

Emerging Methods for the Analysis of Volatile PFAS in Water: HS-SPME-GC/MS

Andy Sandy, Yoshiyuki Okamura, Evelyn Wang, Alan Owens, Ruth Marfil-Vega

The PFAS universe

* Strictly speaking, these substances are not fluorotelomers, as they are not derived from the telomerization process. Despite this, they are termed here "n:1 fluorotelomer-based" substances for readability. Future work may consider to identify more proper terminology for this group of PFASs.

** Note that for many compounds such as HFP and TFE, there are different synthesis routes with different starting materials, and here shows only one of them.

*** Note that there are three synthesis routes shown here for manufacturing of PFCAs, from PACFs, PFAIs and n:2 FTIs. Note that different synthesis routes may generate PFCAs with different perfluorocarbon chain lengths.

Sources: (i) Slegemund G, Schwertfeger W, Felring A, Smatt B, Behr F, Vogel H, McKusick B, Pluraine Compounds, Organic, 3rd ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany 2000; Vol. 33: (2) Banks BE, Smart BE, Tatlow JC. Organofluorine Chemistry: Principles and Commercial Applications. New York: Plenum, 1994. (3) Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, De Voogt P, Jensen AA, Kannan K, Mabury SA, van Leeuwen SPJ. Perfluoroalkyl auboxylic aid polyfluoroalkyl substances in the environment: terminology. dassification, and origins. Integr Environ Asses Manag 201, 7 (4), 513–541. (4) Wang Z, Cousins IT, Scheringer M, Buck RC, Hungerbühler K. Clobal emission inventories for Cq.-C14 perfluoroalkyl auboxylic aid (PFCA) homologues from rigs to 2030, Part L production and emissions from quantifiable sources. Environ Int 2014, 70, 62–75. (5) Moffett RH, Howell JL, Hoerter JM, Shtarov AB, Jannerfeldt G, Johnston SB, Keenan J, Warriner C, Closser DM. Perfluoroalkylpolyethers in Synthetics, Mineral Olis, and Bio-Based Lubricants: Chemistry and Technology (Hrite dition), EBR 2974–138–134. (6) Gort W: Thurringer G, Monters WIII and Andrew 2011. ISBR: 978–138–134-774457-6.

Figure 10. An overview of some common synthesis routes of different individual or groups of PFASs based on publicly accessible source

The analytical instrumentation universe for PFAS

https://doi.org/10.1016/j.trac.2019.02.024

Growing interest in neutral and volatile PFAS

- Diverse sample types
- New methods being published by EPA and other standardization organizations
- LCMS can be used... but GCMS is most suitable

Sample introduction for GCMS

Sample Introduction Sensitivit Technique (GC-MS)		Extraction Mode
SHS	ppb~ppm level Static equilibrium gas extraction	
DHS	ppt~ppb level Dynamic non-equilibrium gas extract	
SPME	ppt~ppb level	Sorptive extraction
TD	ppt~ppb level	Sorptive extraction
Direct-TD	ppt~ppm level	Direct thermal extraction
Liq	Liq ppb level -	
Ру	µg level Destructive thermal decomposition	
DI ng level		-

SHS	Static Headspace	Direct TD	Direct Thermal Desorption	
DHS	Dynamic Headspace (Purge & Trap)	Liq	Liquid Injection	
SPME	Solid Phase Microextraction	Ру	Pyrolisis	
TD	Thermal Desorption	DI	Direct Injection	

Sample Introduction Technique	Sensitivity (GC-MS)	Extraction Mode
SHS	ppb~ppm level	Static equilibrium gas extraction
DHS	ppt~ppb level	Dynamic non-equilibrium gas extraction
SPME T&O	ppt~ppb level	Sorptive extraction
TD	ppt~ppb level	Sorptive extraction
Direct-TD	ppt~ppm level Direct thermal extraction	
Liq	ppb level	-
Ру	µg level Destructive thermal decomposition	
DI	DI ng level -	

