

Leveraging MS1 Data in NTA Workflows to Improve PFAS Discovery

David Schiessel Babcock Labs, Inc. dschiessel@babcocklabs.com

Outline

The Lop-Sided Nature of NTA Data Features

Case of No MS/MS data

Recent Developments in PFAS Prioritization

Kendrick, Kaufmann, and Zweigle

RT Models and Molecular Formula Decomposition

Conclusion

Non-Targeted Analyses generate results with varying confidence levels.

What is NTA? Non-Targeted Analysis

BP4NTA - The characterization of the chemical composition of any given sample without the use of a priori knowledge regarding the sample's chemical content.

The <u>framework</u> by which a defined <u>chemical space</u> is investigated within a sample without a priori knowledge for the primary purpose of <u>chemical discovery</u>.

NTA Feature Distribution Body of Knowledge Limited

Features in Electrospray may be chemicals, in-source fragments, or clusters/adducts

Chemical space of full scale NTA study is vast (+9000 for drinking water)

More difficult to deconvolute In-source fragments than clusters (once a bond breaks, the neutral is lost)

Confidence Annotation of features naturally heavily weighted on lower confidence scores (Few level I and many Level 4/5)

Complete NTA Workflow Example – Thermo Compound Discoverer 3.3

No MS/MS data Conundrum of ddMS2 Workflows

Typical Full Scan NTA acquisition has a data-dependent MS2 component to it. Triggered only when chemical feature is above threshold Trade-off of ddMS2 over All ions fragmentation (AIF) is ease of deconvolution Ultimately, many features do not have MS/MS data

Can we increase identification confidence for the many features that have no MS2 data?

Kendrick Mass / Mass Defect

Plot of Kendrick Mass Defect (KMD) vs. MW <u>KMD</u>(CF2) = M * round(KFM) / KFM – round(M)

Where KFM = 49.9968 and M = mass(feature)

Produces horizontal lines where CF2 homologs occur

<u>Mass Defect</u> = $MW - \underline{floor}(MW)$

Disadvantage: Scales poorly to non CF2 homologs

What's in a M/Z

Example: [M-H]- ion for PFOA

For PFAS:

- m/z is larger because F atoms have replaced H atoms

- Mass defect becomes larger as more F atoms added

Mass Defect – Δ from integer

What's in a Mass Spectrum (MS1 Full Scan)

If Carbon 13 abundance is 8.73%, this feature has 8 carbons (independent of F atoms)

What's in a Mass Spectrum (MS1 Full Scan)

OCTANOIC ACID

- MF = C8 H16 O2
- MW ~ 143
- MW/Carbon ~ 18
- Mass Defect = 0.10782
- MD/Carbon = 0.0135

• PFOA

- MF = C8 H FI5 O2
- MW ~ 413
- MW/Carbon ~ 52
- Mass Defect = -0.03363
- MD/Carbon = -0.0042

Kaufmann Plot of PFAS (md/C vs. m/C)

Kaufmann Plot of PFAS (md/C vs. m/C)

