

Masshunter Quant Software Dioxin Reporting

D. R. Walker Agilent Technologies Application Scientist

Li Sun Agilent Technologies Software engineer

July 8 2024

Example of Level 4 Reporting Required Reports Dioxins

The use of GC/MS/MS platforms has been accepted as an alternate testing procedure by USEPA for analyzing polychlorinated dioxin and furans in wastewater, soil, and biotas.

The use of a GC/MS/MS allows labs to analyze samples offering versatility, robustness, reliability and familiarity to environmental lab.

Magnetic Sector systems are very costly and require significant expertise in maintenance and operation. As a greater number of GC/MS/MS systems are installed in Analytical Laboratories the capacity for analyzing dioxins and PCBs has increased exponentially.

The quantification and reporting needs for these compounds can be complex. This presentation focuses on the tools needed for reporting this data.

Example of Level 4 Reporting Required Reports Dioxins

The question is how we are currently reporting data and how can we improve that process.

Large laboratories historically incorporate a LIMS system to generate reports. Smaller labs traditionally create reports in Excel or similar.

Working with several laboratories we have designed a series of reports to help improve & streamline this process. This approach gives the bench chemist & lab manager the ability to generate reports in real time enabling them to make several critical decisions.

Example of Level 4 Reporting Required Reports Dioxins

- 1. Are dilutions necessary?
- 2. Does the sample require re-extraction?
- 3. Does the sample need to be re-injected?
- 4. Are there Diphenyl Ethers present?
- 5. What are the Estimated Maximum Possible Concentrations?
- 6. What is the total Toxic Equivalency of the sample?
- 7. Does the sample meet all the QA/QC requirements?

Required Reports Dioxins Calibration Report Summary

			Ca	libration F	RRF Sumi	mary Rep	ort				
Batch Path: E	:\MassHunter\Data\QQQ\Diox	inCanada\Diox	in data-BV Oc	t 2023\TQ2_23	31005A_1613\						
Analysis Time	: 12/21/2023 4:45:33 PM										
Level Name	Sample Name	C	alibration File						Acq.	. Time	
LO	CSL_1613_13CSL 10	021 D	:\MassHunter\	GCMS\1\data\	2023\TQ2_23	1005A_1613TQ	2_231005A06.	D	10/5	5/2023 1:25:52	7 AM
L1	CS1_1613_13CS1_1	021 D	:\MassHunter\	GCMS\1\data\	2023\TQ2_23	1005A_1613TQ	2_231005A07.	D	10/5	5/2023 2:14:56	5 AM
L2	CS2_1613_13CS2_1	021 D	:\MassHunter\	GCMS\1\data\	2023\TQ2_23	1005A_1613TQ	2_231005A08.	D	10/5	5/2023 3:03:55	5 AM
L3	CS3_1613_13CS3_1	021 D	:\MassHunter\	GCMS\1\data\	2023\TQ2_23	1005A_1613TQ	2_231005A09.	D	10/5	5/2023 3:52:53	3 AM
L4	CS4_1613_13CS4_1	021 D	:\MassHunter\	GCMS\1\data\	2023\TQ2_23	1005A_1613TQ	2_231005A10.	D	10/5	5/2023 4:41:52	2 AM
L5	CS5_1613_13CS5 1	021 D	:\MassHunter\	GCMS\1\data\	2023\TQ2_23	1005A_1613TQ	2_231005A11.	D	10/5	5/2023 5:30:52	2 AM
No	Compound	Av-RRF	SD	%RSD	OK (%RSD)	LO	L1	L2	L3	L4	L5
1	2378-TCDF	1.2072	4.0657	3.4	OK(20)	1.2851	1.1822	1.1769	1.1828	1.2027	1.2134
2	12378-PeCDF	1.1159	3.3616	3.0	OK(20)	1.1669	1.0736	1.0993	1.0943	1.1373	1.1237
3	23478-PeCDF	1.2277	2.6739	2.2	OK(20)	1.2581	1.1880	1.2092	1.2223	1.2357	1.2530
4	123478-HxCDF	1.0379	1.4553	1.4	OK(20)	1.0487	1.0519	1.0170	1.0223	1.0427	1.0447
5	123678-HxCDF	1.0140	1.7294	1.7	OK(20)	1.0403	1.0095	0.9883	1.0089	1.0238	1.0132
6	234678-HxCDF	1.0507	1.6959	1.6	OK(20)	1.0394	1.0372	1.0337	1.0649	1.0758	1.0533
7	123789-HxCDF	0.9821	1.9174	2.0	OK(20)	0.9951	0.9937	0.9484	0.9738	1.0003	0.9814
8	1234678-HpCDF	0.9891	0.9350	0.9	OK(20)	0.9990	0.9768	0.9808	0.9916	0.9996	0.9868
9	1234789-HpCDF	0.9873	1.5827	1.6	OK(20)	0.9969	1.0059	0.9641	0.9790	0.9988	0.9789
10	OCDF	1.1880	9.9533	8.4	OK(20)	1.0170	1.1215	1.2526	1.2327	1.2795	1.2247
11	2378-TCDD	1.2024	6.3054	5.2	OK(20)	1.3190	1.1271	1.1931	1.1833	1.2019	1.1899
12	12378-PeCDD	1.1130	2.4874	2.2	OK(20)	1.0992	1.1059	1.0847	1.1039	1.1538	1.1304
13	123478-HxCDD	0.9767	7.6103	7.8	OK(20)	0.9806	1.0390	0.9710	1.0314	0.8314	1.0069
14	123678-HxCDD	1.0162	1.0016	1.0	OK(20)	1.0128	1.0186	1.0191	1.0047	1.0088	1.0333
15	123789-HxCDD	1.0320	4.8516	4.7	OK(20)	1.0793	0.9833	1.1041	1.0166	1.0143	0.9943
16	1234678-HpCDD	1.0344	1.4908	1.4	OK(20)	1.0618	1.0176	1.0272	1.0310	1.0316	1.0371
17	OCDD	0.9085	0.9099	1.0	OK(20)	0.9202	0.9016	0.9022	0.8994	0.9188	0.9086
18	13C-2378-TCDF	2.7652	17.7093	6.4	OK(20)	2.7708	3.0375	2.7248	2.6796	2.5130	2.8655
19	13C-12378-PeCDF	1.6781	26.4795	15.8	OK(20)	1.4232	1.6602	1.5195	1.6827	1.6009	2.1823
20	13C-23478-PeCDF	1.6441	24.4623	14.9	OK(20)	1.3678	1.5915	1.5206	1.6172	1.6721	2.0950
21	13C-123478-HxCDF	1.5164	8.3335	5.5	OK(20)	1.4371	1.6087	1.3994	1.5717	1.5722	1.5091
22	13C-123678-HxCDF	1.5848	8.5184	5.4	OK(20)	1.5171	1.6393	1.4512	1.6731	1.6403	1.5879
23	13C-234678-HxCDF	1.4449	8.6294	6.0	OK(20)	-	1.5038	1.3191	1.5302	1.4748	1.3966
24	13C-123789-HxCDF	1.4376	3.6617	2.5	OK(20)	-	1.4832	1.3877	1.4518	1.4161	1.4490
25	13C-1234678-HpCDF	1.5922	16.0604	10.1	OK(20)	1.8863	1.6575	1.4966	1.5665	1.4691	1.4771
26	13C-1234789-HpCDF	1.4931	10.2409	6.9	OK(20)	1.5468	1.4513	1.6493	1.4961	1.3414	1.4735
27	13C-2378-TCDD	1.7373	9.5410	5.5	OK(20)	1.6124	1.7878	1.7670	1.7073	1.6679	1.8814
28	13C-12378-PeCDD	0.9305	16.1766	17.4	OK(20)	0.7656	0.9130	0.8529	0.8888	0.9230	1.2396
29	13C-123478-HxCDD	0.9137	4.0410	4.4	OK(20)	0.9461	0.9459	0.8532	0.8826	0.9041	0.9505
30	13C-123678-HxCDD	0.9971	6.4866	6.5	OK(20)	0.9333	1.0723	0.9030	1.0287	1.0137	1.0316
31	13C-1234678-HpCDD	0.9725	3.7296	3.8	OK(20)	1.0201	0.9230	1.0118	0.9595	0.9497	0.9711
32	13C-OCDD	1.0370	7.8322	7.6	OK(20)	1.1168	0.9680	0.9311	1.0152	1.0733	1.1178

Page 1 of 2

Generated at 9:21 PM on 2/14/2024

Required Reports Dioxins Calibration RRF AVG RRF

Data Path	E:	MassHunter\D	ata\QQQ\DioxinCa	anada\Dioxin d	ata-BV Oct 202	3\TQ2 23100	5A 1613\				
Data File	тс	02 231005A06	D		Sample Nar	ne	CSL	1613 13CSL 102	1		
Aca Math	ed TC	DE MDM	0		Aca Time		10/5/	2022 1.25.57 44	4		
Acq. Mean		2DI _INKIN			Acq. Time		10/3/	2023 1.23.37 Ar			
Acq. Opera	ator				Quant Metr	bod					
Analysis Ti	ime 12	/21/2023 4:45:	33 PM		Analyst Nar	ne	AGIL	ENT\lisun			
No	Compound	RT[min]	Exp Conc[ng/ml]	Area	Q-Area	Sum Area	Resp Ratio	%Ratio Error	OK(Ratio)	Av-RRF	R
1	2378-TCDF	24.885	0.100	1176	1166	2341	0.991	4.9	OK(15)	1.2072	1.28
2	12378-PeCDF	32.300	0.500	3133	2326	5459	0.742	-7.0	OK(15)	1.1159	1.16
3	23478-PeCDF	33.420	0.500	3115	2542	5657	0.816	2.2	OK(15)	1.2277	1.25
4	123478-HxCDF	37.040	0.500	2422	1547	3969	0.639	0.7	OK(15)	1.0379	1.04
5	123678-HxCDF	37.154	0.500	2518	1638	4156	0.650	0.9	OK(15)	1.0140	1.04
6	234678-HxCDF	37.732	0.500	2403	1611	4014	0.670	4.1	OK(15)	1.0507	1.03
7	123789-HxCDF	38.492	0.500	2331	1522	3853	0.653	-1.6	OK(15)	0.9821	0.99
8	1234678-HpCDF	40.134	0.500	2790	2173	4962	0.779	-3.1	OK(15)	0.9891	0.99
9	1234789-HpCDF	41.620	0.500	2322	1739	4061	0.749	-7.5	OK(15)	0.9873	0.99
10	OCDF	44.862	1.000	3078	2904	5982	0.944	-1.7	OK(15)	1.1880	1.01
11	2378-TCDD	26.097	0.100	675	723	1398	1.071	11.7	OK(15)	1.2024	1.31
12	12378-PeCDD	33.949	0.500	1563	1203	2766	0.770	-3.1	OK(15)	1.1130	1.09
13	123478-HxCDD	37.884	0.500	1473	970	2443	0.658	3.7	OK(15)	0.9767	0.98
14	123678-HxCDD	37.975	0.500	1556	933	2489	0.599	-12.1	OK(15)	1.0162	1.01
15	123789-HxCDD	38.289	0.500	1670	1001	2671	0.599	-9.1	OK(15)	1.0320	1.07
16	1234678-HpCDD	41.189	0.500	1553	1299	2852	0.837	4.0	OK(15)	1.0344	1.06
17	OCDD	44.709	1.000	2679	2734	5413	1.020	4.5	OK(15)	0.9085	0.92
18	13C-2378-TCDF	24.860	100.000	943349	878350	1821699	0.931	-1.1	OK(15)	2.7652	2.77
19	13C-12378-PeCDF	32.288	100.000	519475	416237	935712	0.801	-1.0	OK(15)	1.6781	1.42
20	13C-23478-PeCDF	33.408	100.000	499939	399347	899286	0.799	-1.6	OK(15)	1.6441	1.36
21	13C-123478-HxCDF	37.027	100.000	463070	293813	756882	0.634	0.9	OK(15)	1.5164	1.43
22	13C-123678-HxCDF	37.142	100.000	494939	304078	799017	0.614	-1.5	OK(15)	1.5848	1.51
23	13C-234678-HxCDF	37.725	100.000	476469	295837	772306	0.621	-1.5	OK(15)	1.4449	
24	13C-123789-HxCDF	38.479	100.000	476016	298374	774390	0.627	-1.0	OK(15)	1.4376	
25	13C-1234678-HpCDF	40.127	100.000	555943	437527	993470	0.787	-1.6	OK(15)	1.5922	1.88
26	13C-1234789-HpCDF	41.613	100.000	454433	360223	814656	0.793	-0.4	OK(15)	1.4931	1.54
27	13C-2378-TCDD	26.071	100.000	547318	512786	1060104	0.937	0.0	OK(15)	1.7373	1.61
28	13C-12378-PeCDD	33.931	100.000	280135	223249	503384	0.797	-0.8	OK(15)	0.9305	0.76
29	13C-123478-HxCDD	37.876	100.000	306646	191634	498281	0.625	0.1	OK(15)	0.9137	0.94
30	13C-123678-HxCDD	37.968	100.000	300023	191516	491539	0.638	-2.0	OK(15)	0.9971	0.93
31	13C-1234678-HpCDD	41.182	100.000	301204	236045	537249	0.784	-2.3	OK(15)	0.9725	1.02
32	13C-0CDD	44.701	200.000	598786	577567	1176353	0.965	-0.8	OK(15)	1.0370	1.11
33	Cl37-2378-TCDD	26.095	0.100	1418		1418				2.0156	2.15
42	HexaDPE / TCDF	22,101	1.000	108		108				114.8409	107.88
43	HeptaDPE / PeCDF	31.999	1.000	103		103				154.8071	103.05
44	OctaDPE / HxCDF		1.000							120.9631	
45	NonaDPE / HpCDF		1.000							100.9802	
46	DecaDPE / OCDF		1.000								
47	PFTBA	32.633	1.000	40		40				44.7322	39.69
48	Average 13C-123678HxCDD/13C- 123478HxCDD	37.922	100.000	303335		494910				6157.1648	4949.05
49	13C-1234-TCDD	25,750	100,000	340583	316879	657462	0.930	-2.3	OK(15)		

Required Reports Dioxins Continuing Calibration

Batch Name	C:\MassHunter\Data\T	Q2_230711	LA_1613\Qua	antResults\DRW	/ Short list.ba	tch.bin		
Method File								
Daily CC	C:\MassHunter\Data\T	Q2_230711	A_1613TQ2	_230711A12.D				
Level name	Injection Time	Calibratio	on Files					
LO	7/11/2023 12:42:35 PM	C:\MassH	lunter\Data\	TQ2_230711A_	1613\TQ2_23	80711A05.D	•	
L1	7/11/2023 1:31:39 PM	C:\MassH	lunter\Data\	TQ2_230711A_	1613\TQ2_23	80711A06.D		
L2	7/11/2023 2:20:42 PM	C:\MassH	lunter\Data\	TQ2_230711A_	1613\TQ2_23	80711A07.D	•	
L3	7/11/2023 3:09:46 PM	C:\MassH	lunter\Data\	TQ2_230711A_	1613\TQ2_23	30711A08.D		
L4	7/11/2023 3:58:50 PM	C:\MassH	lunter\Data\	TQ2_230711A_	1613\TQ2_23	80711A09.D	•	
L5	7/11/2023 4:47:54 PM	C:\MassH	lunter\Data\	TQ2_230711A_	1613\TQ2_23	80711A10.D		
CC	7/11/2023 6:26:03 PM	C:\MassH	lunter\Data\	TQ2_230711A_	1613\TQ2_23	30711A12.D) <====	==
ISTD Compound:		Av	g Resp	Mid Resp	CC Resp	> A	rea%	A/M
13C-1234-TCDD		73	5746	748854	1239223	3 1	68.43	A
Average 13C-1236	78HxCDD/13C-123478HxC	DD 65	4127	616205	991563	1	51.59	A
13C-2378-TCDD		13	35392	1365958	209669	5 1	57.01	A
13C-2378-TCDF		21	38079	2180875	350851	5 1	64.10	A
13C-23478-PeCDF		12	62428	1246203	1999420	0 1	58.38	A
13C-12378-PeCDF		12	98036	1312490	2085687		60.68	A
13C-123678-HxCD	F	10	80501	1129028	1622880		50.20	Α
13C-12378-PeCDD		70	8291	667894	108058	91	52.56	A
13C-234678-HxCD	F	1024725 1004808 1510018				8 1 -	47.36	A
13C-123478-HxCD	D	62	622571 591959 963574 154.77				54.77	Α
13C-123789-HxCD	F	10	04710	909498	1416792	2 1	41.01	A
13C-123478-HxCD	F	99	9578	989364	142606	B 1	42.67	A
13C-123678-HxCD	D	68	5683	640451	101955	3 1	48.69	A
13C-1234678-HpC	DD	60	5427	583592	818363	1	35.17	A
13C-1234678-HpC	DF	96	5887	888694	147919	1 1	53.14	A
13C-1234789-HpC	DF	92	1298	870054	136259	9 1	47.90	A
13C-OCDD		12	36585	1129284	193065	7 1	56.13	Α
Target Compound	4	vgRF/R2	CC RF	Exp. Conc	Calc. Conc	%Dev	Area%	Curve Fit
13C-1234-TCDD	-			ISTD				
Cl37-2378-TCDD	2	2.1019	1.8311	10.00	8.71	12.88	27.18	Avg RF
Average 13C-1236 123478HxCDD				ISTD				
123789-HxCDD	1	.0336	0.9419	50.00	45.57	8.87	21.45	Avg RF
13C-2378-TCDD	-			ISTD				_
2378-TCDD	1	.1839	1.1624	10.00	9.82	1.82	27.41	Avg RF
13C-2378-TCDF	-			ISTD				