SHS	Static Headspace	Direct TD	Direct Thermal Desorption	
DHS	Dynamic Headspace (Purge & Trap)	Liq	Liquid Injection	
SPME	Solid Phase Microextraction	Ру	Pyrolisis	
TD	Thermal Desorption	DI	Direct Injection	

Sample Introduction Technique	Sensitivity (GC-MS)	Extraction Mode
SHS	ppb~ppm level	Static equilibrium gas extraction
DHS	ppt~ppb level	Dynamic non-equilibrium gas extraction
SPME T&O	ppt~ppb level Sorptive extraction	
TD	ppt~ppb level	Sorptive extraction
Direct-TD ppt~ppm level		Direct thermal extraction
Liq	ppb level	-
Ру	Py µg level Destructive thermal decompo	
DI ng level		-

SHS	Static Headspace	Direct TD	Direct Thermal Desorption	
DHS	Dynamic Headspace (Purge & Trap)	Liq	Liquid Injection	
SPME	Solid Phase Microextraction	Ру	Pyrolisis	
TD	Thermal Desorption	DI	Direct Injection	

Most commonly used

- Liquid injection
- Thermal Desorption

What about Headspace and SPME?

Successful analysis of PFAS by HS-GCMS

Henry's Law constants of 15 per- and polyfluoroalkyl substances determined by static headspace analysis

Fig. 1. Schematic of the method of preparing and analyzing headspace samples by GC-MS/MS for the determination of the k_H of PFAS.

Successful analysis of PFAS by HS-GCMS

r					
PFAS	k _H	Slope	Intercept	R ²	pH
4:2 FTOH	$0.31 \pm$	$\textbf{2.77} \pm \textbf{0.39}$	$8.91 \pm 1.70 \times$	0.920	$6.59 \pm$
	0.07	$\times 10^{-5}$	10-5		0.29
6:2 FTOH	$1.26 \pm$	5.18 ± 0.29	$4.12 \pm 1.20 \times$	0.986	$6.55 \pm$
	0.40	$\times 10^{-6}$	10 ⁻⁶		0.08
8:2 FTOH*	$1.98 \pm$	1.51 ± 0.06	$7.66 \pm 2.60 \times$	0.993	6.74 ±
	0.69	$\times 10^{-5}$	10 ⁻⁶		0.17
10:2	$2.82 \pm$	6.92 ± 0.22	$2.45 \pm 0.96 \times$	0.995	$6.69 \pm$
FTOH*	1.12	$\times 10^{-4}$	10 ⁻⁴		0.26
4:2 FTS	$0.09 \pm$	4.11 ± 0.88	4.33 \pm 0.38 \times	0.833	$5.66 \pm$
	0.02	$\times 10^{-4}$	10 ⁻³		0.02
6:2 FTS	$0.16 \pm$	2.37 ± 0.17	1.48 \pm 0.08 \times	0.976	$5.70 \pm$
	0.01	× 10 ⁻⁴	10-3		0.01
8:2 FTS	$0.18 \pm$	8.55 ± 0.65	$4.75 \pm 0.28 \times$	0.975	$5.84 \pm$
	0.02	$\times 10^{-5}$	10-4		0.03
PFHxI	$1.01 \pm$	4.70 ± 0.47	4.66 \pm 2.01 \times	0.956	6.90 ±
	0.46	× 10 ⁻⁷	10 ⁻⁷		0.01
6:2 FTUI	0.48 ±	4.41 ± 0.39	$9.27 \pm 1.70 \times$	0.966	$6.39 \pm$
	0.10	$\times 10^{-6}$	10-6		0.01
6:2 FTI	$0.30 \pm$	1.32 ± 0.19	$4.39 \pm 0.85 \times$	0.910	$6.71 \pm$
	0.07	$\times 10^{-6}$	10-6		0.08
N-EtFOSA-	0.43 ±	1.18 ± 0.15	$2.77 \pm 0.68 \times$	0.927	$6.33 \pm$
M	0.12	$\times 10^{-3}$	10 ⁻³		0.16
N-MeFOSA-	0.92 ±	2.03 ± 0.26	$2.21 \pm 1.11 \times$	0.933	$6.24 \pm$
M	0.48	$\times 10^{-3}$	10-3		0.07
6:2 FTO	$3.86 \pm$	4.40 ± 0.18	$1.14 \pm 0.43 \times$	0.987	$6.23 \pm$
	1.49	× 10 ⁻⁷	10-7		0.02
8:2 FTCA	0.69 ±	8.18 ± 0.26	$1.19 \pm 0.11 \times$	0.995	$5.66 \pm$
	0.07	$\times 10^{-5}$	10-4		0.28
8:2 FTAC	$0.32 \pm$	3.09 ± 0.06	$9.75 \pm 2.61 \times$	0.858	$6.58 \pm$
	0.11	$\times 10^{-3}$	10-4		0.05

