

Monitoring Produced Gases From PFAS Destruction Technologies Using OTM-50

Hannah Calder

hcalder@markes.com

Market Development Manager

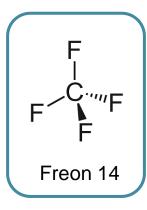
Monitoring volatile fluorinated compounds as markers for incomplete destruction of PFAS

Closing the fluorine mass balance

PFAS will ultimately need to be destroyed to be removed from the environment – this should be monitored.

TDGCMS provides a method for monitoring destruction efficiency.

Analytical systems must offer a robust and flexible solution to challenges posed by this task.



Products of incomplete destruction (PIDs)

Canister sampling at PFAS destruction facilities to monitor mineralization

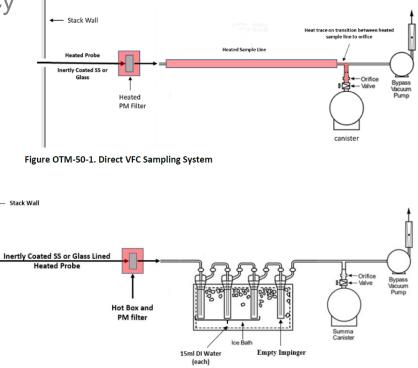
- PFAS need to be removed from the environment, and disposed of responsibly when used in products
- If destruction is not complete volatile fluorinated species are formed.
- CF₄ is a key compound for monitoring destruction efficiency
- Incredibly difficult to breakdown
 - >1440 °C required to achieve 99.99% destruction
- US EPAs OTM-50 aims to monitor this process

Other Test Method 50

Sampling and Analysis of Volatile Fluorinated Compounds from Stationary Sources Using Passivated Stainless-Steel Canisters

Overview

Method – OTM-50


- Developed by the EPA to measure 30 target PFAS compounds and non-targets in air
- 30 targets are "volatile fluorinated compounds" (VFCs)
- Expected initial use will be monitoring source emissions linked to PFAS destruction.
- Second of four OTMs expected from the US EPA looking at PFAS emissions from sources.
 - OTM 45 was the first (HPLC method)
 - OTM 50 is a GCMS method

How can samples be taken?

Monitoring PFAS destruction efficiency

 Volatile fluorinated compounds related to incomplete destruction can be sampled into canisters

- Sample trains required remove:
 - Condensing water
 - Acid gases
- Once taken the sample poses challenges for analysts

Figure OTM-50-2. VFC Canister Sampling System with Water/Acid Gas Management

- Incredibly volatile target compounds which results in very specific analytical set-ups and low sample volumes for the most volatile species.
- **High humidity** which if not managed correctly will impact repeatability and long-term functioning of the analytical system. 100% relative humidity expected.
- Varying CO₂ levels which can be very high up to 15% of the matrix has been reported.

Markes International

Over 25 years of Ambient Air monitoring expertise

- Wide range of products for sampling and analysis of trace volatile and semi-volatile organic compounds
- Expertise in VOCs and SVOCs analysis
- Future-proof instruments hydrogen compatible
- Global presence and distribution network

Compound List

Name	CAS	Name	CAS	
Tetrafluoromethane	75-73-0	Tetradecafluorohexane	355-42-0	
Hexafluoroethane	76-16-4	1H-Perfluoropentane	375-61-1	
Chlorotrifluoromethane (CFC-13)	75-72-9	Hexadecafluoroheptane	335-57-9	
Trifluoromethane	75-46-7	Heptafluoropropyl-1,2,2,2-tetrafluoroethyl ether	3330-15-2	
Octafluoropropane	76-19-7	1H-Perfluorohexane	355-37-3	
Difluoromethane	75-10-5	1H-Perfluoroheptane	375-83-7	
1,1,1-Trifluoroethane (HCFC-143a)	420-46-2	2H-Perfluoro-5-methyl-3,6-dioxanonane (E2)	3330-14-1	
Octafluorocyclobutane (FC-C318)	115-25-3	1H-Perfluorooctane	335-65-9	
Perfluorobutane	355-25-9	Octadecafluorooctane	307-34-6	
Dodecafluoropentane	678-26-2	1H-Nonafluorobutane	375-17-7	
Tetrafluoroethyene	116-14-3	1H-Heptafluoropropane	2252-84-8	
Fluoromethane	593-53-3	1,1,1,2-Tetrafluoroethane (HCFC-134a)	811-97-2	
Pentafluoroethane	354-33-6	Chlorodifluoromethane (HCFC-22)	75-45-6	
Hexafluoropropene	116-15-4	Octafluorocyclopentene (FC-C1418)	559-40-0	
Hexafluoropropene oxide	428-59-1	Trichloromonofluoromethane (CFC-11)	75-69-4	