Required Reports Dioxins Surrogate Recovery

	Ouan	titation Re	esults Report	(Not Rev	iewed)		Agiles	E Turnel Insure
Data File	TQ2_230711A05.D		Operator					
Acq. Method	TODF_M_MRM		Acq. Date-	Time 7/1:	1/2023 11:42:3	35 AM		
Sample Name	CSL_1613_13CSL 1021		Instrument	TQ	02			
Vial	3		Multiplier	1.00	0			
DA Method File	Shortlist 4.m		Comment					
Tune File	atunes.eihs DF.tune.xml		Tune Date	6/12	2/2023 3:09:28	3 PM		
Batch Name	DRW Short list batch bin		Last Calib I	Indate 7/18	8/2023 6:40-26	5 AM		
Ref Library					,			
Compound		RT	QIon	Resp.	Conc.	Units		Dev(Min)
Internal Standar	ndis							
System Monitori	ing Compounds							
24) 13C-2378-T	CDF	24.390	315.9 -> 252.0, 254.0	2010620	100.0000	ng/ml	+	0.018
Spiked Amount:	100.000	Range: 24.0 -	169.0%		Recovery =	95.59%		
18) 13C-2378-T	CDD	25.583	331.9 -> 268.0, 270.0	1182925	100.0000	ng/ml	+	0.018
Spiked Amount:	100.000	Range: 25.0 -	164.0%		Recovery =	90.17%		
25) 13C-12378-	PeCDF	31.911	351.9 -> 287.9, 285.9	1186453	100.0000	ng/ml	+	0.011
Spiked Amount:	100.000	Range: 24.0 -	185.0%		Recovery =	93.50%		
26) 13C-23478-	PeCDF	33.088	351.9 -> 287.9, 285.9	1123836	100.0000	ng/ml	+	0.006
Spiked Amount:	100.000	Range: 21.0 -	178.0%		Recovery =	91.06%		
19) 13C-12378-	PeCDD	33.646	367.9 -> 303.9, 301.9	622059	100.0000	ng/ml	+	0.006
Spiked Amount:	100.000	Range: 25.0 -	181.0%		Recovery =	90.15%		
27) 13C-123478	-HxCDF	36.848	385.9 -> 321.9, 323.9	935539	100.0000	ng/ml	+	0.006
Spiked Amount:	100.000	Range: 26.0 -	152.0%		Recovery =	103.46%		
28) 13C-123678	-HxCDF	36.962	385.9 -> 321.9, 323.9	997882	100.0000	ng/ml	+	0.000
Spiked Amount:	100.000	Range: 26.0 -	123.0%		Recovery =	102.20%		
29) 13C-234678	-HxCDF	37.562	385.9 -> 321.9, 323.9	907714	100.0000	ng/ml	+	0.006
Spiked Amount:	100.000	Range: 28.0 -	136.0%		Recovery =	99.20%		
20) 13C-123478	-HxCDD	37.725	401.9 -> 337.9, 339.9	564702	100.0000	ng/ml	+	0.006
Spiked Amount:	100.000	Range: 26.0 -	152.0%		Recovery =	101.16%		
21) 13C-123678	-HxCDD	37.817	401.9 -> 337.9, 339.9	621143	100.0000	ng/ml	+	0.006
Spiked Amount:	100.000	Range: 28.0 -	130.0%		Recovery =	101.11%		
Average 13C-12 123478HxCDD	3678HxCDD/13C-	37.771	401.9 -> 0.0	592923	100.0000	ng/ml		-0.560
Spiked Amount:		Range: - %			Recovery =	NA96		
30) 13C-123789	-HxCDF	38.334	385.9 -> 321.9, 323.9	930533	100.0000	ng/ml	+	0.006
Spiked Amount:	100.000	Range: 29.0 -	147.0%		Recovery =	103.73%		
31) 13C-123467	'8-HpCDF	40.007	419.8 -> 355.9, 357.9	875165	100.0000	ng/ml	+	0.000
Spiked Amount:	100.000	Range: 28.0 -	143.0%		Recovery =	100.91%		
22) 13C-123467	'8-HpCDD	41.073	435.8 -> 371.9, 373.9	565447	100.0000	ng/ml	+	0.000
Spiked Amount:	100.000	Range: 23.0 -	140.0%		Recovery =	103.95%		
32) 13C-123478	9-HpCDF	41.499	419.8 -> 355.9, 357.9	889018	100.0000	ng/ml	+	0.000
Spiked Amount:	100.000	Range: 26.0 -	138.0%		Recovery =	107.40%		
23) 13C-OCDD		44.619	469.8 -> 405.8, 407.8	1197294	200.0000	ng/ml	+	0.006
Sniked Amount:	200.000	Range: 34.0 -	313.096		Recovery =	107.39%		

8

Required Reports Dioxins Matrix Spike Recovery Report

Batch Name	C:\BV Canada\Thin	gs to do for	BV\BV_DIO)	IN\TQ2_23	0218A_1613_	MDL\Quant	Results\m	sd 0718202	3.batch.bin	
Last Callb Update	7/12/2023 11:38:09	9 AM	1010309 7 110030			1949-04-1979-04 19				
Method File										
Data Path	C:\BV Canada\Thin	gs to do for	BV\BV_DIO>	IN\TQ2_23	0218A_1613_	MDL				
Sample Name			Sample Typ	æ	Matrix Sp	olke Group	Acc	a. Date Time	6	
8351624:SPIKE			Matrix		1000000000000		12/22/2022 3:48:16 AM			
8351624:SPIKE			Matrix Dup				12/22/2022 4:37:26 AM			
Compound	Sample Conc	Spike Amt	Splike Res	Dup Res	Spike Rec	Dup Rec	RPD	QC RPD	Limits %Red	
2378-TCDF	0.000	10.000	10.155	10.123	101.55	101.23	0.31	50	30 - 130	
2378-TCDD	0.000	10.000	11.075	11.057	110.75	110.57	0.16	50	30 - 130	
12378-PeCDF	0.000	50.000	47.762	45.156	95.52	90.31	5.61	50	30 - 130	
12378-PeCDD	0.000	50.000	49.761	49.117	99.52	98.23	1.30	50	30 - 130	
23478-PeCDF	0.000	50.000	51.699	51.922	103.40	103.84	0.43	50	30 - 130	
123678-HxCDF	0.000	50.000	52.688	52.046	105.38	104.09	1.23	50	30 - 130	
123478-HxCDD	0.000	50.000	50.036	51.050	100.07	102.10	2.01	50	30 - 130	
234678-HxCDF	0.000	50.000	49.704	49.261	99.41	98.52	0.90	50	30 - 130	
123789-HxCDF	0.000	50.000	52.026	51.370	104.05	102.74	1.27	50	30 - 130	
123678-HxCDD	0.000	50.000	51.404	49.304	102.81	98.61	4.17	50	30 - 130	
123789-HxCDD	0.000	50.000	49.081	47.860	98.16	95.72	2.52	50	30 - 130	
123478-HxCDF	0.000	50.000	49.392	48.374	98.78	96.75	2.08	50	30 - 130	
1234678-HpCDF	0.000	50.000	54.468	53.365	108.94	106.73	2.05	50	30 - 130	
1234678-HpCDD	0.000	50.000	53.373	52.457	106.75	104.91	1.73	50	30 - 130	
1234789-HpCDF	0.000	50.000	59.752	54.912	119.50	109.82	8.44	50	30 - 130	
OCDD	0.000	100.000	125.374	111.042	125.37	111.04	12.12	50	30 - 130	
OCDF	0.000	100.000	147.240	111.551	147.24 #	111.55	27.58	50	30 - 130	

(#) = out of Range

Required Reports Dioxins LCS and LCSD

	LCS	Spike Report		Agilent Transformer
Batch Name	C:\BV Canada\Things to do for BV\BV_DIO	XIN\TQ2_230218A_161	3_MDL\QuantResults	msd 07182023.batch.bin
Last Callb Update	7/12/2023 11:38:09 AM			
Method File				
Data Path	C:\BV Canada\Things to do for BV\BV_DIO	XIN\TQ2_230218A_161	3_MDL	
Data File	Sample Name	Sample Type	LCS Type	Acq. Date Time
TQ2_221221A12.D	8351624:SPIKE	QC	LCSA	12/22/2022 3:48:16 AM
TQ2_221221A13.D	8351624:SPIKE	QC	LCSB	12/22/2022 4:37:26 AM

Data File = TQ2_221221A12.D, Sample Name = 8351624:SPIKE, Type = LCSA

Compound	Spike Amt	Spike Res	Splke Rec	QC LCS Min %Rec	QC LCS Max %Rec
2378-TCDF	10.000	10.155	101.55	75	158
2378-TCDD	10.000	11.075	110.75	67	158
12378-PeCDF	50.000	47.762	95.52	80	134
12378-PeCDD	50.000	49.761	99.52	70	142
23478-PeCDF	50.000	51.699	103.40	68	160
123678-HxCDF	50.000	52.688	105.38	84	130
123478-HxCDD	50.000	50.036	100.07	70	164
234678-HxCDF	50.000	49.704	99.41	70	156
123789-HxCDF	50.000	52.026	104.05	78	130
123678-HxCDD	50.000	51.404	102.81	76	134
123789-HxCDD	50.000	49.081	98.16	64	162
123478-HxCDF	50.000	49.392	98.78	72	134
1234678-HpCDF	50.000	54.468	108.94	82	122
1234678-HpCDD	50.000	53.373	106.75	70	140
1234789-HpCDF	50.000	59.752	119.50	78	138
OCDD	100.000	125.374	125.37	78	144
OCDF	100.000	147.240	147.24	63	170

Data File = TQ2_221221A13.D, Sample Name = 8351624:SPIKE, Type = LCSB

Compound	Spike Amt	Spike Res	Spike Rec	QC LCS Min %Rec	QC LCS Max %Rec
2378-TCDF	10.000	10.123	101.23	75	158
2378-TCDD	10.000	11.057	110.57	67	158
12378-PeCDF	50.000	45.156	90.31	80	134
12378-PeCDD	50.000	49.117	98.23	70	142
23478-PeCDF	50.000	51.922	103.84	78	160
123678-HxCDF	50.000	52.046	104.09	84	130
123478-HxCDD	50.000	51.050	102.10	70	164
234678-HxCDF	50.000	49.261	98.52	70	156
123789-HxCDF	50.000	51.370	102.74	78	130
123678-HxCDD	50.000	49.304	98.61	76	134
123789-HxCDD	50.000	47.860	95.72	64	162
123478-HxCDF	50.000	48.374	96.75	72	134
1234678-HpCDF	50.000	53.365	106.73	82	122
1234678-HpCDD	50.000	52.457	104.91	70	140
1234789-HpCDF	50.000	54.912	109.82	78	138
OCDD	100.000	111.042	111.04	78	144
OCDF	100.000	111.551	111.55	63	170

Window Defining Mix

				Dic	xin Qu	antitative	Analysis	Sample	e Repor	t				Agilent	Trusted Accounts
Data Pa	ith	C:\Ma	ssHunter\G	GCMS\1\data	\TQ2_2310	005A_1613\TC	2_231005A03	.D							
Sample	Name	Windo	w Defining	Mix			Acq. Method		Т	ODF MRM					
Acq. Tir	ne	2023-	10-05 1:59	:02 AM			Duant Method		1	6130 Quan	t12 Dale (1	.).m			
Sample	Type	Samp	e				Sample Amt					-			
Analysis	Time	2023-	.~ 11-09 3·55	-38 PM			Analyst Name		٥	GTI ENT\sho	toole				
No	Tree	Compound	PT [min]	PPT [min]	Arres 1	0.4mm	c/M	O S/N	Pern Patie	Of Entire Error		Conc. [na/a]	Med	100 (and a)	0/ Perc
1	Target	2378-TCDD	26.079	0.020	219957	210311	8579.5	17291.9	0 956	-0.2	0 2395	174 029	MOQ.	Love (pg/g)	70NeC
2	Target	12378-PeCDD	34,572	0.647	135621	108003	7136.3	7623.3	0.796	2.1	1,1135	3221,389			
3	Target	123478-HxCDD	38,244	0.373	122926	79861	4662.8	4206.4	0.650	6.3	0.9767	36.324			
4	Target	123678-HxCDD	38.244	0.373	122926	79861	4662.8	4206.4	0.650	3.9	0.9719	36.487			
5	Target	123789-HxCDD	38.244	0.373	122926	79681	4931.2	5273.9	0.650	3.1	1.0802	32.840			
6	Target	1234678-HpCDD	41.189	0.013	112280	90893	4388.9	2923.8	0.810	0.5	1.0347	3409.607			
7	Target	OCDD	44.709	0.002	99952	96789	20303.5	4797.0	0.968	0.9	9.0856	13727.567			
8	Target	2378-TCDF	24.891	0.019	173	165	2.8	3.5	0.952	-0.9	0.2414	196.529			
9	Target	12378-PeCDF	32,294	0.018	733	586	36.1	25.0	0.799	1.8	1.1168	330.631			
10	Target	23478-PeCDF	33.649	-0.251	133	109	12.7	12.4	0.816	3.4	1.2270	142.384			
11	Target	234678-HxCDF	38.567	0.167	193450	120118	5967.6	6082.6	0.621	-10.1	0.9809	1330558.470			
12	Target	123478-HxCDF	35.868	-0.873	165725	104993	3846.0	3505.5	0.634	-1.0	1.0379	762807.653			
13	Target	123678-HxCDF	37.034	0.013	5707	3597	249.6	239.5	0.630	-0.5	1.0377	12370.346			
14	Target	123789-HxCDF	38.567	0.842	193344	119997	7943.0	3619.7	0.621	-2.4	1.0499	437771.134			
15	Target	1234678-HpCDF	40.134	0.013	183653	146042	44175.3	5538.4	0.795	-0.3	0.9892	212051.092			
16	Target	1234789-HpCDF	41.620	0.024	175686	139729	3622.1	2531.6	0.795	-0.6	0.9873	263222.296			
17	Target	OCDF	44.862	0.154	137692	131271	7049.7	11687.5	0.953	-0.7	11.8713	14363.019			
18	Surrogate	13C-2378-TCDD	26.059		532490	499743	7674.2	15535.0	0.939	0.5	1.7377	95.695			95.7
19	Surrogate	13C-12378-PeCDD	33.926		4048	2743	119.4	79.2	0.678	-13.1	0.9303	1.176			1.2
20	Surrogate	13C-123478-HxCDD	37,871		350801	220783	18212.3	15111.3	0.629	0.3	1.0000	99.955			100.0
21	Surrogate	13C-123678-HxCDD	37.871		351060	220787	14751.6	12096.9	0.629	-3.0	0.9999	100.008			100.0
22	Surrogate	13C-1234678-HpCDD	41.176		3192	2567	149.3	107.4	0.804	0.5	1.0661	0.945			0.9
23	Surrogate	13C-OCDD	44.707		175	141	20.4	2.7	0.806	-16.1	1.1346	0.049			0.0
24	Surrogate	13C-2378-TCDF	24.872		425	286	25.5	29.9	0.674	-29.8	2.7649	0.041			0.0
25	Surrogate	13C-12378-PeCDF	32.276		221	136	6.6	12.4	0.615	-22.8	1.6777	0.034			0.0
26	Surrogate	13C-23478-PeCDF	33.900		18	121	1.6	6.0	6.799	754.1	1.6449	0.014			0.0
27	Surrogate	13C-123478-HxCDF	36.741		34	0	4.0		0		1.6612	0.004			0.0
28	Surrogate	13C-123678-HxCDF	37.022		72	0	20.7		0		1.6615	0.008			0.0
29	Surrogate	13C-2346/8-HxCDF	38.399		24	0	3.1		0		1.580/	0.003			0.0
30	Surrogate	13C-123789-HxCDF	37.725		68	0	13.2		0		1.5855	0.008			0.0
31	Surrogate	13C-12346/8-HpCDF	40.121		92	65	17.7	2.3	0.706	-9.9	1./422	0.016			0.0
32	Surrogate	13C-1234/89-HpCDF	41.596		83	39	1.9	1.0	0.468	-41.0	1.6385	0.013			0.0
41	IS	13C-1234-1CDD	25./38		320300	300454	4218.2	9990.2	0.938	0.2	-	-			
42	IS	13C-123789-HxCDD	37,871		351059	220779	11838.8	7614.5	0.629	0.2	-	-			

