.26 2.5-1000 0.998 18.94

4:2 FTI 2.5-800 0.993 8.28 2.5-2000 0.997 9.30
6:2 FTI 25-800 0.994 13.53 1-2000 0.998 17.18
8:2 FTOH 25-2000 0.997 5.37 2.5-2000 >0.999 6.31
6:2 FTAC 25-2000 0.998 19.87 2.5-2000 0.998 4.03
8:2 FTI 2.5-800 0.996 13.59 2.5-2000 0.999 9.05
10:2 FTOH 2.5-2000 0.999 10.38 2.5-2000 >0.999 6.45
6:2 FTMAC 2.5-800 0.995 12.43 2.5-2000 0.998 10.41
8:2 FTAC 5-250 0.995 14.81 2.5-2000 0.999 11.32
8:2 FTMAC 2.5-250 0.998 19.51 2.5-2000 0.999 9.98
MeFOSA 5-2000 >0.999 17.79 2.5-2000 0.999 6.85
EtFOSA 10-2000 0.999 11.40 1-2000 >0.999 717

Sensitivity: SQ: 2.5-25 ppt; TQ: 1 - 2.5 ppt

) SHIMADZU
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Calibration Range of 8:2 FTOH

QP-2020NX (SIM) TQ-8040 (MRM)
Compoung | SR Ranee | e kel il o anae
PFHxI 2.5-2000 0.993 10.89 2.5-2000 0.999 13.68
PFOI 2.5-2000 0.997 10.26 2.5-1000 0.998 18.94
4:2 FTI 2.5-800 0.993 8.28 2.5-2000 0.997 9.30
6:2 FTI 25-800 0.994 13.53 1-2000 0.998 17.18
|I 8:2 FTOH 25-2000 0.997 5.37 2.5-2000 >0.999 6.31

QP-2020NX Chromatogram Results
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SIM and MRM Calibration Curves

Single Quadruple Chromatogram Results Triple Quadruple Chromatogram Results
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