At time of testing no commercially available standard. Compounds able to test in **bold**

Analysis QC requirements and performance

Requirement	Performance
MDL	0.03 – 0.011 ppbv
ICAL	Minimum 5 points. RRF ≤20% RSD.
Lab blank	Sample analytes <3 x MDL or <50% of project-required reporting limit
Precision	% RSD n = 7 less than 25%
Accuracy	% recovery n = 7 within +/- 30%
CO ₂ bias check	Target compounds with \pm 30% of standard value at known CO ₂ concentration.
MDL confirmation	Canister prepared at MDL, 3 times S/N

System Configuration

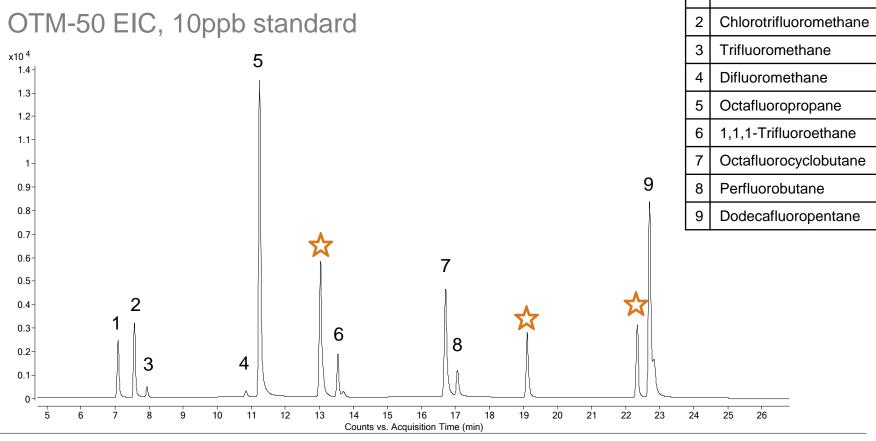
- Stainless steel passivated canister:
 - 6L
- UNITY-Kori-CIA Advantage HL-xr
 - Focusing trap designed for volatile fluorocarbons (U-T25ODS-2S)

- Column: Gas Pro
- Agilent 8890 GC
- Agilent 5977b MS

Restrictor Column	Analytical Column	Guard Column
5m x 180µm	60m x 320µm	2m x 320µm
(160-2615-10)	(113-4362)	(60340)
Agilent	Agilent	Alltech

Solving challenge 1 & 2

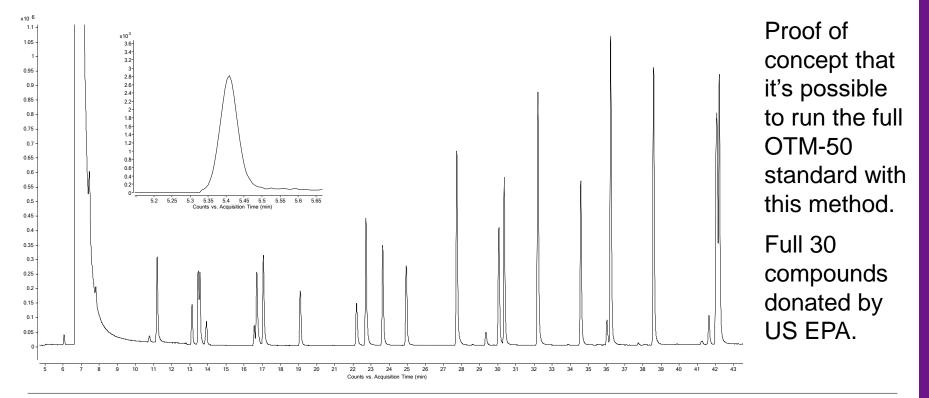
Incredibly volatile target compounds and high humidity


- Due to the volatility of CF₄ two methods have been developed:
 - **CF**₄ only, sampled volume 20ml
 - Remaining 29 OTM-50 compounds, sampled volume 200ml
 - Methods referred to from here as CF_4 and OTM-50
- OTM-50 outlines that this may be necessary.
 - Tested by the US EPA using these conditions on the UNITY-CIA Advantage-xr
- All testing carried out assuming a 3x dilution to manage CO₂
 - 33% RH
 - Max CO_2 level in canister tested 5%

(100% at source)