Calibration Standard

		Dioxin Quantitative Analysis Sample Report											Agilent	Trusted Answers	
Data P	ath	C:\Ma	ssHunter\@	GCMS\1\data	a\TQ2_2310	05A_1613\TC	2_231005A11	.D							
Sample	e Name	CS5_1	613_13CS	5 1021			Acq. Method		т	QDF_MRM					
Acq. Ti	ime	2023-	10-05 8:30	:52 AM			Quant Method		1	6130 Quant	12 Dale (1).m			
Sample	Type	Cal				9	Sample Amt					-			
Analys	is Time	2023-	11-09 3:55	:38 PM			Analyst Name		A	GILENT\sho	toole				
No	Type	Compound	RT [min]	RRT [min]	Area	O-Area	S/N	0-5/N	Resp. Ratio	%Ratio Error	Av-RRF	Conc. [pa/a]	Mod.	100 (pg/g)	%Rec
1	Target	2378-TCDD	26.085	0.020	1732354	1649243	307483.5	291861.5	0.952	-0.6	0.2395	992.628			
2	Target	12378-PeCDD	33,943	0.018	5932093	4668020	422241.1	137687.3	0.787	0.9	1.1135	1015.167			
3	Target	123478-HxCDD	37,884	0.007	5238742	3337896	462453.4	66215.7	0.637	4.2	0.9767	1030.885			
4	Target	123678-HxCDD	37,884	0.007	5238712	3337888	111284.1	66215.7	0.637	1.9	0.9719	1035.950			
5	Target	123789-HxCDD	38.284	0.407	5379447	3451326	367625.1	104116.9	0.642	1.7	1.0802	959.729			
6	Target	1234678-HpCDD	41.189	0.007	5003575	4021505	140129.1	41185.1	0.804	-0.2	1.0347	1002.365			
7	Target	OCDD	44.721	0.008	9243960	8960145	456536.0	478328.0	0.969	1.0	9.0856	200.132			
8	Target	2378-TCDF	24.873	0.019	2706542	2554209	66043.5	34932.2	0.944	-1.7	0.2414	1005.576			
9	Target	12378-PeCDF	32.294	0.012	10344862	8205703	161965.5	754736.7	0.793	1.1	1.1168	1006.301		L	
10	Target	23478-PeCDF	33.414	0.012	11089409	8769739	36885.0	37669.2	0.791	0.2	1.2270	1020.964			
11	Target	234678-HxCDF	38.487	0.007	7822685	4920889	40585.2	14626.1	0.629	-8.9	0.9809	1000.465		 	
12	Target	123478-HxCDF	37.040	0.013	8637628	5490805	330252.2	752120.9	0.636	-0.7	1.0379	1006.545		 	
13	Target	123678-HxCDF	37.040	0.013	8637628	5490805	330252.2	752120.9	0.636	0.4	1.0377	1006.677		 	
14	Target	123789-HxCDF	37.732	0.007	8060400	5122632	153611.3	308319.8	0.636	0.0	1.0499	1005.563		ił	
15	Target	1234678-HpCDF	40.134	0.007	7281183	5782552	764323.3	244094.3	0.794	-0.4	0.9892	997.526		i	
16	Target	1234789-HpCDF	41.620	0.007	7168117	5759252	106543.6	47204.6	0.803	0.4	0.9873	991.894		ił	
17	Target	OCDF	44.874	0.160	12599231	11939474	609372.8	581268.8	0.948	-1.3	11.8713	206.468		┝─────╄	
18	Surrogate	13C-2378-TCDD	26.065		732362	689950	14267.6	33732.5	0.942	0.9	1.7377	108.206		i	108.2
19	Surrogate	13C-123/8-PeCDD	33.926		522684	415033	1/403.1	13885.6	0.794	1.8	0.9303	133.254		┢─────┣	133.3
20	Surrogate	13C-123478-HXCDD	37,8/6		523821	32/988	13690.9	18960.6	0.626	-0.2	1.0000	99.999		i	100.0
21	Surrogate	13C-1236/8-HXCDD	3/.8/6		523836	32/988	15136.1	18960.6	0.626	-3.4	1.0001	100.007		i	100.0
22	Surrogate	13C-1234678-HpCDD	41,102		1010514	000700	20044.9	05/4.3	0.757	-0.4	1.0001	207,170		 	102.6
23	Surrogate	130-2378-TODE	74,954		1114394	1053139	23004.3	10893.9	0.945	-16	2 7649	103 635			103.6
27	Surrogate	13C-12278 D-CDE	27,004		915927	734991	9996.0	7912.0	0.943	0.8	1 6777	130.074		†	120.1
25	Sumpate	13C-23478-DeCDE	33,402		878311	706969	6467.5	12372.9	0.805	1.1	1.6449	127.402		 	127.4
20	Summate	13C-123478-HyCDE	37.027		833017	519400	29937.2	24221.1	0.624	0.0	1.6612	95.573		t	95.6
28	Surrogate	13C-123678-HxCDE	37.027		833030	519400	19594.8	16894.5	0.624	1.2	1.6615	95,560		·+	95.6
29	Surrogate	13C-234678-HxCDF	38,479		796390	502134	4224.2	4976.8	0.631	0.4	1.5807	96,438		t	96.4
30	Surrogate	13C-123789-HxCDF	37,725		768764	479904	41131.3	6055.1	0.624	0.7	1.5855	92,458			92.5
31	Surrogate	13C-1234678-HpCDF	40.127		742643	581301	19020.8	28925.4	0.783	-0.1	1.7422	89.212			89.2
32	Surrogate	13C-1234789-HpCDF	41.613		739246	580755	18290.1	5061.0	0.786	-0.9	1.6385	94.578			94.6
41	IS	13C-1234-TCDD	25,738		389380	367064	7570.1	3591.7	0.943	0.7	-	-			
42	IS	13C-123789-HxCDD	37.876		523825	327994	12040.5	8153.7	0.626	-0.2	-	-			

		Dioxin Quantitative Analysis Sample Report										Agilent	Trusted Armount		
Data Pa	ith	C:\Ma	ssHunter\D	ata\TQ2_2	30711A_16	13\TQ2_2212	21A08.D								
Sample	Name	UHH3	89				Acq. Method		т	ODF MRM					
Acq. Tir	me	12/22	/2022 1:31	:30 AM			Quant Method								
Sample	Type	Samp	le				Sample Amt		1	0.00 a					
Analysis	sTime	7/12/2	2023 4:43:4	41 PM			Analyst Name		Δ	ME\kuxu					
No	Type	Compound	RT [min]	RRT [min]	Area	O-Area	S/N	0-5/N	Resp. Ratio	%Ratio Error	Av-RRF	Conc. [no/o]	Mod	100 (ma/a)	%Rec
1	15	2378-TCDD	26,109	ever frind	2167	2482	44.5	35.6	1,145	19.3	1,1839	0,192	11001	Long (para/	/unice
2	IS	12378-PeCDD	34,672		33786	26995	1764.2	1183.0	0.799	2.4	1,1139	3,983			
3	15	123478-HxCDD	37.603		423287	271616	20820.8	7826.2	0.642	-1.9	1.0199	62,949			
4	IS	123678-HxCDD	37,603		423287	271616	20820.8	7375.3	0.642	1.8	1.0421	61.607			
5	IS	123789-HxCDD	38,461		1112868	713830	54835.8	20317.0	0.641	0.2	1.0336	163.289			
6	IS	1234678-HpCDD	41.685		14795633	11937121	591546.4	464684.4	0.807	0.9	1.0762	2638.260			
7	IS	OCDD	-		0	0			0		0.9179	ND			0.0
8	IS	2378-TCDF	24.986		30965	29180	1191.6	321.2	0.942	-1.8	1.2034	1.446			
9	IS	12378-PeCDF	32,606		135029	107256	1680.8	2403.5	0.794	1.8	1.0942	10.206			
10	IS	23478-PeCDF	34.023		104508	82672	1992.2	1194.2	0.791	1.4	1.2095	6.962			
11	IS	123478-HxCDF	36,880		871474	547771	14295.2	11619.9	0.629	-10.4	1.0510	83.294			
12	IS	123678-HxCDF	38.155		305235	197227	5287.6	4300.9	0.646	1.4	1.0253	30.227			
13	IS	234678-HxCDF	38.155		305235	197227	7028.6	4300.9	0.646	2.4	1.0719	28.255			
14	IS	123789-HxCDF	38,281		244663	156498	4272.5	2724.9	0.640	-0.1	0.9880	22.542			
15	Ľ	1234678-HpCDF	41.379		2610135	2086926	27368.7	15677.4	0.800	0.2	1.0213	308.602			
16	IS	1234789-HpCDF	41.379		2610135	2086926	27368.7	15677.4	0.800	-0.1	0.9932	308.231			
17	ĽS	OCDF	45.877		1425056	1382657	18365.1	31670.0	0.970	1.1	1.1599	467.321			
18	Surrogate	13C-2378-TCDD	26.089		1055097	986210	5276.8	10016.8	0.935	-2.6	1.8039	66.199			66.2
19	Surrogate	13C-12378-PeCDD	34.655		762705	607198	27398.7	10248.7	0.796	2.1	0.9488	84.464			84.5
20	Surrogate	13C-123478-HxCDD	39.083		664438	417888	8815.0	5024.9	0.629	0.0	0.9094	109.957			110.0
21	Surrogate	13C-123678-HxCDD	39.083		664512	417895	13275.0	4164.9	0.629	-3.4	1.0007	99.933			99.9
22	Surrogate	13C-1234678-HpCDD	42.387		524519	417039	20910.3	10990.2	0.795	-0.6	0.8861	98.169			98.2
23	Surrogate	13C-0CDD	45.752		529631	506313	9393.6	5960.9	0.956	-0.4	0.9081	105.395			52.7
24	Surrogate	13C-2378-TCDF	24.967		1784699	1672543	10798.8	5239.8	0.937	-2.4	2.8920	69.934			69.9
25	Surrogate	13C-12378-PeCDF	32.577		1206766	962981	9255.4	14930.1	0.798	2.3	1.7449	72.745			72.7
26	Surrogate	13C-23478-PeCDF	34.006		1236589	986316	6322.6	8501.8	0.798	2.3	1.6969	76.634			76.6
27	Surrogate	13C-123478-HxCDF	38.142		997960	623252	45785.7	9927.5	0.625	-13.8	1.4730	101.681			101.7
28	Surrogate	13C-123678-HxCDF	38.142		997971	623252	25583.0	7592.7	0.625	0.3	1.5905	94.172			94.2
29	Surrogate	13C-234678-HxCDF	38.268		1024430	634558	25708.3	7582.5	0.619	-0.8	1.4906	102.826			102.8
30	Surrogate	13C-123789-HxCDF	38,903		1103616	697637	29227.2	8794.6	0.632	-0.6	1.4613	113.880			113.9
31	Surrogate	13C-1234678-HpCDF	41.372		836691	653557	42061.7	13658.1	0.781	-0.4	1.4128	97.452			97.5
32	Surrogate	13C-1234789-HpCDF	42.773		861261	673080	40668.8	7797.6	0.782	-1.1	1.3484	105.128			105.1

"L"--Below LOQ/LOD/MDL

Required Reports Dioxins Sample Report Unknowns

Dioxin Quantitative Analysis Sample Report ** A Unknowns RT [min] Resp. Av-RRF Conc. [pg/g] Area Q-Area Resp. Ratio S/N Q-S/N													
Unknowns	Q-S/N	Mod.	Fail										
Total Tetra-Dioxins(0)	-	-	0.6005	ND									
Unknowns	25.954	522	-	-	277	245	0.883	15.3	19.3				
Unknowns	26.109	4729	-	-	2218	2511	1.132	103.1	163.2				
Unknowns	26.365	192	-	-	91	101	1.114	5.1	6.0				
Unknowns	25.305	1551	-	-	807	744	0.922	40.6	51.4		\square		
Unknowns	26.656	2445	-	-	1189	1256	1.056	55.0	79.7				
Unknowns	24.901	1146	-	-	691	454	0.658	25.4	35.6		Fail		
Unknowns	27.019	417	-	-	188	228	1.214	9.4	12.7		Fail		
Unknowns	24.770	1788	-	-	918	870	0.948	35.1	52.7		\square		
Unknowns	24.412	6214	-	-	3190	3023	0.948	126.3	166.8		\square		
Unknowns	23.526	1769	-	-	936	833	0.890	49.8	55.8				
Unknowns	23.180	2240	-	-	1153	1087	0.943	63.8	74.7				
Unknowns	22.758	3113	-	-	1661	1452	0.875	92.8	111.3				
Total Penta-Dioxins(0)	-	-	1.1139	ND									
Unknowns	34.672	60781	-	-	33786	26995	0.799	1764.2	1183.0				
Unknowns	34,907	4656	-	-	2565	2092	0.816	132.6	86.1				
Unknowns	34,341	825	-	-	474	351	0.742	24.6	16.2				
Unknowns	34,147	934	-	-	474	509	1,201	19.1	16.2		Fail		
Unknowns	35.404	5417	-	-	2975	2442	0.821	171.1	115.5		1 44		
Unknowns	33 792	13646	-		7592	6054	0.797	261.1	177.1				
Unknowns	33,638	3337			1705	1632	0.957	86.4	61.6		Fail		
Unknowns	33,312	9600	-	-	5309	4291	0.808	247.7	167.8		1 44		
Unknowns	22 999	2000			19592	16001	0.817	822.2	267.8 566.4				
Unknowns	32,712	14620			7910	6710	0.848	461.6	313.6				
Total Hava Disving(0)	32.712	14020	0.2620	ND	7510	0/10	0.010	401.0	515/0				
Linknowns	38 187	63469	0.3020	110	38904	74566	0.631	546.4	400.4				
Unknowns	20.461	1025206	-	-	1111608	712770	0.001	15171.2	11224.9				
Unknowns	38,621	22899			13655	9743	0.672	134.3	1023				
Unknowing	27 602	602600			421740	370969	0.6/7	E763 0	4219.6				
Unknowns	37,003	1002000	-	-	921/40	270000	0.642	1495.4	4313.0				
Unknowns	39 197	1947443			1124251	718197	0.629	16249.1	12095.1				
Unknowing	20 512	200200			22220	142507	0.603	2012.2	20001				
Total Heath Dissing(0)	35,515	300000	1 0762	ND	223333	145507	0.042	3013-3	2230.3				
Total Hepta-Dioxits(0)	41 695	26722764	1.0/02		14705622	11027121	0.907	EDIEAC A	ACAC0A A				
Unknowns	41,005	20/32/34	-	-	1972000	1175/121	0.00/	726955.0	57252.0				
Total Total Furner(0)	72,400	33327940	1 2021	ND	17500035	15/ 50/0/	0.005	720035.0	515352.0		$ \rightarrow$		
Total reca-rurans(0)	74 996	60275	1,2021	ND	21122	20242	0 979	1874 2	897.4		\vdash		
Unknowns	24,200	21705	-	-	1132	10421	0.000	2024.3	244.2		$ \rightarrow$		
Unknowns	24,403	21/05	-	-	520	10431	0.925	0,94,0	1413		End		
Unknowns	23/023	9751	-	-	320 494E	4915	0.780	210.0	14.2		Fall		
Unknowns	25,003	9761	-	-	463	-2023	0.3/4	310.0	107.3		E-d		
Unknowns	23,392	2001	-	-	463	352	0.701	20.0	10.2		rall		
Unknowns	23,3/5	2001	-	-	15/0	1311	0.035	01./	C.PC		\vdash		
Unknowns	23,635	25467	-	-	13119	12348	0.941	8/6.0	439.9		\vdash		
Unknowns	23,183	99632	-	-	23068	21564	0.935	1439.9	/0/.0				
Unknowns	26,980	2930	-	-	1518	1411	0.930	86.6	39,4		\vdash		
Unknowns	22.850	24073	-	-	12443	11630	0.935	824.7	403.0		\vdash		
Unknowns	22.600	1115	-	-	599	516	0.862	41.7	19.9		\vdash		
Unknowns	27,486	2161	-	-	1121	1039	0.927	66.5	29.4		$ \rightarrow $		
Unknowns	22,463	1442	-	-	757	685	0.905	54.0	24.9				
UHH389					Page 2 of 14				Generated at 5:3	0 PM on 7/12	/2023		

Failure Codes: "RT"-- Quantifier RT out of range

"SN"--- Quantifier or Qualifier Signal To Noise Ratio

"NQ"-- Qualifier not found; "QRT"-- Qualifier RT ou

"QR"-- Qualifier Ratio out of range; "DPE"-- DPE ini

"T"--Target;

r -- raiget,

"L"--Below LOQ/LOD/MDL

Agilent

Sample Report Unknowns

Dioxin Quantitative Analysis Sample Report												
Unknowns	RT [min]	Resp.	Av-RRF	Conc. [pg/g]	Area	Q-Area	Resp. Ratio	S/N	Q-S/N	Mod.	Fail	
Unknowns	27.718	1827	-	-	946	881	0.932	50.5	27.7			
Unknowns	22.094	54475	-	-	28081	26395	0.940	2032.5	1027.1			
Unknowns	21.844	4609	-	-	2298	2312	1.006	169.5	89.8			
Unknowns	21.344	1133	-	-	533	601	1.127	43.4	25.9			
Total Penta-Furans(0)	-	-	0.5618	ND								
Unknowns	32.606	242771	-	-	135029	107742	0.798	2497.9	3029.7			
Unknowns	32.440	41822	-	-	23640	18182	0.769	459.4	550.9			
Unknowns	33.206	208492	-	-	116032	92460	0.797	2369.8	2919.5			
Unknowns	32.017	32392	-	-	18009	14384	0.799	326.6	426.6			
Unknowns	31.874	73104	-	-	40944	32160	0.785	666.6	779.5			
Unknowns	34.023	187578	-	-	104343	83235	0.798	2342.1	2851.1			
Unknowns	34.315	301401	-	-	167049	134352	0.804	3805.8	4658.1			
Unknowns	31.057	23440	-	-	13301	10139	0.762	213.6	259.4			
Total Hexa_Furans(0)	-	-	0.2461	ND								
Unknowns	38.281	406031	-	-	249658	156373	0.626	1507.1	843.6			
Unknowns	38.155	505351	-	-	309670	195681	0.632	1864.7	1033.5			
Unknowns	38.835	354257	-	-	219017	135240	0.617	1394.4	772.4			
Unknowns	38.915	294802	-	-	180352	114450	0.635	1134.3	629.5			
Unknowns	37.669	5401165	-	-	3299408	2101757	0.637	25103.1	14027.6			
Unknowns	39.796	330328	-	-	201907	128420	0.636	1302.2	729.4			
Total Hepta-Furans(0)	-	-	0.4739	ND								
Unknowns	42.780	263425	-	-	145363	118062	0.812	1701.7	955.0			
Unknowns	41.757	9785930	-	-	5416383	4369547	0.807	67356.1	37488.9			
Unknowns	41.379	4697073	-	-	2610130	2086943	0.800	32539.2	18025.9			