PFAS-ness – Upper and Lower Bounds

Tags		[E Checked	l Name	Formula	RT [min] 🔺	m/z	Area (Max.)	Annot. ∆Mass	[ppm] MS2	Annot. Source 🛨	mzVault Library Matches 🛨	Mass List Matches	+	eC	m/C	md/C	f1PFAS	f2PFAS	Calc. MW
000	000	000		TFMSi	C H F3 O2 S	1.246	132.95675	18576503		-6.79					1.07535	124.5772	-0.0334(12.60436	-25.34853	133.96402
0000	000	000		TFMS	C H F3 O3 S	1.327	148.95173	110842740		-5.65					1.09651	136.7597	-0.03739	15.49424	-26.69815	149.95900
0000	000	000		TFMSA	C H2 F3 N O2 S	1.767	147.96772	42968824		-5.64					1.16133	128.2793	-0.02154	26.60083	-12.64038	148.97499
0000	000	000		PFPrA	C3 H F5 O2	2.176	162.98162	157987627		-5.32					2.80207	58.52420	-0.0040(5.07650	-9.88992	163.98880
000	000	000		PFEtS	C2 H F5 O3 S	3.477	198.94889	124526386		-2.43					0.55187	362.3254	-0.07942	99.78122	-20.90803	199.95617
000	000	000		PFBA	C4 H F7 O2	4.393	168.98864	523352731		-2.83					3.03458	70.51583	-0.0046(11.13253	-8.00697	213.98587
000	•00	000		PFPrS	C3 H F7 O3 S	4.769	248.94611	172347615		-0.31					2.78246	89.83194	-0.0167!	9.85090	-16.01061	249.95338
000	000	000		PFMPA, PFOPeA	C4 H F7 O3	4.823	228.97388	41856299		-1.02					3.93709	58.41401	-0.0047	4.22659	-10.70149	229.98116
000	•00	000		Bistriflimide	C2 H F6 N O4 S2	4.925	279.91786	172916023		0.08					0.69323	1.05.2421	-0.1079	95.24803	-40.37625	280.92514
000	000	000		PFPeA	C5 H F9 O2	5.353	262.97598	167080174		-0.59					5 1 5 1 3 2	51.14645	-0.00327	1.67347	-10.72550	263.98313
000	000	000		PFBS	C4 H F9 O3 S	5.501	298.94303	328331590		0.14					3.74778	80.03408	-0.0132(7.86058	-14.59128	299.95031
000	000	0000		PFMBA, PFOHxA	C5 H F9 O3				1/0	(1DEAC	CODEAC				4.93940	56.68268	-0.0044	3.62880	-10.69677	279.97820
000	000	000		3:3-FTCA	C6 H5 F7 O2	eu		m/C	ma/C	TIPFAS	TZPFAS				6.48017	37.34740	0.00271	-0.07565	-7.67255	242.01756
0000	000	0000		H-PFHpA	C7 H2 F12 O2	1	.07535	124.5772	-0.0334(12.6043	36 -25.34853				7.61739	45.42055	-0.0018(-0.06563	-10.47198	345.98628
						1 1 2 0	.09651 .16133 .80207 .55187	136.7597 128.2793 58.52420 362.3254 70.51583	-0.0373! -0.02154 -0.0040(-0.0794;	15.4942 26.6008 5.0765 99.7812	24 -26.69815 83 -12.64038 50 -9.88992 22 -20.90803 53 -8.00697									
						2	.78246	89.83194	-0.0167!	9.8509	90 -16.01061		Zwe	eigle	e et	al	did	sim	nilar	
						3	.93709	58.41401	-0.00479	4.226	59 -10.70149		wor	k ca	lcu	lati	ng a	a sir	ngle	
						0	.69323	405.2421	-0.10799	95.2480	03 -40.37625	5					· • •		.0	
						5	.16132	51.14645	-0.00327	1.6734	47 -10.72550			va	ue	usi	ng	a m	ore	
						3	.74778	80.03408	-0.0132(7.860	58 -14.59128	3							•	
						4	.93940	56.68268	-0.0044	3.6288	30 -10.69677		con	nplio	cate	ed	calc	ulat	tion	

Machine Learning Approach to RT Modeling

RT Modeling – How and Why

Using R packages: rcdk (QSAR), neuralnet to generate a 7:4 MLP

Pretty good prediction +/-1.0 min, some outliers Not universal and not directly transferable

Overly trained for PFAS (80+ PFAS) but includes pesticides, CECs

Did initial Cross-Validation from 10% to 90% training, run with 5 replicates of randomized data. RMSE minimization confirmed.

Dominant QSARs that predict RT are usual suspects (eg:AlogP)

Another tool – to help increase ID confidence

RT Model – Observed/Predicted

Predicted RT vs Real - 7:4 Multi-layer Perceptron Neural Net

RT Model (2021) vs. 2023

47 compounds – mostly PFAS

Old Model vs 2023

What's Required for an RT Model

- Structures of all molecules (SMILES)
- Specific Quantum Structure Activity Relationship (QSAR) calculations. Examples: ALogP, nHB Donors, nHB Acceptors, Elemental counts, polarizability)
- Train the model
- Validate the Model using various test/train ratios. Determine if RMSE goes down as train ratio increases
- Store the model
- Use model on Feature candidate lists (one feature, many possible chemicals)

Molecular Networks To Explore Feature Relationships

Molecular Networks (Thermo CD)

Informed DeNovo Molecular Formula Generation

Molecular Formula Generation

- DeNovo "from the beginning"
- Decomposition computationally expensive / time consuming (last resort)
- Often produces more junk than useful information