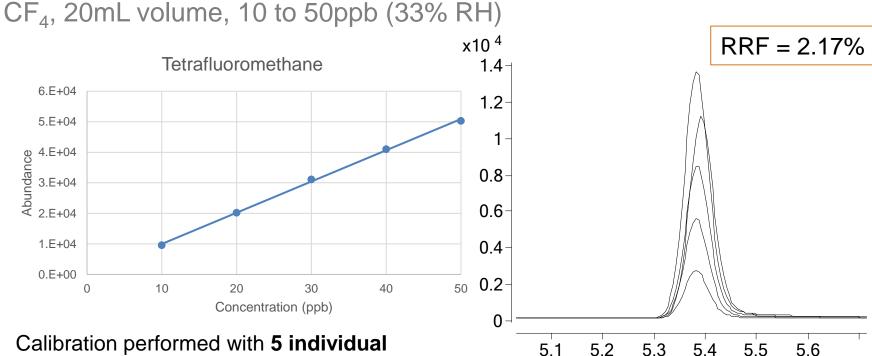
(15% at source)

Chromatography testing with non-targets


Compound

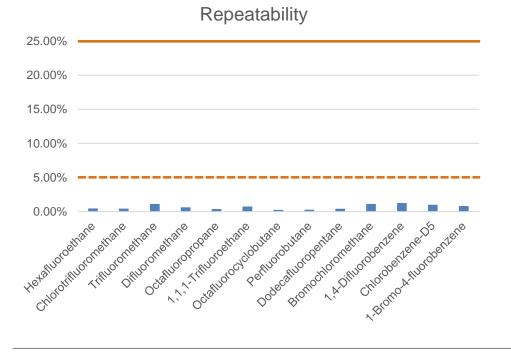
Hexafluoroethane

MARKES


OTM-50 Standard

200ml - Inset 69 ion for CF_4

ICAL: Minimum 5 points. RRF ≤20% RSD


canisters at 10, 20, 30, 40 and 50ppb. As recommended by OTM-50.

Counts vs. Acquisition Time (min)

Precision: % RSD n = 7 less than 25%

OTM50 5ppb (33% RH) – n = 10

Compound	%RSD	
Hexafluoroethane	0.48%	
Chlorotrifluoromethane	0.44%	
Trifluoromethane	1.13%	
Difluoromethane	0.64%	
Octafluoropropane	0.38%	
1,1,1-Trifluoroethane	0.76%	
Octafluorocyclobutane	0.26%	
Perfluorobutane	0.29%	
Dodecafluoropentane	0.43%	
Bromochloromethane (INSTD)	1.14%	
1,4-Difluorobenzene (INSTD)	1.28%	
Chlorobenzene-D5 (INSTD)	1.02%	
1-Bromo-4-fluorobenzene (INSTD)	0.83%	
Average (All)	0.70%	
Average (Targets)	0.54%	

Summary Data

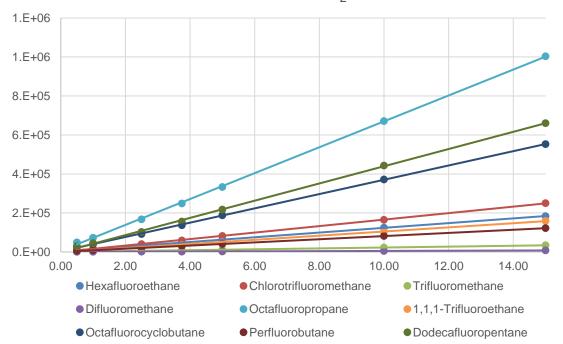
Compound	R2	Relative Response Factor (RRF)	Repeatability (5 ppb) n = 10	MDL (0.5 ppb)	Carryover (post 50 ppb)	Passes OTM 50 criteria
Tetrafluoromethane	0.9990	2.17%	2.03%	30ppt	ND	Yes
Compound	R2	RRF	Repeatability (5 ppb) n = 10	MDL (0.25 ppb)	Carryover (post 25 ppb)	Passes OTM 50 criteria
Hexafluoroethane	0.9999	1.86%	0.48%	6 ppt	25 ppt (0.03%)	Yes
Chlorotrifluoromethane	0.9977	2.52%	0.44%	8 ppt	38 ppt (0.10%)	Yes
Trifluoromethane	0.9977	5.12%	1.13%	10 ppt	13 ppt (0.15%)	Yes
Difluoromethane	0.9993	3.11%	0.64%	11 ppt	13 ppt (0.05%)	Yes
Octafluoropropane	0.9996	7.64%	0.38%	14 ppt	53 ppt (0.21%)	Yes
1,1,1-Trifluoroethane	0.9988	5.33%	0.76%	13 ppt	53 ppt (0.21%)	Yes
Octafluorocyclobutane	0.9998	7.14%	0.26%	11 ppt	35 ppt (0.14%)	Yes
Perfluorobutane	0.9995	4.00%	0.29%	9 ppt	18 ppt (0.07%)	Yes
Dodecafluoropentane	0.9989	7.65%	0.43%	9 ppt	5 ppt (0.02%)	Yes
Average	0.9990	4.65%	0.60%	12 ppt	27 ppt (0.10%)	Yes