Failure Codes: "RT"-- Quantifier RT out of range

"SN"-- Quantifier or Qualifier Signal To Noise Ratio low;

"NQ"-- Qualifier not found; "QRT"-- Qualifier RT out of range;

"QR"-- Qualifier Ratio out of range; "DPE"-- DPE interference;

"T"--Target;

"L"--Below LOQ/LOD/MDL

Sample Report Blank

				Die	oxin Qu	antitative	Analysis	Sample	e Repoi	t				Agilent	Trusted Armaent
Data P	ath	C:\Ma	ssHunter\G	CMS\1\data	ATQ2_2310	005A_1613\TC	2_231005A12	2.D							
Sample	e Name	solver	nt				Acq. Method		т	ODF MRM					
Acg. Ti	ime	2023-	10-05 9:19	:50 AM			Quant Method	I	1	6130 Quan	t12 Dale (1	.).m			
Sample	Type	Samp	le				Sample Amt				_	,			
Analys	is Time	2023-	11-09 3:55	-38 PM			Analyst Name		۵	GILENT\sho	toole				
No	Turo	Compound	PT [min]	PPT [min]	Amo 2	0.4mm	c/M	O S/N	Porn Patio	06Patio Error		Conc. [na/a]	Med	100 (m/a)	06Pee
1	Tarret	2378-TCDD	25.912	0.139	73		29	14	0.500	-47.8	0.2395	102 403	MOG.	Love (pg/g/	70rvec
2	Target	12378-PeCDD	33,966	0.023	1116	767	42.9	26.9	0.688	-11.8	1.1135	399,933			
3	Target	123478-HxCDD	37,895	0.013	465	322	58.8	16.6	0.691	13.1	0.9767	292.372			
4	Target	123678-HxCDD	37.895	0.013	474	321	79.1	16.6	0.678	8.5	0.9719	296.468			
5	Target	123789-HxCDD	37.981	0.099	598	404	53.9	29,4	0.675	7.0	1.0802	336.400			
6	Target	1234678-HpCDD	41.200	0.224	587	478	85.9	83.4	0.814	1.0	1.0347	923.089			
7	Target	OCDD	44.733	0.026	586	612	24.6	53.0	1.045	8.8	9.0856	86.060			
8	Target	2378-TCDF	24.897	0.019	1434	1286	41.6	38.6	0.897	-6.6	0.2414	649.407			
9	Target	12378-PeCDF	32.323	0.018	1786	1650	57.5	81.1	0.924	17.7	1.1168	467.814			
10	Target	23478-PeCDF	33.437	0.206	1538	1234	71.2	69.5	0.802	1.7	1.2270	7620.332			
11	Target	234678-HxCDF	38,504	0.270	1083	743	55.2	27.4	0.686	-0.6	0.9809	3765.542			
12	Target	123478-HxCDF	37.052	0.024	1301	899	34.6	492.9	0.691	8.0	1.0379	134.602			
13	Target	123678-HxCDF	37.052	0.024	1301	899	34.6	492.9	0.691	9.2	1.0377	132.895			
14	Target	123789-HxCDF	37.749	0.019	1011	656	32.1	62.6	0.649	2.1	1.0499	379.755			
15	Target	1234678-HpCDF	40.145	0.207	661	651	45.1	54.5	0.985	23.5	0.9892	2115.924			
16	Target	1234789-HpCDF	41.632	0.322	677	613	36.6	22.3	0.906	13.3	0.9873	2603.465			
17	Target	OCDF	44.880	0.172	883	847	96.5	54.4	0.960	0.0	11.8713	95.115			
18	Surrogate	13C-2378-TCDD	25.774		241	204	6.4	9.0	0.849	-9.1	1.7377	263.022			263.0
19	Surrogate	13C-12378-PeCDD	33.943		232	190	9.9	41.9	0.819	5.0	0.9303	466.537			466.5
20	Surrogate	13C-123478-HxCDD	37,882		163	112	11.7	32.7	0.688	9.6	1.0000	100.200			100.2
21	Surrogate	13C-123678-HxCDD	37,882		164	112	11.7	32.6	0.686	5.8	0.9999	100.341			100.3
22	Surrogate	13C-12346/8-HpCDD	40.976		75	37	7.6	2.4	0.492	-38.5	1.0661	38.015			38.0
23	Surrogate	13C-OCDD	44.707		151	156	4.6	11.8	1.036	7.9	1.1346	98.185			49.1
24	Surrogate	13C-23/8-1CDF	24,8/8		910	825	10.6	11.3	0.907	-5.6	2.7649	644.243			644.2
25	Surrogate	13C-123/8-PeCDF	32.305		379	279	41.9	15,4	0.737	-7.4	1.6///	402.394			402.4
26	Surrogate	13C-23478-PeCDF	33,231		30	740	4./	22.0	0		1.6449	18,501			18.5
2/	Surrogate	13C-123478-HXCDF	37.027		835	740	17.9	22.9	0.886	42.1	1.6612	344.666			344.7
28	Surrogate	13C-1236/8-HXCDF	37.027		20	/55	23.7	19,4	0.500	45.7	1.6615	349.092			345.1
20	Surrogate	13C-23H876-HACDF	30.234		30	101	1.7	7.2	0.052	3.0	1.5007	05.014			05.0
21	Surrogate	13C-123765-HXCDF	37.731		23/	40	1/.0	14.2	1 796	129.2	1,3035	12,090			12.1
31	Surrogate	13C-1234789_H-CDE	41 310		22	12	2.7	24.2	0.251	-55.9	1.6295	11 127			11.1
41	IS	13C-1234-TCDD	25,423		37	60	2.1	4.5	1.622	722	1.0305				44.4
42	IS	13C-123789-HxCDD	37,882		164	111	11.7	32.3	0.673	7.2	-	-			

Sample Report Blank

Dioxin Quantitative Analysis Sample Report Agileent Unknowns RT [min] Resp. Av-RRF Conc. [pg/g] Area Q-Area Resp. Ratio S/N Q-S/N M											
Unknowns	RT [min]	Resp.	Av-RRF	Conc. [pg/g]	Area	Q-Area	Resp. Ratio	S/N	Q-S/N	Mod.	Fail
Total Tetra-Dioxins(0)	-	-	0.2395	ND							
Unknowns	24.133	25	-	356.743	14	11	0.764	2.6	5.1		QR
Unknowns	25.900	62	-	878.849	9	53	6.012	3.4	6.9		QR
Unknowns	27.954	102	-	1444.738	72	30	0.409	9.4	6.1		QR
Total Penta-Dioxins(3)	-	217	1.1135	235.696							
Unknowns	31.148	36	-	39.396	24	12	0.522	7.6	8.0		DPE
Unknowns	31.365	36	-	38.628	29	6	0.220	7.8	4.7		QR
Unknowns	31.462	29	-	31.948	23	7	0.296	5.8	4.6		QR
Unknowns	31.685	29	-	31.749	12	18	1.507	4.2	5.2		QR
Unknowns	32.303	113	-	122.117	59	53	0.896	5.8	11.7		
Unknowns	32.612	83	-	90.286	46	37	0.801	5.9	9.4		
Unknowns	33.366	31	-	33.451	20	11	0.558	7.1	6.1		QR
Unknowns	33.886	22	-	24.044	11	11	1.013	3.3	3.7		QR
Unknowns	34.578	21	-	23.293	12	9	0.789	2.8	5.7		
Unknowns	34.721	18	-	19.722	6	12	2.039	2.8	4.9		QR
Total Hexa-Dioxins(0)	-	-	1.0096	ND							
Total Hepta-Dioxins(0)	-	-	1.0347	ND							
Unknowns	40.000	33	-	116.442	9	24	2.721	1.7	1.3		SN
Unknowns	40.874	29	-	100.885	7	22	3.377	1.5	1.6		SN
Total Tetra-Furans(0)	-	-	0.2414	ND							
Unknowns	20.332	24	-	51.668	9	15	1.704	4.4	2.8		QR
Unknowns	20.499	26	-	56.618	16	10	0.585	12.1	3.2		QR
Total Penta-Furans(0)	-	-	1.1719	ND							
Unknowns	28.350	21	-	29.209	6	15	2.615	4.2	5.7		QR
Unknowns	32.346	134	-	190.068	89	45	0.505	13.2	12.3		QR
Unknowns	32.889	39	-	55.004	29	9	0.318	6.8	5.9		QR
Total Hexa_Furans(1)	-	19	1.0266	20.354							
Unknowns	35.559	43	-	45.701	16	26	1.604	98.5	10.5		QR
Unknowns	35.885	49	-	52.834	16	33	2.095	135.5	12.8		QR
Unknowns	36.063	9	-	9.638	9			66.9			NQ
Unknowns	36.125	65	-	69.658	10	55	5.536	70.8	14.3		QR
Unknowns	36.657	25	-	26.922	9	16	1.659	51.1	10.9		QR
Unknowns	37.160	58	-	62.095	29	29	0.982	101.9	12.2		QR
Unknowns	38.069	46	-	49.673	13	33	2,609	76.7	9.1		QR
Unknowns	38.321	19	-	20.354	12	7	0.647	61.8	7.4		
Total Hepta-Furans(0)	-	-	0.9883	ND							
Unknowns	40.140	24	-	27.331	12	12	1.041	1.3	3.6		SN
Unknowns	40.391	34	-	38.639	20	14	0.687	1.7	2.4		SN
Unknowns	40.894	27	-	31.110	13	14	1.140	1.1	4.2		SN
Unknowns	41.226	50	-	57.697	33	18	0.549	1.7	2.8		SN
1234789-HpCDF	41.620	66	-	75.633	44	22	0.510	2.1	3.6		SN
Unknowns	41.969	14	-	16.303	9	5	0.564	1.3	4.1		SN

Failure Codes: "RT"-- Quantifier RT out of range

"SN"-- Quantifier or Qualifier Signal To Noise Ratio low;

"NQ"-- Qualifier not found; "QRT"-- Qualifier RT out of range;

"QR"-- Qualifier Ratio out of range; "DPE"-- DPE interference;

"T"--Target;

"L"--Below LOQ/LOD/MDL

Required Reports Dioxins Window Defining Mix

Required Reports Dioxins Calibration Standard

Required Reports Dioxins Sample

Required Reports Dioxins Installation

Part I: Installation instructions:

Link to the package installation file Dioxin_Environment.msi

Download the installation file and install it on your computer.

(Prerequisite: MH Quant 12.0 or later need to be installed already)

After successful installation, you will see the following icon on the desktop

Location of installed files Quant DA method

Required Reports Dioxins Installations

Script for unknown isomers summation UnknownsSum.py

Report templates specially designed for Dioxin Environment

cipbodia	organize new	open		
> 👻 ↑ 📜 🕻 This PC 🔉 Data (D:) 🔉 Mass	Hunter > Report Templates > Quant > Dioxin-Enviro	nment 🗸 ల	Search Dioxin-Environment	
flavor data	Name	Date modified	Туре	Size
VogonBatch	Codes	1/31/2024 11:17 PM	File folder	
Vogon-ISTDConclssues	C Dioxin_Environ_Calibrator.report.xml	10/18/2023 1:43 PM	Microsoft Edge HTM	
Vogon-ISTDConclssues	C Dioxin_Environ_Calibrator_CSV.report.xml	10/18/2023 1:43 PM	Microsoft Edge HTM	
)neDrive - Agilent Technologies	Dioxin_Environ_DailyCheck.report.xml	10/18/2023 1:43 PM	Microsoft Edge HTM	
	Dioxin_Environ_DailyCheck_CSV.report.xml	10/18/2023 1:43 PM	Microsoft Edge HTM	
his PC	C Dioxin_Environ_RRF.report.xml	10/18/2023 1:43 PM	Microsoft Edge HTM	
3D Objects	C Dioxin_Environ_RRF_CSV.report.xml	10/18/2023 1:43 PM	Microsoft Edge HTM	
Desktop	Oioxin_Environ_Sample.report.xml	5/25/2023 11:39 AM	Microsoft Edge HTM	
Documents	Dioxin_Environ_Sample_CSV.report.xml	10/16/2023 2:33 PM	Microsoft Edge HTM	

Required Reports Dioxins Unknowns

Customized UI for the Dioxin Environment workflow

Customized default columns

Customized column headers

Customized button for quick access to the UnknownsSum.py script

	ile Home	View		Method	Tools	Help															
		FFR V			ate 🛩 Clear Results	Open R	eport Folder Query	Dele 🔨 🐔													
		빠 ㅅ	$\downarrow \downarrow$	Calibrati	en.v ⊞ĭ		Viewer														
Ne	v Open Save	Add Delete	Analyz	Integrat	Unknown	Generate Report Edit Re	nort Method	Copy O First													
	Dateh	Complex Jumpies				naport torre		54144-1													
Batch	Table	ampies [Апатуле	Ru	port	Earting													
Date										-											* * ×
Sample	CS1_1613_13CS1 1021	• • Sample I	ype: <all></all>		Compound:	13C-2378-TCDF	• • IS	D: 13C-1234-1CDD		888 188 G											
					Sample						13C-2378-TCDF Me	thod					13	C-2378-T	CDF Results		Qualifier 13
(D) 14	Name	Data File	Type	Level	Matrix Type Acq. Date-Ti	ime Dil. Sam	ple Amt. (g or L) Fin	al Vol Conc Unit	Exp. Conc. Avg	. RF RSD A	Avg. RF User Annoti	ation Multiplier Sur	rogate Conc.	RT	Resp. MI	Calc. Conc.	Final Conc.	Accuracy	Surrogate % Recovery	Adj. Total Resp. Adj. Total	Conc. Ratio MI IS
0	Window Defining Mix	TQ2_231005A03.D	Sample		10/4/2023 10:59	PM 1.0	1.5	10		6.404350	2.7652	6.7	100.0000	24.872	667 🗆	0.0388	0.2589		0.5	3	75.3
•	solvent	TQ2_231005A04.D	Sample		10/4/2023 11:48	PM 1.0				6.404350	2.7652	1.0	100.0000	24.878	712	69.3227	69.3227		69.3	3	90.4
•	solvent	TQ2_231005A05.D	Sample	1.0	10/5/2023 12:36	AM 1.0			100.0000	6.404350	2.7652	1.0	100.0000	25.051	177	67.8107	67.8107	100.0	67.8	5	9.5
	CSL_1613_13CSL 1021	TQ2_231005A06.D	Cal	LO	10/5/2023 1:25 /	1.0			100.0000	6.404350	2.7652	1.0	100.0000	24.860	1821699	100.2026	100.2026	100.2	100.2	2	93.1
	062 4643 43062 4024	TG2_231005A07.D	Cal	1.2	10/5/2023 2:14 /	1.0			100.0000	6.404350	2.7652	1.0	100.0000	24.860	2047018	109.8480	109.8480	109.8	109.8	3	93.7 []
	062 1613 13062 1021	TQ2_231005A08.D	Cal	1.2	10/5/2023 3:03 /	1.0			100.0000	6.404350	2.7652	1.0	100.0000	24.860	1747440	98.5392	98.5392	98.5	98.5		93.0
	084 1613 13084 1021	TQ2_231005A09.D	Cal	La	10/5/2023 3:52 /	1.0			100.0000	6.404350	2.7652	1.0	100.0000	24.634	1912690 []	90.9058	90,9038	90.9	90.5		93.0
	CS5 1613 13CS5 1021	TO2_231005A11.D	Cal	1.5	10/5/2023 5:30 4	AM 1.0			100.0000	6 404350	2.7652	1.0	100.0000	24.854	2167718	103 6258	103 6258	103.6	103.6	3	94.5
	solvent	TO2 231005A12 D	Sample	20	10/5/2023 6:19 /	AM 1.0			100.0000	6 404350	2 7652	1.0	100.0000	24.878	1755	142 5431	142 5431	100.0	142 5	5	93.5
	CS3WT 1021	TO2 231005A13 D	Sample		10/5/2023 7:08 /	AM 1.0				6 404350	2 7652	1.0	100.0000	24 854	1736558	113 0762	113 0762		113 1	1	94.6
	SPIKE	TQ2_231005A14 D	Sample		10/5/2023 8:00 /	AM 1.0				6.404350	2.7652	1.0	100.0000	24.837	1764565	79.3071	79.3071		79.3	3	94.0
	SPIKE:D1	TQ2_231005A15.D	Sample		10/5/2023 8:49 /	AM 1.0				6.404350	2.7652	1.0	100.0000	24.854	2026605	74,9000	74,9000		74.9	9	94.4
Com	ound Information											- + ×	Calibr	ration C	Curve						* *×
2 +	* A Z A V	< > 🗠 🛦 📖	1 念 🖲	12.1		≙ A N	LT GT BA CO I	RT INT					<u>₽</u> ++	• • %	×- < >	Type: Averag	e • Origin	n: Include	 Weight: None 	ISTD QC CC	
+ MRM (3	5.9 -> 252.0) TQ2_231005A07.0) Smooth				24.860 m	in						13C-2378	TCDF - 6 L	evels, 6 Levels U	Ised, 6 Points, 6	Points Used, 0 G	(Cs			
8						-							- <u>3.2</u>	R^2 = 0.97	7663325						*
1.8													ds 31	R = 0.9882 Type:Avera	24756 age of Response	Factors, Origin:Ir	clude, Weight N	ione			
1.6						/ \							2 2.0	Avg. RF R	SD = 6.404350						
						/							10 2.4-								•
1.4						/							æ 2.2-								
1.2						/							2-								
1													1.8-								
													1.6								
0.8													1.2-								
0.6													1.								
0.4						/							0.8-								
0.4													0.6								
0.2													0.4 -								
0													- 0.2								
													-0.2-								
	23.9 24	24.1 24.2	24.3	24.4	24.5 24.6 24.7	24.8	24.9 25	25.1 25.2	25.3	25.4	25.5 25.6	25.7 25.8	P Internal		0 0.1	0.2	0.3	0.4	0.5 0.6	0.7 0.8 0.9	i Delative Concentration
												Acquisition Time (m									runaryo concentration

Required Reports Dioxins Sample

Part II: Steps for analysis and report

Create a new batch, load the *Dioxin.m* and make necessary adjustment to the method.