- Contribution to closing the mass balance of PFAS in the environment:
 - Simplified analytical method
 - Determination of physico-chemical properties

More about SPME

HS-SPME-GCMS

Occurrence of volatile PFAS in **liquid** and solids samples of diverse origin (**environmental**, food, consumer products) with same set-up

Instrumentation and targets

Shimadzu's GCMS QP-2020NX

1

Shimadzu's GCMS TQ-8040

Chemical Class	Compound	Acronym	CAS Number
	Perfluorohexyl iodide	PFHxI	355-43-1
Perfluoroalkyl lodides (PFIs)	Perfluorooctyl iodide	PFOI	507-63-1
(n:2) Elucrotalomor	4:2 Fluorotelomer iodide	4:2 FTI	2043-55-2
indidae (FTIs)	6:2 Fluorotelomer iodide	6:2 FTI	2043-57-4
Iodides (FTIS)	8:2 Fluorotelomer iodide	8:2 FTI	2043-53-0
	6:2 Fluorotelomer acrylate	6:2 FTAC	17527-29-6
	8:2 Fluorotelomer acrylate	8:2 FTAC	27905-45-9
(FTACs)	1H,1H,2H,2H-Perfluoro-n- octyl acrylate-d3	6:2 FTAC d3	7527-29-6
(n:2) Fluorotelomer	6:2 Fluorotelomer 6:2 FTMAC		2144-53-8
methacrylates (FTMACs)	8:2 Fluorotelomer methacrylate	8:2 FTMAC	1996-88-9
	8.2 Eluorotelomer alcohol	8·2 FTOH	678-39-7
	10:2 Fluorotelomer alcohol	10:2 FTOH	865-86-1
(n:2) Fluorotelomer alcohols	2-perfluorooctyl-[1,1-2H2- 1,2- 13C2]-ethanol	8:2 FTOH ¹³ C2	872398-73-7
(FTOHs)	2-perfluorodecyl-[1,1-2H2- 1,2- 13C2]-ethanol	10:2 FTOH ¹³ C2	865-86-1
	N-Methyl perfluorooctane sulfonamide	MeFOSA	31506-32-8
Perfluoroalkane sulfonamides	N-Ethyl perfluorooctane sulfonamide	EtFOSA	4151-50-2
	n-ethyl-d5-perfluoro-1- octanesulfonamide	EtFOSA d5	936109-40-9

Optimized method conditions

Gas Chromatography	Nexis GC-2030
Injection mode	Splitless
Carrier gas	Helium
Injection port temperature (°C)	240
High pressure injection	Auto, 250 kPa, 1 min
Column	SH-I-624Sil MS Capillary, 30 m x 0.25 mmID x 1.40 um
Flow control mode (cm/sec)	Linear velocity, 44.4
Total flow (mL/min)	50
Oven temperature	40°C (7 min.), 5°C/min. to 188°C (0 min.), 40°C/min. to 300°C, (5 min.)
SPME analysis	AOC-6000 Plus
SPME Fiber	50/30 µm DVB/CAR/PDMS
Incubation time (min)	5
Extraction time (min)	30
Desorption time (min)	7
Agitation speed (rpm)	300
Extraction temperature (°C)	50
Sample volume (mL)	10
Desorption temperature (°C)	240
Sampling salinity	2 % NaCl (w/v)