^	mz ‡	MF [‡]	charge	RdisopScore	† unsat †	parity	error [‡]	nrule 🗘	ppm [‡]	SENIOR3 [‡]	HtoC 🗘	NtoC
1	371.1009	C6H31O7N2S4		9.183108e-0	2 -7.5	e	-2.288724e-05	Valid	-0.0616739	3	5.1666667	0.3333333
5	371.1006	C13H23O10S		5.182191e-0	2 2.5	e	-2.393812e-04	Valid	-0.6450570	9	1.7692308	0.0000000
7	371.1006	C11H11N14S		5.010691e-0	2 13.5	e	-2.500732e-04	Valid	-0.6738686	45	1.0000000	1.2727272
8	371.1006	H150O10N2S		4.081205e-0	2 –73.0	e	-3.119322e-04	Valid	-0.8405591	-140	Inf	Ir
10	371.1012	C8H146O8		4.587981e-0	2 -64.0	e	3.399638e-04	Valid	0.9160953	-128	18.2500000	0.0000000
12	371.1005	C5H19O13N6		2.704001e-0	2 –0.5	e	-4.223192e-04	Valid	-1.1380173	5	3.8000000	1.2000000
14	371.1005	C3H7O3N20		2.590080e-0	2 10.5	e	-4.330112e-04	Valid	-1.1668289	41	2.33333333	6.6666666
17	371.1013	C6H23O8N6S2		3.147397e-0	2 –1.5	e	4.460708e-04	Valid	1.2020202	11	3.8333333	1.0000000
21	371.1014	CH154O5N2S3		2.005891e-0	2 -74.0	e	5.564578e-04	Valid	1.4994784	-134	154.0000000	2.0000000
23	371.1015	C14H27O5S3		1.442732e-0	2 1.5	e	6.290088e-04	Valid	1.6949805	15	1.9285714	0.0000000
26	371.1017	C7H35O2N2S6		4.583770e-0	3 -8.5	e	8.455028e-04	Valid	2.2783636	9	5.0000000	0.2857142
27	371.1000	C5H27O12N2S2		2.348783e-0	3 –6.5	e	-8.912772e-04	Valid	-2.4017114	-3	5.4000000	0.4000000
29	371.1000	C3H15O2N16S2		2.191293e-0	3 4.5	e	-9.019692e-04	Valid	-2.4305230	33	5.0000000	5.3333333
31	371.1018	C6H15O9N10		3.007650e-0	3 4.5	e	9.150288e-04	Valid	2.4657143	19	2.5000000	1.6666666
34	371.0999	C18H11O2N8		1.755212e-0	3 17.5	e	-9.355252e-04	Valid	-2.5209459	43	0.6111111	0.4444444
37	371.0999	C5H138O2N10		1.063501e-0	3 –58.0	e	-1.008076e-03	Valid	-2.7164480	-106	27.6000000	2.0000000
50	371 1010	CH146OENES		1 450770-0	3 -680	•	1 0254160-03	Valid	2 7621725	_126	146 0000000	6 000000

owing 1 to 17 of 64 entries. 22 total column

Raw MS1 Spectrum

Filtered MS1 Spectrum

6

Carbon

12.011

17 Cl Chlorine 35.45

Raw MS1 Spectrum

Filtered MS1 Spectrum

Filtered MS1 Spectrum

Filtered MS1 Spectrum

Presence of Silicon throws off M/Carbon ratio and easily identified

Conclusions

- In the absence of MS/MS data, MSI spectra can be interrogated for more information
- Using High Res Mass Spec intrinsic values like m/z, mass defect, and [13]C ratios can be used to calculate "PFAS-ness" and can be prioritized.
- Retention time prediction models provide an orthogonal technique to confirm or reject potential features
- Plotting data with intrinsically determined values is very useful for PFAS prioritization (Kendrick or Kaufmann)
- Informed Molecular Formula predictions that properly decompose MSI spectra with elemental bounds more effective than agnostic ones

Thank you

David Schiessel

951 289 5278

dschiessel@babcocklabs.com

www.babcocklabs.com

References

- Bugsel, B.; Zwiener, C. LC-MS Screening of Poly- and Perfluoroalkyl Substances in Contaminated Soil by Kendrick Mass Analysis. *Anal Bioanal Chem* 2020, 412 (20), 4797– 4805. <u>https://doi.org/10.1007/s00216-019-02358-0</u>.
- Kaufmann, A.; Butcher, P.; Maden, K.; Walker, S.; Widmer, M. Simplifying Nontargeted Analysis of PFAS in Complex Food Matrixes. *Journal of AOAC INTERNATIONAL* 2022, *105* (5), 1280–1287. <u>https://doi.org/10.1093/jaoacint/qsac071</u>.
- Zweigle, J.; Bugsel, B.; Zwiener, C. Efficient PFAS Prioritization in Non-Target HRMS Data: Systematic Evaluation of the Novel MD/C-m/C Approach. Anal Bioanal Chem 2023, 415 (10), 1791–1801. <u>https://doi.org/10.1007/s00216-023-04601-1</u>.