Apply method to the batch and analyze.

Click the "Unknown Sum" button to run the script Save batch and generate reports

Required Reports Dioxins Sample

FAQ about script:

How does the Unknown Sum script work?

For any "total" compound (identified by the keyword "Total" in the compound name), the EIC usually looks like the following

In Quant UI, green represents primary peak and yellow represents alternative peaks.

Required Reports Dioxins Unknowns

For unknowns total, the color doesn't have any meaning, every peak are treated equally in the script. When the script is run after analyzing the whole batch, for each *total* compound, the script loops through all peaks, and checks the following criteria to determine if it's a qualified isomer:

1a) RT of the peak (check if it is overlapping with RT of any calibrated target compound, <0.004 min is the threshold by default)

1b) RT of the qualifier peak (check if it coelutes with the quantifier peak, <0.0333 min is the threshold by default)

1c) S/N of both quantifier peak and qualifier peak (>2.5 is the default threshold, S/N outlier limit set up in the Quant method will override

1d) Qualifier ratio (use Relative Response and Uncertainty in the Quant method as expected ratio and threshold)

Required Reports Dioxins Sample

If enabled (change the constant on the top of the script DPE_INTERFERENCE_REMOVAL = False to DPE_INTERFERENCE_REMOVAL = True)

The script will also check if the isomer peak is interfered by a DPE compound, the DPE peak is considered real if its S/N>2.5, Area > 10% of the native peak area, and if the RT difference between the DPE peak and the isomer peak is <0.0333 min, the isomer peak is determined as interfered by a DPE compound and hence non-qualified.

1f) If enabled (change constant on the top of the script EXCLUDE_LOD/EXCLUDE_LOQ/EXCLUDE_MDL to *True*) and have corresponding LOD/LOQ/MDL outlier limit set up in the Quant method, the script will also check if the calculated concentration of each isomer peak is below LOD/LOQ/MDL, and if yes, the isomer peak is considered as non-qualified).

Required Reports Dioxins Changing Variables

How to change the peak qualification criteria values?

The constants described above are listed on the top of the UnknownsSum.py (see below for the screenshot),

User may use Notepad to open it and adjust the values.

Some criteria are controlled by the corresponding outlier limit as described in the comments of the code.

```
UnknownsSum.py 🕘 🗡
                    CompoundCalibration.cs
                                             CalibrationSetup.cs
                                                                 Quantifier.cs
                                                                                 CalibrationCurveFit.cs
                                                                                                        DailyCheck_CSV.py
      clr.AddReference("QuantUIScriptIF")
      clr.AddReference("QuantUIScriptIFImpls")
      clr.AddReference("AppCommandContext")
      clr.AddReference("System.Windows.Forms")
     From System.Collections.Generic import List
      from System import Array
      import Agilent
      import _commands
      from Agilent.MassSpectrometry.DataAnalysis.Quantitative.UIScriptIF import *
      SAME_CPD_RT_DIFF_THRESHOLD = 0.004 #min
      DPE_INTERFERENCE_RT_DIFF_THRESHOLD = 0.0333 #min
      DPE_SN_THRESHOLD = 2.5
      DPE_AREA_THRESHOLD_RELATIVE_TO_NATIVE =0.1 #10%
      QUANT_QUAL_SN_THRESHOLD =2.5 #method specified limit will overide it if exist
      QUANT_QUAL_RT_DIFF_THRESHOLD = 0.0333 #min
      #QUAL_RATIO_THRESHOLD = 0.2 #use method specified limit instead for reporting purpose
      EXCLUDE_LOD = False #change to True if unknown calculated concentration < LOD needs to be excluded in total
      EXCLUDE_LOQ = False #change to True if unknown calculated concentration < LOQ needs to be excluded in total
      EXCLUDE_MDL = False #change to True if unknown calculated concentration < MDL needs to be excluded in total
      DPE_INTERFERENCE_REMOVAL = False #switch to turn on/off automatic DPE interference removal
     pdef SetState(ToolState, UIState):
           ToolState.Enabled = True
```


Required Reports Dioxins EMPC Report

					Diox	kin Qua	ntitativ	ve Ana	lysis S	ample	Report						
Data	Path		E:\Mas	ssHunter\Da	ta\QQQ\Dio	xinCanada	Dioxin dat	a-BV Oct	2023\TQ2	2 231005	B 1613\TQ2 23	1005B10.D					
Sam	ple Name		SAMPL	LE				Acq. Me	thod	_	TODE N	1RM					
Aca.	Time		10/6/2	2023 3:18:47	7 AM			Aca. Op	erator		• -						
Oua	nt Method		Li bate	h hin				Sample	Type		Sample						
Cam	nle Amt (a or L)		Libate					Einal Vo			Sample						
Anal			1/21/2	0024 12:14:1				Analyst	Name			T\licup					
Alla			1/31/2	2024 12.14.1	19 FM			Analysu			AGILEN						
No	Compound	RT[min]	QRT[min]	Area	Q-Area	Sum Area	Resp Ratio	OK(Ratio)	AV-RRF	Surr Conc	Calc Conc[ng/mL]	Final Conc [ng/ml]	EMPC [ng/ml]	%Rec	Fail	Status	Mod
1	23/8-TCDD	26.121	26.096	166	312	4//	1.8/8	Fall(15)	0.2395	-	0.204	0.204	0.139		QR	Fall	<u> </u>
2	12378-PeCDD	33,966	33.967	223	198	421	0.886	OK(15)	1.1135	-	0.056	0.056				Pass	<u> </u>
3	123478-HXCDD	37.889	37.888	187	120	515	0.672	UK(15) Epil(1E)	0.9767	-	0.060	0.060	0.152		08	Pass	<u> </u>
-	123789-HyCDD	38 280	39 204	493	233	805	0.500	OK(15)	1 0802	-	0.1/4	0.1/4	0.152		QK	Pacc	<u> </u>
6	1234678-HpCDD	41 200	41 100	6091	4896	10986	0.032	OK(15)	1.0347	-	2 768	2 768				Pass	<u> </u>
7	0000	44 739	44 738	29974	29412	59386	0.004	OK(15)	9.0856	-	1 793	1 793				Pass	<u> </u>
8	2378-TCDF	24 909	24 920	1872	1704	3577	0.910	OK(15)	0 2414	-	0.900	0.900				Pass	<u> </u>
9	12378-PeCDE	32,311	32,301	500	350	851	0.700	OK(15)	1,1168	-	0.079	0.079				Pass	<u> </u>
10	23478-PeCDF	33,432	33.438	573	446	1019	0.778	OK(15)	1.2270	-	0.078	0.078				Pass	
11	234678-HxCDF	38,572	38.371	192	35	227	0.185	Fail(15)	0.9809	-	0.033	0.033	0.013		OR	Fail	
12	123478-HxCDF	37.034	37.033	759	489	1247	0.644	OK(15)	1.0379	-	0.155	0.155				Pass	
13	123678-HxCDF	37.160	37.153	429	278	707	0.648	OK(15)	1.0377	-	0.085	0.085				Pass	
14	123789-HxCDF	37.738	37.742	520	302	822	0.582	OK(15)	1.0499	-	0.095	0.095				Pass	
15	1234678-HpCDF	40.151	40.150	3560	2868	6427	0.806	OK(15)	0.9892	-	1.004	1.004				Pass	
16	1234789-HpCDF	41.632	41.642	142	129	271	0.908	OK(15)	0.9873	-	0.052	0.052				Pass	
17	OCDF	44.892	44.891	2531	2367	4899	0.935	OK(15)	11.8713	-	0.113	0.113				Pass	
18	13C-2378-TCDD	26.083	26.083	503611	474661	978272	0.943	OK(15)	1.7377	100.0	80.747	80.747		80.7		Pass	
19	13C-12378-PeCDD	33.943	33.943	376400	299663	676063	0.796	OK(15)	0.9303	100.0	104.233	104.233		104.2		Pass	
20	13C-123478-HxCDD	37.882	37.882	328208	205688	533897	0.627	OK(15)	1.0000	100.0	99.991	99.991		100.0		Pass	
21	13C-123678-HxCDD	37.968	37.973	319392	207252	526644	0.649	OK(15)	0.9999	100.0	98.639	98.639		98.6		Pass	
22	13C-1234678-HpCDD	41.193	41.193	213412	170213	383625	0.798	OK(15)	1.0661	100.0	67.392	67.392		67.4		Pass	
23	13C-OCDD	44.732	44.731	372109	356958	729068	0.959	OK(15)	1.1346	200.0	120.342	120.342		60.2		Pass	<u> </u>
24	13C-2378-TCDF	24.866	24.866	851229	795088	1646317	0.934	OK(15)	2.7649	100.0	85.402	85.402		85.4		Pass	<u> </u>
25	13C-12378-PeCDF	32.288	32.288	533014	428303	961317	0.804	OK(15)	1.6777	100.0	82.186	82.186		82.2		Pass	<u> </u>
26	13C-23478-PeCDF	33.414	33.414	587843	470825	1058669	0.801	OK(15)	1.6449	100.0	92.309	92.309		92.3		Pass	⊢
27	13C-123478-HxCDF	37.033	37.033	473821	300378	774199	0.634	OK(15)	1.6612	100.0	87.283	87.283		87.3		Pass	<u> </u>
28	13C-123678-HxCDF	37.147	37.147	497144	302404	799549	0.608	OK(15)	1.6615	100.0	90.129	90.129		90.1		Pass	<u> </u>
29	13C-234678-HxCDF	38.485	38.485	427458	270012	697470	0.632	OK(15)	1.5807	100.0	82.638	82.638		82.6		Pass	<u> </u>
30	13C-123789-HxCDF	37.731	37.730	509055	316522	825577	0.622	OK(15)	1.5855	100.0	97.524	97.524		97.5		Pass	
31	13C-1234678-HpCDF	40.144	40.144	361683	285501	647184	0.789	OK(15)	1.7422	100.0	69.572	69.572		69.6		Pass	<u> </u>
32	13C-1234789-HpCDF	41.625	41.624	293084	231614	524698	0.790	OK(15)	1.6385	100.0	59.976	59.976		60.0		Pass	<u> </u>
41	13C-1234-1CDD	25./56	25./62	360048	33/163	69/212	0.936	OK(15)	-	-	-	-			RT	Fail	
42	13C-123/89-HXCDD	37.882	57.882	328220	205/21	533941	0.627	UK(15)	2 0155	-	-	-			RT	Fail Deco	<u> </u>
1 43	CI3/-23/0-1CDD	20.107	0	131041	01	151041	1		2.0122	-	9.308	9.308		1		rass	<i>i</i>

Level 4 Reporting

While not Covered During this presentation I have attached the reports needed for Level Four reporting using Masshunter Quant software.

Questions? Thank you!

Masshunter Quant Software Level 4 Reporting

D. R. Walker Agilent Technologies Application Scientist July 8 2024 **Example of Level 4 Reporting**

Based on ISO/IEC 17025:2017(E) NELAC Institute (TNI) Standards Volume 1, Sept 2009 DOD Quality Systems Manual version 5.4 2001

Department of Defense (DoD) Department of Energy (DOE) Consolidated Quality Systems Manual (QSM) for Environmental Laboratories

Example of Level 4 Reporting Required Reports

- 1. Instrument Tunning and Calibration
- 2. DFTPP or BFB Tuning
- 3. Sequence Run Log
- 4. Initial Calibration
- 5. Second Source Calibration
- 6. Continuing Calibration
- 7. Internal Standards Area and Retention Time Surrogate Recovery
- 8. Laboratory Controls and Laboratory Duplicate Control Sample
- 9. Matrix Spike and Matrix Spike Duplicate
- 10. System Blank
- 11. Method Blank
- 12. Manual Integrations
- 13. Raw Data
- 14. Dilutions

Triple Quadrupole GC/MS Autotune Report

Agilent Technologies

2/1/2021 12:49:18 PM

Instrument Name Tune Date & Time Tune File	GC-QQQ / US1001500 2/1/2021 12:49:01 PM D:\MassHunter\GCMS)4 1 \1\7000\atunes.	MS Model Source eiex.tune.xml	7000 EI wit	h Extractor	
Instrument Actuals		Vacuu	m			
Source Temp.	300 °C	Rough 1	Vac	1.51E+	2 mTorr	
MS1 Ouad Temp.	150 °C	High Va	ic .	7.52E-	5 Torr	
MS2 Ouad Temp.	150 °C	Turbo 1	Speed	100	0 %	
Filament Current	35.0 µA	Turbo 1	Power	46.	o w	
Ion Source						
Type/mode	EI+	Repelle	r	10.	1 V	
Source Temp.	300 °C	Ion Boo	fy	12.	4 V	
Emission	35.0 µA	Ion Foc	us	-75	0 V	
Energy	70 eV	Entranc	e Lens	Dynam	ic V	
Filament	2					
Quadrupoles		Q1			Q2	
DC		7.2	v		-3.8	v
Post/Pre Filter		7.2	v		-13.8	v
Temperature		150	°C		150	°C
Polarity		Negative			Positive	
DIP Mass	100.00	1000.00	m/z	100.00	1000.00	m/z
IP Value	4.8	64.9	%	4.5	63.6	96
Resolution	Unit	Wide	Widest	Unit	Wide	Widest
lass Gain	-6.43	-6.46	-6.82	31.01	30.66	30.47
lass Offset	Dynamic	-1.957	-1.494	Dynamic	-1.922	-1.467
Vidth Gain	30.0	30.0	30.0	-6.8	-6.8	-6.8
/idth Offset	Dynamic	-0.401	-0.921	Dynamic	-0.327	-0.847
Collision Cell		Detec	tor			
Cell Entrance	8.2 V	Detecto	r Type	Triple Ax	is	
lex DC	7.2 V	Iris		-35	0 V	
lex RF	400 V	HED		-10.	O KV	
fex Accel	-5.0 V	EMV (G	ain=1.0E+005)	150	2 V	
Jell Exit	1.2 V	Gain Pa	rameter a	11.8822	5	
Lonision Energy	u ev	Gain Pa Max Ga	in Factor	-75.39/1 372	8	
Fast Scan						
East Score Officet	40 V					
Mass Gain	-4.0 V	02 M-2	Color	20.2	c	
11 Marc Officet	1 767	Q2 Mas	s Offeat	-1.75	2	
11 Width Gain	30.0	Q2 Mas 02 Wid	th Gain	-1./3	3	
er winder Galin	30.0	22 WIG		-6.	-	

Triple Quadrupole GC/MS Autotune Report

Agilent Technologies

Page 2 of 3

Instrument Name	GC	-QQQ / US1001500)4	MS Model	7000	
Tune Date & Time	2/1	l/2021 12:49:01 PM	4	Source	EI with Extractor	
Tune File	D:	MassHunter\GCMS	\1\7000\atunes.ei	iex.tune.xml		
Dynamic Ramp Tab	les					
MS1 Mass Axis Offset						
m/z	69.00	219.00	264.00	414.00	502.00	
Setting	-2.098	-2.097	-2.103	-2.088	-2.055	
MS1 Width Offset						
m/z	69.00	219.00	264.00	414.00	502.00	
Setting	-0.203	-0.197	-0.195	-0.195	-0.204	
MS2 Mass Axis Offset						
m/z	69.00	219.00	264.00	414.00	502.00	
Setting	-2.152	-2.066	-2.106	-2.150	-2.122	
MS2 Width Offset						
m/z	69.00	219.00	264.00	414.00	502.00	
Setting	-0.125	-0.123	-0.124	-0.122	-0.125	
Entrance Lens						
m/z	69.00	219.00	264.00	414.00	502.00	
Setting	-8.600	-11.000	-11.000	-11.000	-11.000	
Scan Speed Correct	tion Factor					
		Q1		Q2		
	a0	-0.001039	0.0044	187		
	a1	1.464329	0.5083	332		
	a2	-0.122525	-0.1525	576		
	ьо	-0.062982	-0.0625	575		
	b1	6.888017	1.7018	359		
	b2	1.034112	0.8486	i92		
Diagnostic Informa	tion					