CO₂ Bias Test

Challenge 3

A company of the Schauenburg Analytics Ltd group

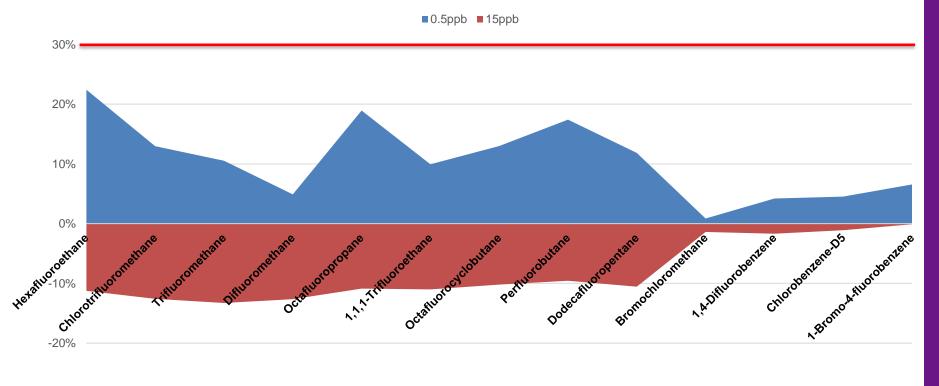
CO₂ Bias Testing


Unique design of Markes instruments makes CO2 management possible.

- CO_2 has a similar volatility to many of the compounds of interest.
 - If you are retaining your compounds, you will also retain CO₂!
- In the OTM-50 analysis it can be removed
 - However, if not managed correctly for the OTM-50 method this can lead to bias.
- In the CF₄ analysis due to the small retention volume CO₂ cannot be managed prior to injection.
 - This will likely lead to bias depending on the CO_2 concentration.
 - Bias is acceptable and is simply noted when reporting.
- The bias check is designed to quantify this.
- The acceptance criteria for this test is no deviation from the CO₂ standard above ±30% when compared with the non-CO₂ standard

CO₂ Bias – OTM-50

Bias Check at 5% CO₂

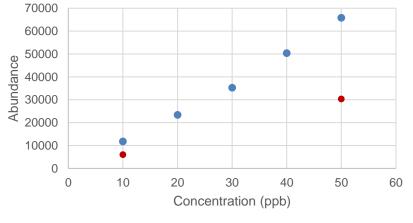

	С	alibratio	on for	CO_2	Bias
--	---	-----------	--------	--------	------

Compound	R2
Hexafluoroethane	0.9999
Chlorotrifluoromethane	0.9995
Trifluoromethane	0.9995
Difluoromethane	0.9994
Octafluoropropane	0.9998
1,1,1-Trifluoroethane	0.9990
Octafluorocyclobutane	0.9998
Perfluorobutane	0.9997
Dodecafluoropentane	0.9994

Calibration between 0.5 and 15ppb each from **individual canisters** sampled at 200ml.

CO₂ Bias OTM-50: 15% CO₂ diluted to 5%

-30%



The Importance of Matrix Matching – CF₄

CO_2 Bias Check: 15% CO_2 diluted to 5%

	10ppb	50ppb
Tetrafluoromethane	97%	117%
Bromochloromethane (IS)	1%	5%
1,4-Difluorobenzene (IS)	2%	4%
Chlorobenzene-D5 (IS)	5%	7%
1-Bromo-4-fluorobenzene (IS)	13%	15%

Tetrafluoromethane

• CF₄ at 0% CO₂ • CF₄ at 15% CO₂

- Confident CF₄ quantitation is possible with a matrix matched calibration.
- Alternatively, CF₄ can be recorded as biased in reports.

Can each challenge be addressed?

Summary

- Incredibly volatile target compounds
 - Two runs enabling ultra-volatile CF4 and the other OTM 50 compounds
 - No changes hardware or consumables needed.

High humidity

- Dilution likely to be part of the SOP due to CO₂
- 33% RH proven for all compounds.
- 100% RH proven in other studies
- Varying CO₂ levels
 - CO_2 bias check show that for 29/30 compounds there will be no bi
 - CF_4 likely to be biased at 15% CO_2 level but if desired a matrix matched calibration can be performed.

Contact Markes

enquiries@markes.com

UK: +44 (0)1443 230935

USA: +1 866-483-5684 (toll-free)

Germany: +49 (0)69 6681089-10

P.R. China: +86 21 5465 1216

www.markes.com www.markes.com.cn

@MarkesInt

https://uk.linkedin.com/company/ markes-international