Mass Spectrometer	Common Parameters
Interface temperature (°C)	280
Ion source temperature (°C)	200
Detector voltage (kV)	Relative to Tune 0.4
Threshold	0
Mass Spectrometer	QP-2020NX
Acquisition mode	Qualitative analysis: Full scan: m/z 50 to 600 Quantitative analysis: SIM, Event time 0.3 sec.
Tuning mode	High Sensitivity
Mass Spectrometer	TQ-8040
Acquisition mode	Acquisition mode: MRM, Loop time: 0.3 sec.
Tuning mode	Normal mode

- Chromatographic and MS methods, by liquid injection
 - Single Quadrupole
 - Triple Quadrupole
- SPME parameters optimization
- Calibration curve and linear range
- Carry-over
- PFAS in the background
- Analysis of environmental samples
 - Low system background
 - Precision and accuracy
 - Matrix effects

Results - Chromatography

TIC chromatogram of the 13 targeted PFAS compounds at 5 mg/L

SIM and MRM

SHIMADZU

PFAS compounds at 100 ng/L in ultrapure water

Calibration curve

	QP-2020NX		TQ-8040			
Compound	Calibration Range (ng/L)	R2	RF (Response Factor) %RSD	Calibration Range (ng/L)	R ²	RF (Response Factor) %RSD
PFHxI	2.5-2000	0.993	10.89	2.5-2000	0.999	13.68
PFOI	2.5-2000	0.997	10.26	2.5-1000	0.998	18.94
4:2 FTI	2.5-800	0.993	8.28	2.5-2000	0.997	9.30
6:2 FTI	25-800	0.994	13.53	1-2000	0.998	17.18
8:2 FTOH	25-2000	0.997	5.37	2.5-2000	>0.999	6.31
6:2 FTAC	25-2000	0.998	19.87	2.5-2000	0.998	4.03
8:2 FTI	2.5-800	0.996	13.59	2.5-2000	0.999	9.05
10:2 FTOH	2.5-2000	0.999	10.38	2.5-2000	>0.999	6.45
6:2 FTMAC	2.5-800	0.995	12.43	2.5-2000	0.998	10.41
8:2 FTAC	5-250	0.995	14.81	2.5-2000	0.999	11.32
8:2 FTMAC	2.5-250	0.998	19.51	2.5-2000	0.999	9.98
MeFOSA	5-2000	>0.999	17.79	2.5-2000	0.999	6.85
EtFOSA	10-2000	0.999	11.40	1-2000	>0.999	7.17

The linear range of each PFAS target includes at least seven calibration levels Results showed a good linear fit for all compounds with R2 \geq 0.993 and RF %RSD < 20.

%Accuracy and precision with TQ-8040

What about PFAS in the background?

Consumables and reagents

- SPME vials
- SPME fibers
- Salt
- Solvents
- Commercial standards

No fluorinated components in sample flow path

Background and carryover

- None of the target PFAS in the laboratory blank samples showed quantifiable results
- The area of peaks of in the blanks were less than 1/5 of the lowest calibration standard
- The carryover effect was evaluated by analyzing a blank immediately after the highest calibration standard: <0.2%

More results - Samples

More results - Samples

Take home messages

Take home messages

- Demonstrated the suitability of HS-SPME-GCMS for the analysis of selected classes of volatile PFAS in environmental liquid samples, without the need of extensive sample preparation
 - Sensitivity:
 - SQ: 2.5 25 ppt
 - TQ: 1 2.5 ppt
 - Minimal sources of PFAS in background
- More work on-going...

For any questions, contact: Ruth Marfil-Vega rmmarfilvega@shimadzu.com

For more information, visit: www.OneLabOneEarth.com

Connect with us:

X - <u>@shimadzussi</u>

Instagram - @shimadzussi

LinkedIn - <u>/company/shimadzu-scientific-instruments/</u> YouTube - @ShimadzuScientificInstruments