Triple Quadrupole GC/MS Autotune Report

Air/Water Check: H20 2.71% (<=20.00%), O2 0.71% (<=2.50%), N2 2.64% (<=10.00%) Detector Dark Current Check: Baseline 42, Threshold 41, HED On Pulse Count 12, HED Off Pulse Count 16

Instrument Name	GC-QQQ / US10015004		MS Mod	el	7000	
Tune Date & Time	2/1/2021 1:56:49 PM		Source		EI with Ext	tractor
Tune File	D:\MassHunter\GCMS\1\7	7000\atunes	s.eiex.tune.xm	I		
Instrument Actuals						
Ionization mode	EI+	Rough	Vacuum		1.51E+2	mTorr
Source Temperature	230 °C	High V	/acuum		7.47E-5	Torr
Quad. 1 Temperature	150 °C	Turbo	Speed		100.0	96
Ouad, 2 Temperature	150 °C	Turbo	Power		45.2	w
Emission Current	35.0 µA					
MS1 Checktune Results	:		Value	Limit		Result
Low mass assignment (target	69.00, actual 69.00)		0.00	<= 0.20		OK
Mid mass assignment (target 2	264.00, actual 264.00)		0.00	<= 0.20		ок
High mass assignment (target	502.00, actual 502.00)		0.00	<= 0.20		OK
Low mass isotope position (ta	rget 70.00, actual 70.10)		0.10	<= 0.20		OK
Mid mass isotope position (tar	get 265.00, actual 265.00)		0.00	<= 0.20		OK
High mass isotope position (ta	inget 503.00, actual 503.00)		0.00	<= 0.20		OK
Low mass isotope ratio			1.07%	>= 0.5% an	d <= 1.6%	OK
Mid mass isotope ratio			5.71%	>= 4.2% an	d <= 6.9%	OK
High mass isotope ratio			9.63%	>= 7.9% an	d <= 12.3%	OK
Ratio of mid mass to low mass	5		19.44%	>= 5.0%		OK
Ratio of high mass to low mas	5		3.67%	>= 0.8%		OK
Low mass precursor ratio			0.54%	<= 3.00%		OK
Mid mass precursor ratio			0.08%	<= 6.00%		OK
High mass precursor ratio			0.08%	<= 12.00%		ок
MS2 Checktune Results	:					
Low mass assignment (target	69.00, actual 69.00)		0.00	<= 0.20		OK
Mid mass assignment (target)	264.00, actual 264.00)		0.00	<= 0.20		OK
High mass assignment (target	502.00, actual 502.05)		0.05	<= 0.20		OK
Low mass isotope position (ta	rget 70.00, actual 70.00)		0.00	<= 0.20		OK
Mid mass isotope position (tar	get 265.00, actual 265.05)		0.05	<= 0.20		OK
High mass isotope position (ta	rget 503.00, actual 503.02)		0.02	<= 0.20		OK
Low mass isotope ratio			1.09%	>= 0.5% an	d <= 1.6%	OK
Mid mass isotope ratio			5.55%	>= 4.2% an	d <= 6.9%	OK
High mass isotope ratio			10.94%	>= 7.9% an	d <= 12.3%	OK
Low mass precursor ratio			0.00%	<= 3.00%		OK
Mid mass precursor ratio			0.04%	<= 6.00%		OK
High mass precursor ratio			0.26%	<= 12.00%		OK
Detector						
EMV			1492	<= 2900		OK
Maximum gain factor			3997	>= 100		OK
Air and Water Check	Ab	oundance	Relativ Abunda	e Lir ance	mit	Result
PFTBA (69.00)	70	6438				
Water	54	05	0.76%	<:	= 20.00%	ок
Oxygen	45	03	0.64%	<	= 2.50%	ок
Nitrogen	16	784	2.37%	<:	= 10.00%	OK

Triple Quadrupole GC/MS System Verification - Tune

* Nitrogen values are calculated from oxygen abundance

Analytical Sequence

Injection Log - C:\Users\dalwalke\OneDrive - Agilent Technologies\San jose
Water\10_10_2017_IDC\IDC MDL ICAL.batch.bin

SampleName	MiscInfo	Vial Mult.	Injection Time
LFB001.D LFB 5.0 ppb	GF=5.0 150:1 Split	25mL -1 1	10/3/2017 4:55:25 PM
BFB2.D BFB2	GF=5.0 150:1 Splie	25mL -1 1	10/10/2017 10:03:02 AM
ICALG0025.D 0.25 ppb	GF=5.0 150:1 Splie	25mL -1 1	10/10/2017 10:52:03 AM
ICALG005.D 0.50 ppb	GF=5.0 150:1 Splie	25mL -1 1	10/10/2017 11:23:48 AM
ICALGO10.D 1.0 ppb	GF=5.0 150:1 Splie	25mL -1 1	10/10/2017 11:55:33 AM
ICALG050.D 5.0 ppb	GF=5.0 150:1 Splie	25mL -1 1	10/10/2017 12:27:17 PM
ICALG100.D 10.0 ppb	GF=5.0 150:1 Split	25mL -1 1	10/10/2017 12:59:03 PM
ICALG250.D 25.0 ppb	GF=5.0 150:1 Split	25mL -1 1	10/10/2017 1:30:48 PM
ICALG500.D 50.0 ppb	GF=5.0 150:1 Split	25mL -1 1	10/10/2017 2:02:36 PM
VBLK01.D Blank	GF=5.0 150:1 Split	25mL -1 1	10/10/2017 2:33:46 PM
MDL1_10_10_17.D MDL 0.5ppb	GF=5.0 150:1 Split	25mL -1 1	10/10/2017 3:05:28 PM
MDL2_10_10_17.D MDL 0.5ppb	GF=5.0 150:1 Split	25mL -1 1	10/10/2017 3:37:11 PM
MDL3_10_10_17.D MDL 0.5ppb	GF=5.0 150:1 Split	25mL -1 1	10/10/2017 4:08:56 PM
IDC001.D IDC 5.0ppb	GF=5.0 150:1 Split	25mL -1 1	10/10/2017 4:40:42 PM
IDC002.D IDC 5.0ppb	GF=5.0 150:1 Split	25mL -1 1	10/10/2017 5:12:28 PM
IDC003.D IDC 5.0ppb	GF=5.0 150:1 Split	25mL -1 1	10/10/2017 5:44:14 PM
IDC004.D IDC 5.0ppb	GF=5.0 150:1 Split	25mL -1 1	10/10/2017 6:15:58 PM
IDC005.D IDC 5.0ppb	GF=5.0 150:1 Split	25mL -1 1	10/10/2017 6:47:41 PM
MDL4_10_11_17.D MDL 0.5ppb	GF=5.0 150:1 Split	25mL -1 1	10/11/2017 2:51:31 PM
MDL5_10_11_17.D MDL 0.5ppb	GF=5.0 150:1 Split	2.5mL -1 1	10/11/2017 3:23:16 PM
MDL6_10_12_17.D MDL 0.5ppb	GF=5.0 150:1 Split	25mL -1 1	10/12/2017 2:52:21 PM
MDL7_10_12_17.D MDL 0.5ppb	GF=5.0 150:1 Split	25mL -1 1	10/12/2017 3:24:07 PM

Tuning Criteria

Initial Calibration Summary

		Initial	Calibrati	on Repoi	t - Agilei	nt VO	C System			**	gilent Trusted Armount
Method Path					-		r				
Ratch Name	C:\Users\dahualke\OpeDri	ve - Agilent Ter	hnologies/San	iose Water\10	10 2017 100%	JuantRec		atch bin			
Last Calib Undate	10/18/2023 6:58:54 AM	ve Aglienciec	nnoiogres (Jan j	ose water (10_	10_2017_1000	Zuanuves	uis (ibe hibe ione.b	accrition			
Last callo opdate	10/10/2023 0.30.31741										
Level Name C	alibration Files						Acq. Date-Time		Level Last	: Update Time	
1 0	:\Users\dalwalke\OneDrive -	Agilent Technol	ogies\San jose	Water\10_10_2	2017_IDC\ICAL	G0025.D	10/10/2017 10:52:0	3 AM	10/18/202	23 6:58:54 AM	
2 0	:\Users\dalwalke\OneDrive -	Agilent Technol	ogies\San jose	Water\10_10_2	2017_IDC\ICAL	G005.D	10/10/2017 11:23:4	IS AM	10/18/202	23 6:58:54 AM	
3 0	:\Users\dalwalke\OneDrive -	Agilent Technol	ogies\San jose	Water\10_10_2	2017_IDC\ICAL	G010.D	10/10/2017 11:55:3	B3 AM	10/18/20	23 6:58:54 AM	
4 0	:\Users\dalwalke\OneDrive -	Agilent Technol	ogies\San jose	Water\10_10_2	2017_IDC\ICAL	G050.D	10/10/2017 12:27:1	7 PM	10/18/202	23 6:58:54 AM	
5 0	:\Users\dalwalke\OneDrive -	Agilent Technol	ogies\San jose	Water\10_10_2	2017_IDC\ICAL	G100.D	10/10/2017 12:59:0	3 PM	10/18/202	23 6:58:54 AM	
6 0	:\Users\dalwalke\OneDrive -	Agilent Technol	ogies\San jose	Water\10_10_2	2017_IDC\ICAL	G250.D	10/10/2017 1:30:48	3 PM	10/18/20	23 6:58:54 AM	
7 0	:\Users\dalwalke\OneDrive -	Agilent Technol	ogies\San jose	Water\10_10_2	017_IDC\ICAL	G500.D	10/10/2017 2:02:36	5 PM	10/18/202	23 6:58:54 AM	
Compound		Curve Fit	1	2	3	4	5	6	7	Avg RF	%RSD
I Fluorobenzene							ISTD		-		
M Dichlorodifluoromethane		Avg RF	0.1565	0.2171	0.2110	0.2032	0.2119	0.2051	0.1996	0.2006	10.127
M Vinyl Chloride		Avg RF	0.2368	0.2844	0.2651	0.2610	0.2581	0.2531	0.2477	0.2580	5.775
M Trichlorofluoromethane		Avg RF	0.3314	0.4323	0.3883	0.3730	0.3804	0.3692	0.3623	0.3767	8.084
M 1,1-Dichloroethene		Avg RF	0.3054	0.3304	0.3243	0.3236	0.3249	0.3209	0.3157	0.3207	2.528
M FREON 113		Avg RF	0.2414	0.2532	0.2430	0.2384	0.2386	0.2356	0.2293	0.2399	3.066
M Methylene Chloride		Avg RF	0.2781	0.3163	0.3055	0.2883	0.2768	0.2772	0.2596	0.2860	6.737
M trans-1,2-Dichloroethene		Avg RF	0.2864	0.3549	0.3310	0.3190	0.3122	0.3170	0.3076	0.3183	6.627
M Methyl tert-butyl ether [MT	BE]	Avg RF	0.4461	0.4149	0.4200	0.4101	0.4053	0.4205	0.3955	0.4161	3.819
M 1,1-Dichloroethane		Avg RF	0.4482	0.4811	0.4617	0.4514	0.4200	0.4271	0.4140	0.4434	5.467
M DIPE		Avg RF	0.6101	0.6594	0.6680	0.6860	0.6562	0.6788	0.6490	0.6582	3.772
M ETBE		Avg RF	0.5603	0.5335	0.5101	0.5182	0.5232	0.5510	0.5312	0.5325	3.353
M 2,2-Dichloropropane		Avg RF	0.3813	0.3423	0.3197	0.3267	0.3230	0.3258	0.3283	0.3353	6.414
M cis-1,2-Dichloroethene		Avg RF	0.4162	0.3766	0.3875	0.3725	0.3745	0.3839	0.3639	0.3822	4.419
M Bromochloromethane		Avg RF	0.1453	0.1469	0.1408	0.1318	0.1289	0.1335	0.1290	0.1366	5.581
M Chloroform		Avg RF	0.4311	0.4464	0.4164	0.4205	0.4251	0.4270	0.4113	0.4254	2.677
M 1,1,1-Trichloroethane		Avg RF	0.3563	0.3923	0.3598	0.3668	0.3691	0.3855	0.3822	0.3732	3.665
M Carbon Tetrachloride		Avg RF	0.2879	0.3168	0.3059	0.3047	0.3248	0.3368	0.3395	0.3166	5.881
M 1,1-Dichloro-1-propene		Avg RF	0.2771	0.3261	0.3263	0.3187	0.3157	0.3226	0.3241	0.3158	5.535
M Benzene		Avg RF	0.9061	1.0024	0.9739	0.9580	0.9518	0.9679	0.9422	0.9575	3.103
M 1,2-Dichloroethane		Avg RF	0.2923	0.3205	0.2671	0.2577	0.2514	0.2551	0.2411	0.2693	10.285
M TAME		Avg RF	0.3522	0.4219	0.4176	0.4232	0.4302	0.4581	0.4411	0.4206	7.898
M Trichloroethene		Avg RF	0.2873	0.3221	0.2693	0.2758	0.2694	0.2766	0.2707	0.2816	6.716
M 1,2-Dichloropropane		Avg RF	0.2333	0.2705	0.2266	0.2298	0.2254	0.2300	0.2233	0.2341	7.000
M Dibromomethane		Avg RF	0.0984	0.1388	0.1214	0.1190	0.1199	0.1227	0.1186	0.1198	9.815
M Bromodichloromethane		Avg RF	0.2955	0.2641	0.2457	0.2542	0.2617	0.2777	0.2779	0.2681	6.255
M cis-1,3-Dichloropropene		Avg RF	0.2744	0.3090	0.2618	0.2828	0.2886	0.3122	0.3137	0.2918	6.968
M 4-methyl-2-pentanone [MI	BK]	Avg RF	0.1606	0.1915	0.1622	0.1745	0.1804	0.1942	0.1856	0.1784	7.490
M Toluene		Avg RF	1.0328	1.0882	1.0185	1.0572	1.0657	1.1064	1.0724	1.0630	2.858
M trans-1,3-Dichloropropene		Avg RF	0.2018	0.2296	0.1965	0.2193	0.2222	0.2454	0.2465	0.2230	8.715

Page 1 of 2

Generated at 7:13 AM on 10/18/2023

Initial Calibration Detailed

Second Source or Continuing Calibration

			Cont	tinuing (Calibratio	on Re	eport			Agilent Transformers
Batch Name	C:\Users\dalwalke ICAL.batch.bin	\One[Drive - Ag	gilent Techn	ologies\San j	jose Wa	ter\10_10	_2017_IDC\((uantResults)	IDC MDL
Method File Daily CC	D:\San jose Water	\10_1	10_2017_	IDCLFB001	.D					
Level name	Injection Time		Calibrat	ion Files						
1	10/10/2017 10:52:0	з ам	C:\User Water\1	s\dalwalke\0	DneDrive - A	gilent T	echnologie	s\San jose		
2	10/10/2017 11:23:4	IS AM	C:\Usen	s\dalwalke\(DneDrive - A	gilent T	echnologie	s\San jose		
3	10/10/2017 11:55:3	зам	C:\Usen Water\1	s\dalwalke\(0 10 2017	Direction - An IDC\ICALGO	gilent T	echnologie	s\San jose		
4	10/10/2017 12:27:1	7 PM	C:\Usen Water\1	s\dalwalke\0 0 10 2017	DneDrive - A	gilent T	echnologie	s\San jose		
5	10/10/2017 12:59:0	3 PM	C:\Usen Water\1	s\dalwalke\0 0 10 2017	DneDrive - An IDC\ICALG1	gilent T	echnologie	s\San jose		
6	10/10/2017 1:30:48	PM	C:\Usen Water\1	s\dalwalke\@ .0_10_2017	DneDrive - A IDC\ICALG2	gilent T 50.D	echnologie	s\San jose		
7	10/10/2017 2:02:36	PM	C:\Usen Water\1	s\dalwalke\@	DneDrive - A IDC\ICALGS	gilent T	echnologie	s\San jose		
cc	10/3/2017 4:55:25	PM	C:\Usen Water\1	s\dalwalke\(0_10_2017	DneDrive - A IDC\LFB001	.D <	echnologie	s\San jose		
ISTD Compound:		Ava B	lesn	Mid Resp	CC Resp	Ar	P3%	BT	Diff	A/M
Fluorobenzene		1660	20	170639	168140	98	.54	6.380	0.000	M
Target Compound		Av	gRF/R2	CC RF	Exp. Co	onc C	alc. Conc	%Dev	Area%	Curve Fit
Fluorobenzene					ISTD					
Dichlorodifluorome	thane	ο.	2006	0.1301	5.00	3	.24	35.17 #	63.07	Avg RF
Vinyl Chloride		ο.	2580	0.2451	5.00	4	.75	4.99	92.54	Avg RF
Trichlorofluorometh	hane	0.	3767	0.3716	5.00	4	.93	1.35	98.17	Avg RF
1,1-Dichloroethene		ο.	3207	0.2896	5.00	4	.51	9.71	88.18	Avg RF
FREON 113		ο.	2399	0.2231	5.00	4	.65	7.02	92.18	Avg RF
Methylene Chloride	•	ο.	2860	0.2723	5.00	4	.76	4.78	93.07	Avg RF
trans-1,2-Dichloroe	thene	ο.	3183	0.2992	5.00	4	.70	6.00	92.42	Avg RF
Methyl tert-butyl et	ther [MTBE]	0.	4161	0.4165	5.00	5	.01	-0.11	100.07	Avg RF
1,1-Dichloroethane		0.	4434	0.4377	5.00	4	.94	1.28	95.54	Avg RF
DIPE		0.	6582	0.6662	5.00	5	.06	-1.22	95.70	Avg RF
ETBE		0.	5325	0.5407	5.00	5	.08	-1.54	102.82	Avg RF
2,2-Dichloropropan	e	ο.	3353	0.2542	5.00	3	.79	24.18	76.67	Avg RF
cis-1,2-Dichloroeth	ene	ο.	3822	0.3623	5.00	4	.74	5.19	95.84	Avg RF
Bromochlorometha	ne	ο.	1366	0.1312	5.00	4	.80	3.98	98.05	Avg RF
Chloroform		0.	4254	0.4513	5.00	5	.30	-6.08	105.74	Avg RF
1.1.1-Trichloroetha	ne	ο.	3732	0.3578	5.00	4	.79	4.11	96.13	Avg RF
Carbon Tetrachlorid	de	ο.	3166	0.2998	5.00	4	.73	5.32	96.93	Avg RF
1.1-Dichloro-1-prop	ene	0.	3158	0.3003	5.00	4	.75	4.92	92.84	Avg RE
Benzene		0.	9575	0.9572	5.00	5	.00	0.03	98.46	Avg RF
1.2-Dichloroethane		0.	2693	0.2716	5.00	5	.04	-0.86	103.86	Avg RE
TAME		0.	4206	0.4376	5.00	5	.20	-4.05	101.90	Avg RF
Trichloroethene		0.	2816	0.2844	5.00	5	.05	-0.99	101.59	Avg RE
1.2-Dichloropropan	8	0	2341	0.2444	5.00	5	.22	-4.41	104.81	Avg RE
Dibromomethane		0.	1198	0.1177	5.00	4	.91	1.77	97.46	Avg RF
Bromodichloromath	ane	0	2681	0.2503	5.00	4	67	6.65	97.02	Ava RE
cis-1.3-Dichloropro	pene	0	2918	0.2733	5.00	4	-68	6.36	95.20	Ava RE
4-methyl-2-pentan	0	1784	0.1823	5.00		11	-2.20	102.97	Ava RE	
Toluene	and frittend		0630	1.0960	5.00		16	-3.10	102.16	Ava RE
trans-1.3-Dichloron		2230	0.1973	5.00	- 4	42	11.52	88.68	Ava RE	
1 1 2-Trichloreetha	0.	1559	0.1575	5.00		89	2 21	99.86	Ava RE	
Tetrachloroethene	0.3185 0.3172 5.00 4.98 0.40 100.22 Ava RF				Ava RE					

Generated at 7:13 AM on 10/18/2023

Internal Standard and Surrogate Report

	ISTI	D and Surro	Agilent Trusted Acewern			
Batch Name	C:\Users\dalwalke\One ICAL.batch.bin	Drive - Agilent Teo	chnologies\San j	ose Water\10_10_20)17_IDC\QuantResult	s\IDC MDL
Data File	D:\San jose Water\10_1	0_2017_IDC\LFB	001.D			
Sample Name	LFB 5.0 ppb					
Level name		Calibration Files				
CC	10/3/2017 4:55:25 PM	C:\Users\dalwalk Water\10_10_20	<pre>ke\OneDrive - Ag 017_IDC\LFB001</pre>	jilent Technologies\§ .D <======	San jose	
1	10/10/2017 10:52:03 AM	C:\Users\dalwalk Water\10_10_20	<pre>(OneDrive - Ago) 17_IDC\ICALG0</pre>	ilent Technologies\§ 025.D	San jose	
2	10/10/2017 11:23:48 AM	C:\Users\dalwalk Water\10_10_20	<pre>(e\OneDrive - Ag)17_IDC\ICALG0</pre>	ilent Technologies\§ 05.D	San jose	
3	10/10/2017 11:55:33 AM	C:\Users\dalwalk Water\10_10_20	<pre>(OneDrive - Ag)17_IDC\ICALG0</pre>	jilent Technologies\§ 10.D	San jose	
4	10/10/2017 12:27:17 PM	C:\Users\dalwalk Water\10_10_20	<pre>(OneDrive - Ag)17_IDC\ICALG0</pre>	ilent Technologies\§ 50.D	San jose	
5	10/10/2017 12:59:03 PM	C:\Users\dalwalk Water\10_10_20	<pre>(OneDrive - Ag)17_IDC\ICALG1</pre>	jilent Technologies\9 00.D	San jose	
6	10/10/2017 1:30:48 PM	C:\Users\dalwalk Water\10_10_20	<pre>(OneDrive - Ag)17_IDC\ICALG2</pre>	jilent Technologies\\$ 50.D	San jose	
7	10/10/2017 2:02:36 PM	C:\Users\dalwalk Water\10_10_20	<pre>(OneDrive - Ag)17_IDC\ICALG5</pre>	jilent Technologies\9 00.D	San jose	
4	10/10/2017 5:44:14 PM	C:\Users\dalwalk Water\10_10_20	ke\OneDrive - Ag	jilent Technologies\§ .D	San jose	
4	10/10/2017 6:15:58 PM	C:\Users\dalwalk Water\10_10_20	ke\OneDrive - Ac 017_IDC\IDC004	jilent Technologies\§ .D	San jose	
ISTD Recovery%						
Compound Name		Avg Resp	CC Resp	Resp in Sample	Area%_Avg	Area%_CC
Fluorobenzene		166020	168140	168140	101.28%	100.00%
Surrogate Recovery	/%					
Compound Name		Avg Resp	CC Resp	Resp in Sample	Area%_Avg	Area%_CC

58688

59293

58688

59293

104.95%

102.06%

100.00%

100.00%

55922

58093

Bromofluorobenzene

1,2-Dichlorobenzene-d4

LCS and LCSD Report

		L	CS Spike	Report		Agilent Turnel Aurona
Batch Name	C:\Users\dalwal ICAL.batch.bin	ke\OneDrive - Agilent	Technologies	\San jose Water\10	_10_2017_IDC\QuantR	esults\IDC MDL
Last Calib Update	10/18/2023 6:5	8:54 AM				
Method File						
Data Path	D:\San jose Wat	ter\10_10_2017_IDC				
Data File		Sample Name	Sa	ample Type	LCS Type	Acq. Date Time
IDC003.D		IDC 5.0ppb	Q	C	LCSA	10/10/2017 5:44:14 PM
IDC004.D		IDC 5.0ppb	Q	С	LCSB	10/10/2017 6:15:58 PM
Data File = IDC003.	D, Sample Name	= IDC 5.0ppb, Type	= LCSA			
Compound		Spike Amt	Spike Res	Spike Rec	QC LCS Min %R	ec QC LCS Max %Rec
Dichlorodifluoromet	hane	5.000	5.130	102.60	80	120
Vinyl Chloride		5.000	5.090	101.80	80	120
Trichlorofluorometh	ane	5.000	5.099	101.98	80	120
1,1-Dichloroethene		5.000	5.199	103.98	80	120
FREON 113		5.000	5.017	100.34	80	120
Methylene Chloride		5.000	5.123	102.47	80	120
trans-1,2-Dichloroet	hene	5.000	5.052	101.04	80	120
Methyl tert-butyl eth	her [MTBE]	5.000	5.441	108.82	80	120
1,1-Dichloroethane		5.000	5.167	103.33	80	120
DIPE		5.000	5.300	105.99	80	120
ETBE		5.000	5.210	104.19	80	120
2.2-Dichloropropane	•	5.000	4.175	83.50	80	120
cis-1.2-Dicbloroethe	ne	5.000	4.900	98.00	80	120
Bromochloromethan		5.000	4.974	99.49	80	120
Chloroform		5 000	5 150	103.00	80	120
1.1.1.Trichloreethar		5.000	5.053	101.07	80	120
Carbon Tetrachlorid	e	5,000	4 945	98.91	80	120
1 1-Dichlere-1-prep	-	5.000	5.022	100.51	80	120
Renzeno	ene	5.000	5.033	107.37	80	120
1.2.Disblessethans		5.000	5.000	101.00		120
TAME		5.000	5.000	101.33		120
Tricklesethere		5.000	4.943	104.72	80	120
Inchioroeutene		5.000	4.342	50.03	80	120
1,2-Dichioropropane	2	5.000	5.013	100.26	80	120
Dibromomethane		5.000	5.056	101.13	80	120
Bromodichlorometh	ane	5.000	4.921	98.42	80	120
cis-1,3-Dichloroprop	ene	5.000	4.832	96.64	80	120
4-methyl-2-pentano	ne [MIBK]	5.000	5.518	110.36	80	120
Toluene		5.000	5.053	101.05	80	120
trans-1,3-Dichloropi	opene	5.000	4.811	96.23	80	120
1,1,2-Trichloroethar	he	5.000	5.055	101.11	80	120
Tetrachloroethene		5.000	4.937	98.74	80	120
1,3-Dichloropropane	2	5.000	5.090	101.80	80	120
Dibromochlorometh	ane	5.000	4.750	95.00	80	120
Chlorobenzene		5.000	5.030	100.59	80	120
1,1,1,2-Tetrachloroe	ethane	5.000	5.213	104.26	80	120
Ethylbenzene		5.000	5.183	103.66	80	120
m+p-Xylene		10.000	10.724	107.24	80	120
o-Xylene		5.000	5.141	102.81	80	120
Styrene		5.000	5.321	106.41	80	120
Bromoform		5.000	4.672	93.44	80	120
Isopropylbenzene		5.000	5.231	104.62	80	120
Bromofluorobenzen	e	5.000	5.233	104.66	80	120
Bromobenzene		5.000	5.242	104.85	80	120
1,1,2,2-Tetrachloroe	ethane	5.000	5.445	108.90	80	120

Generated at 7:13 AM on 10/18/2023

Matrix Spike and Spike Duplicate

1	Aatrix Spik	e/Dupli	cate Rec	overy a	nd RPD :	Summar	y Repo	ort 🔆 🛪	Agilent			
Batch Name C:\U	Jsers\dalwalke\ L.batch.bin	OneDrive - A	gilent Techn	ologies\San	jose Water\1	0_10_2017_	IDC\Quar	ntResults\ID0	MDL			
Last Calib Update 10/	18/2023 6:58:5	4 AM										
Method File												
Data Path D:\!	5an jose Water	10_10_2017	_IDC									
Sample Name			Sample Typ	e	Matrix Sp	oike Group	Acq. Date Time					
IDC 5.0ppb			Matrix				10/1	10/2017 4:40	:42 PM			
IDC 5.0ppb			Matrix Dup				10/1	10/2017 5:12	:28 PM			
Compound	Sample Conc	Spike Amt	Spike Res	Dup Res	Spike Rec	Dup Rec	RPD	QC RPD	Limits %Rec			
Dichlorodifluoromethane	0.000	5.000	5.142	5.018	102.84	100.36	2.44	20	80 - 120			
Vinyl Chloride	0.000	5.000	5.015	4.957	100.29	99.13	1.16	20	80 - 120			
Trichlorofluoromethane	0.000	5.000	4.959	5.033	99.19	100.66	1.47	20	80 - 120			
1,1-Dichloroethene	0.000	5.000	5.251	5.086	105.03	101.72	3.20	20	80 - 120			
FREON 113	0.000	5.000	4.972	5.002	99.43	100.03	0.60	20	80 - 120			
Methylene Chloride	0.000	5.000	5.229	5.238	104.58	104.76	0.17	20	80 - 120			
trans-1,2-Dichloroethene	0.000	5.000	5.238	5.202	104.75	104.03	0.69	20	80 - 120			
Methyl tert-butyl ether [MTBE]	0.000	5.000	5.286	5.374	105.73	107.48	1.64	20	80 - 120			
1,1-Dichloroethane	0.000	5.000	5.208	5.032	104.17	100.64	3.44	20	80 - 120			
DIPE	0.000	5.000	5.256	5.320	105.11	106.41	1.23	20	80 - 120			
ETBE	0.000	5.000	5.104	5.328	102.07	106.56	4.30	20	80 - 120			
2,2-Dichloropropane	0.000	5.000	4.207	4.190	84.13	83.79	0.40	20	80 - 120			
cis-1,2-Dichloroethene	0.000	5.000	5.034	5.016	100.68	100.31	0.36	20	80 - 120			
Bromochloromethane	0.000	5.000	4.991	4.988	99.82	99.76	0.06	20	80 - 120			
Chloroform	0.000	5.000	5.177	5.220	103.55	104.41	0.83	20	80 - 120			
1,1,1-Trichloroethane	0.000	5.000	5.127	4.866	102.55	97.32	5.23	20	80 - 120			
Carbon Tetrachloride	0.000	5.000	4.994	4.894	99.87	97.87	2.02	20	80 - 120			
1,1-Dichloro-1-propene	0.000	5.000	5.117	4.990	102.34	99.80	2.51	20	80 - 120			
Benzene	0.000	5.000	5.230	5.106	104.60	102.12	2.40	20	80 - 120			
1,2-Dichloroethane	0.000	5.000	5.019	5.034	100.39	100.68	0.29	20	80 - 120			
TAME	0.000	5.000	5.275	5.391	105.49	107.82	2.18	20	80 - 120			
Trichloroethene	0.000	5.000	4.960	4.848	99.21	96.95	2.30	20	80 - 120			
1,2-Dichloropropane	0.000	5.000	5.120	5.099	102.39	101.98	0.41	20	80 - 120			
Dibromomethane	0.000	5.000	5.227	5.211	104.54	104.22	0.30	20	80 - 120			
Bromodichloromethane	0.000	5.000	4.900	4.916	97.99	98.32	0.33	20	80 - 120			
cis-1,3-Dichloropropene	0.000	5.000	4.778	4.769	95.56	95.37	0.19	20	80 - 120			
4-methyl-2-pentanone [MIBK]	0.000	5.000	5.256	5.488	105.12	109.77	4.32	20	80 - 120			
Toluene	0.000	5.000	5.102	5.113	102.04	102.27	0.22	20	80 - 120			
trans-1,3-Dichloropropene	0.000	5.000	4.812	4.758	96.24	95.15	1.14	20	80 - 120			
1,1,2-Trichloroethane	0.000	5.000	5.058	5.052	101.15	101.04	0.11	20	80 - 120			
Tetrachloroethene	0.000	5.000	5.024	5.028	100.47	100.56	0.09	20	80 - 120			
1,3-Dichloropropane	0.000	5.000	4.946	5.275	98.92	105.50	6.43	20	80 - 120			
Dibromochloromethane	0.000	5.000	4.681	4.807	93.62	96.13	2.65	20	80 - 120			
Chlorobenzene	0.000	5.000	5.109	5.069	102.18	101.38	0.79	20	80 - 120			
1,1,1,2-Tetrachloroethane	0.000	5.000	5.146	5.098	102.93	101.96	0.95	20	80 - 120			
Ethylbenzene	0.000	5.000	5.199	5.226	103.98	104.53	0.53	20	80 - 120			
m+p-Xylene	0.000	5.000	10.903	10.890	218.05 #	217.80 #	0.12	20	80 - 120			
o-Xylene	0.000	5.000	5.183	5.309	103.65	106.17	2.40	20	80 - 120			
Styrene	0.000	5.000	5.291	5.287	105.81	105.74	0.07	20	80 - 120			
Bromoform	0.000	5.000	4.894	4.801	97.88	96.02	1.92	20	80 - 120			
Isopropylbenzene	0.000	5.000	5.317	5.313	106.33	106.26	0.07	20	80 - 120			
Bromobenzene	0.000	5.000	5.273	5.357	105.46	107.14	1.58	20	80 - 120			
1,1,2,2-Tetrachloroethane	0.000	5.000	5.236	5.445	104.72	108.90	3.91	20	80 - 120			

Page 1 of 2

Generated at 7:13 AM on 10/18/2023

Method Blank

			Quanti	Agilent Transel Armount					
Data File	:	VBLK01.D	-		•				
Operator		Nicolae Popes	scu						
Acq. Method		524_2_Nick_1	100517_MDL						
Acq. Date-Time		10/10/2017 2	:33:46 PM						
Sample Name		Blank							
Vial		8							
Multiplier		1							
Sample Info									
DA Method File									
Tune File		BFB_Atune.u							
Tune Date		9/28/2017 1:4	43:05 PM						
Batch Name		IDC MDL ICA	L.batch.bin						
Last Calib Update		10/18/2023 6	:58:54 AM						
Compound			RT	QIon	Resp.	Conc.	Units		Dev(Min)
Internal Standards									
Fluorobenzene			6.380	96.0	162396	1.0000	ppb		0.000
System Monitoring Compo	und	s							
Bromofluorobenzene			10.792	95.0	54530	4.9840	ppb		-0.003
Spiked Amount: 5.000			Range: 70.0 -	130.0%		Recovery = 9	99.68%		
1,2-Dichlorobenzene-d4			12.289	152.0	58486	5.1497	ppb		-0.003
Spiked Amount: 5.000			Range: 70.0 -	130.0%		Recovery = 1	102.99%		
Target Compounds									OValue
Dichlorodifluoromothano			1 1 9 7	85.0	1764	ND	pph	#	Qvalue 62
Vinyl Chloride			1 388	62.0	768	N.D.	ppb	-	86
Trichlorofluoromethane			1 988	101.0	959	N.D.	ppb	#	28
1 1-Dichloroethene			2 479	61.0	800	N D	ppb	#	1
EREON 113			2.490	101.0	909	N.D.	ppb	#	33
Methylene Chloride			3.003	49.0	2814	N.D.	ppb	#	47
trans-1,2-Dichloroethene			3.519	61.0	1150	N.D.	ppb		95
Methyl tert-butyl ether [M]	TBE	-1	3.410	73.0	914	N.D.	ppb	#	1
1.1-Dichloroethane		-	3.971	63.0	2642	N.D.	ppb	#	79
DIPE			3.965	45.0	2740	N.D.	ppb	#	44
ETBE			4.852	59.0	1818	N.D.	ppb	#	65
2,2-Dichloropropane			4.793	77.0	1442	N.D.	ppb	#	15
cis-1,2-Dichloroethene			4.855	61.0	1515	N.D.	ppb	#	29
Bromochloromethane			5.181	130.0	1015	N.D.	ppb		53
Chloroform			5.331	83.0	1352	N.D.	ppb	#	25
1,1,1-Trichloroethane			5.750	97.0	1300	N.D.	ppb	#	24
Carbon Tetrachloride			0.000		0	N.D.			
1,1-Dichloro-1-propene			5.752	75.0	1305	N.D.	ppb	#	1
Benzene			0.000		0	N.D.			
1,2-Dichloroethane			6.076	62.0	2033	N.D.	ppb	#	40
TAME			6.377	73.0	1851	N.D.	ppb	#	40
Trichloroethene			6.804	130.0	1180	N.D.	ppb	#	68
1,2-Dichloropropane			7.088	63.0	735	N.D.	ppb	#	58
Dibromomethane			7.200	174.0	856	N.D.	ppb	#	41
Bromodichloromethane			7.409	83.0	850	N.D.	ppb	#	1
cis-1,3-Dichloropropene			7.872	75.0	1770	N.D.	ppb	#	79
4-methyl-2-pentanone [MI	BK]	8.081	43.0	1000	N.D.	ppb	#	59
Toluene			8.220	91.0	3229	N.D.	ppb	#	29
trans-1,3-Dichloropropene			8.466	75.0	746	N.D.	ppb		64
1,1,2-Trichloroethane			8.661	97.0	771	N.D.	ppb	#	46
Tetrachloroethene			0.000		0	N.D.			
1,3-Dichloropropane			8.828	76.0	1084	N.D.	ppb		90
VBLK01.D				Page 1 of 3		Gene	rated at 1:2	23 PM or	10/18/2023

Sample Summary Report

	Quar	ntitation Re	Agilent Tested Acad	0.0072					
Data File	LFB001.D			Operator	Nicol	ae Popescu			_
Acq. Method	524_2_Nick_100317			Acq. Date-Time	10/3	/2017 4:55:25	PM		
Sample Name	LFB 5.0 ppb			Instrument	Agile	nt VOC Syster	n		
Vial	12			Multiplier	1.00				
DA Method File				Comment	GF=	5.0 150:1 Sp	lit 25mL		
Tune File	BFB_Atune.u			Tune Date	9/28	/2017 1:43:05	PM		
Batch Name	IDC MDL ICAL.batch.bin			Last Calib Update	e 10/1	8/2023 6:58:5	4 AM		
Ref Library									
Compound		RT	QIon	Res	sp.	Conc.	Units	Dev(Min)
Internal Standard	ds								
1) Fluorobenzene	2	6.380	96.0	168	8140	1.0000	ppb	0.000	D
System Monitorin	ng Compounds								
43) Bromofluorol	benzene	10.794	95.0	586	688	5.1807	ppb	-0.00	1
Spiked Amount:	5.000	Range: 70.0 -	130.0%			Recovery = 1	03.61%		
57) 1,2-Dichlorob	benzene-d4	12.292	152.0	592	293	5.0424	ppb	0.000	0
Spiked Amount:	5.000	Range: 70.0 -	130.0%			Recovery = 1	00.85%		
Target Compoun	ds							OValue	•
2) Dichlorodifluo	romethane	1,184	85.0	109	9344	3,2414	ppb	94	4
3) Vinyl Chloride		1 413	62.0	206	6085	4 7504	ppb	94	6
4) Trichlorofluor	methane	1,993	101.0	312	2429	4.9327	ppb	94	6
5) 1.1-Dichloroet	hene	2.478	61.0	243	3479	4.5147	ppb	8	8
6) FREON 113		2.495	101.0	187	7538	4.6488	ppb	8	á
7) Methylene Chl	loride	3.017	49.0	200	8930	4 7608	ppb	91	5
9) trans-1 2-Dich	loroothono	3.01/	61.0	220	1519	4 7000	ppb		6
9) Methyl tert-bu	tyl athor [MTRE]	3 407	73.0	251	0146	5 0053	ppb	9	2
10) 1 1-Dichlorov	sthane	3.907	63.0	350	7970	4 9360	ppb		-
11) DIDE	eulane	4 151	45.0	56/	0102	5 0609	ppb		2
1E) ETPE		4 772	59.0	454	4577	5.0000	ppb		-
12) 2 2-Dichloror		4 940	33.0	212	2779	3.0703	ppb		5
12) 2,2-Dichlorop 13) cis-1 2-Dichlo	prophips	4.851	61.0	213	4607	4 7406	ppb	9	6
14) Bromochloro	methane	E 199	120.0	110	0759	4 9010	ppb	* 6	-
17) Chloroform	mediane	5 334	83.0	379	9378	5 3039	ppb		6
19) 1 1 1 Trichle	methane	5.534	97.0	30	0920	4 7947	ppb		
10) C. J. T.		5.340	37.0	300	2015	4.7339	ppo		-
19) Carbon Tetra	1 propose	5.752	75.0	252	2015	4.7530	ppp		4
20) 1,1 Dichloro	1 properie	6.017	79.0	232	4735	4.0097	ppb	-	-
21) Benzene 22) 1 2-Dicklorov	thank	6.017	62.0	-00	9767	4.550/ E 0421	ppp	# 0* # 7/	
16) TAME	zularie	6.035	72.0	220	7970	5.0431	ppb	* /*	
22) Trichloroothe		6.237	120.0	30/	9075	5.2023	ppb	9	-
24) 1 2-Disklauer		7.000	62.0	20	5400	5.0400	ppb		2
24) 1,2 Dichiolog	bioparie	7.000	174.0	203	067	4.0115	ppo	-	-
25) Dibromorneu 26) Bromodichlou	remethane	7.100	92.0	210	0425	4.5115	ppp		-
20) Bromoulchiol	Tomediane	7.304	75.0	210	9720	4.6877	ppb		
27) CIS-1,3-Dichie 28) Asmothula2an	ontopropene MIRK1	9.094	42.0	153	2294	4.0022 E 1099	ppb		1
20) 4-meutyi-2-p	entanone [MIBK]	0.004	43.0	15:	1400	5.1056	ppb		-
29) Toluene		0.21/	31.0	521	1409	5.1551	ppb	* 30	-
30) trans-1,3-Dic	noropropene	8.4/1	75.0	100	8170	4.4240	ppp	0.	2
22) Totrachleres	thono	0.052	166.0	120	6660	4 9901	ppp		<i>.</i>
33) 1 3-Dichloror		8.817	76.0	260	3497	4 9945	ppb		2
24) Dihawa U	proparte	0.01/	100.0	223	5472	4.5545	ppo	24	-
34) Dibromochio	romeutane	5.040	129.0	125	2000	4.5009	ppo		2
35) Chlorobenzer	ne shlavastkara	9.648	112.0	613	3856	5.1900	ppb	# 85	5
30/1,1,1,2-letra	echioroethane	9.740	131.0	18:	3982	4.91/1	ppp	90	2
37) Ethylbenzene	2	5.//3	91.0	102	20520	5.2456	ppo	9.	~
567 m+p-xylene		2.071	31.0	164	40422	10./154	ppo		-
LFB001.D			Pag	ge 1 of 419		Gene	rated at 7:1	4 AM on 10/18/202	/3

MDL Report

	-		-	-			-			-		-			-		<u> </u>		-
1 Name Group	TS	R	т	Quant Ion		Rf	Avg Conc.	Std. Dev.	Avg Conc./Std. Dev. C	onc. RSD	MDL	LOQ	LOD	Noise	S/N	Avg Heigh	Avg. Resp	Resp. RSD	
2 Dichlorodifluoromethane		1	1.185	:	35	0.5302, 0.4545, 0.5320, 0.4615, 0.4794, 0.3821, 0.3735	0.459	0.0633	7.25	13.8	0.19	9 0.6332	0.19	178.05		15097	15160	13.3	
3 Vinyl Chloride		1	1.414		52	0.4623, 0.4739, 0.4960, 0.5350, 0.5822, 0.4835, 0.4594	0.4989	0.0447	11.15	9	0.140	6 0.4474	0.1342	233.24	394.69	9 19282	20911	8.3	
4 Trichlorofluoromethane		1	1.991	1)1	0.5292, 0.4609, 0.4963, 0.5152, 0.5499, 0.4739, 0.4835	0.5013	0.0318	15.78	6.3	0.099	9 0.3178	0.0953	223.89	206.04	19737	30810	5.7	
5 1,1-Dichloroethene		1	2.479		51	0.4878, 0.4945, 0.5511, 0.4805, 0.5066, 0.5009, 0.4886	0.5014	0.0236	21.28	4.7	0.074	1 0.2357	0.0707	182.84		15476	26168	3.4	
6 FREON 113		1	2.496	1)1	0.4849, 0.4825, 0.5060, 0.4587, 0.4979, 0.5043, 0.5028	0.491	0.017	28.85	3.5	0.053	5 0.1702	0.0511	141.06	111.66	5 9281	19127	2.4	
7 Methylene Chloride		1	3.017		19	0.5118, 0.4970, 0.5889, 0.5348, 0.4910, 0.5908, 0.4917	0.5294	0.044	12.04	8.3	0.138	2 0.4397	0.1319	340.32		11900	24807	8	
8 trans-1,2-Dichloroethene		1	3.354		51	0.5296, 0.5147, 0.5263, 0.4911, 0.4946, 0.5001, 0.4919	0.5069	0.0164	30.83	3.2	0.051	7 0.1644	0.0493	272.23	139.57	7 12638	26391	3.7	
9 Methyl tert-butyl ether [MTBE]		1	3.407		73	0.4995, 0.5070, 0.5879, 0.4911, 0.5088, 0.4978, 0.4664	0.5084	0.0378	13.45	7.4	0.118	8 0.3781	0.1134	205.78	69.81	l 13067	34789	6.4	
10 1,1-Dichloroethane		1	3.946		53	0.4942, 0.5172, 0.5550, 0.4472, 0.5500, 0.5729, 0.5062	0.5204	0.043	12.1	8.3	0.135	1 0.43	0.129	491.78	57.24	13842	37535	7	
11 DIPE		1	4.155		15	0.5111, 0.5104, 0.5232, 0.4828, 0.5287, 0.5189, 0.5339	0.5156	0.0168	30.66	3.3	0.052	8 0.1681	0.0504	287.45	88.44	18336	55576	2.4	
12 2,2-Dichloropropane		1	4.838	·	77	0.4215, 0.3895, 0.4348, 0.3862, 0.4452, 0.4234, 0.3900	0.413	0.0241	17.12	5.8	0.075	8 0.2413	0.0724	177.9	76.14	8615	23055	3.9	
13 cis-1,2-Dichloroethene		1	4.852		51	0.5254, 0.4575, 0.5260, 0.4650, 0.5092, 0.5166, 0.5005	0.5	0.028	17.84	5.6	0.088	1 0.2803	0.0841	277.99	124.61	l 12306	30977	4.1	
14 Bromochloromethane		1	5.189	1	30	0.4762, 0.4769, 0.5734, 0.5097, 0.5207, 0.5203, 0.4550	0.5046	0.0394	12.81	7.8	0.123	8 0.3939	0.1182	164.39	43.62	4950	11175	6.6	
15 ETBE		1	4.726		59	0.5274, 0.5119, 0.5274, 0.4820, 0.5001, 0.4615, 0.4606	0.4958	0.0285	17.38	5.8	0.089	7 0.2853	0.0856	267.01	131.71	15311	42537	5.7	
16 TAME		1	6.241		73	0.4829, 0.5124, 0.5321, 0.4569, 0.4747, 0.4544, 0.4503	0.4805	0.0313	15.37	6.5	0.098	2 0.3126	0.0938	289.51	129.34	4 14673	32786	6.4	
17 Chloroform		1	5.334		33	0.4677, 0.5078, 0.5357, 0.4621, 0.5274, 0.5482, 0.4806	0.5042	0.0345	14.61	6.8	0.108	4 0.345	0.1035	223.14		15274	34933	5.8	
18 1,1,1-Trichloroethane		1	5.541	9	97	0.4936, 0.4633, 0.5227, 0.4763, 0.5261, 0.4819, 0.4688	0.4904	0.0252	19.49	5.1	0.079	1 0.2516	0.0755	129.74		12598	29742	3.2	
19 Carbon Tetrachloride		1	5.753	1	17	0.4814, 0.4556, 0.4552, 0.4480, 0.4796, 0.4546, 0.4095	0.4549	0.0239	19.05	5.3	0.07	5 0.2388	0.0716	131.26	127.09	10249	23348	5.1	
20 1,1-Dichloro-1-propene		1	5.764		75	0.4890, 0.4761, 0.4825, 0.5052, 0.5029, 0.5391, 0.4734	0.4955	0.0228	21.69	4.6	0.071	8 0.2284	0.0685	263.82	56.01	11744	25372	4.9	
21 Benzene		1	6.018		78	0.4996, 0.5010, 0.5587, 0.4866, 0.5202, 0.4928, 0.4757	0.5049	0.0274	18.43	5.4	0.086	1 0.2739	0.0822	251.78	307.67	7 37079	78404	4.1	
22 1,2-Dichloroethane		1	6.059		52	0.4875, 0.5409, 0.5496, 0.4813, 0.5220, 0.4691, 0.4653	0.5022	0.0348	14.45	6.9	0.109	2 0.3476	0.1043	252.69	58.21	l 10489	21977	6.6	
23 Trichloroethene		1	6.812	1	30	0.4728, 0.4427, 0.5390, 0.4799, 0.4842, 0.4825, 0.5001	0.4859	0.0292	16.65	6	0.091	7 0.2919	0.0876	220.84	126.96	5 11547	22208	4.7	
24 1,2-Dichloropropane		1	7.061		53	0.5316, 0.4899, 0.6058, 0.5183, 0.5304, 0.5175, 0.5308	0.532	0.0356	14.92	6.7	0.11	2 0.3565	0.1069	224.56		9974	20201	5.3	
25 Dibromomethane		1	7.192	1	74	0.4760, 0.4777, 0.5310, 0.5010, 0.5227, 0.4744, 0.4784	0.4945	0.024	20.6	4.9	0.075	4 0.2401	0.072	435.63	12.97	5462	9610	3.7	
26 Bromodichloromethane		1	7.387	:	33	0.4991, 0.4481, 0.4850, 0.4569, 0.4566, 0.4012, 0.4207	0.4525	0.034	13.32	7.5	0.106	7 0.3397	0.1019	169.09	102.6	5 10888	19677	7.4	

On the upper tool bar go to: Tools Actions Replicate injections MDL LOD LOQ

At the bottom of the table Select All Set MDL Set LOD Set LOQ

Calculate MDL-LOQ-LOD (Outlier Limi	t													\times
Name	Group	TS	RT	Transition	Avg Conc.	Std. Dev.	Avg Conc./Std. Dev.	Conc. RSD	MDL	LOQ	LOD	Noise	S/N	Avg Height	Avg. 🛆
Dichlorodifluoromethane	Т		1 1.160	85.0	0.4645	0.0293	15.86	6.3	0.0921	0.2930	0.0879	188.87	-	6836	
Chloromethane	т		1 1.319	50.0	0.5429	0.0644	8.43	11.9	0.2023	0.6436	0.1931	323.16	22.50	4232	
Vinyl Chloride	т		1 1.400	62.0	0.5636	0.0270	20.86	4.8	0.0849	0.2702	0.0810	351.81	22.07	7597	
Bromomethane	т		1 1.689	94.0	0.9255	0.1766	5.24	19.1	0.5551	1.7665	0.5299	175.27	37.17	3793	
Chloroethane	т		1 1.784	64.0	0.5852	0.0788	7.43	13.5	0.2476	0.7879	0.2364	306.17	14.20	3558	
Trichlorofluoromethane	т		1 2.021	101.0	0.5415	0.0357	15.16	6.6	0.1123	0.3573	0.1072	192.33		6196	
Diethyl Ether	т		1 2.333	59.0	0.5816	0.0496	11.73	8.5	0.1559	0.4959	0.1488	288.39	12.77	3573	
1,1-Dichloroethene	т		1 2.550	61.0	0.5623	0.0428	13.15	7.6	0.1344	0.4276	0.1283	275.71	18.21	4886	
Acetone	т		1 2.657	43.0	0.5355	0.2193	2.44	41.0	0.6891	2.1928	0.6579	200.71	18.51	2069	
lodomethane	т		1 2.710	142.0	0.5747	0.1004	5.72	17.5	0.3155	1.0040	0.3012	190.39	13.47	1614	
Carbon disulfide	т		1 2.761	76.0	0.5327	0.0282	18.90	5.3	0.0886	0.2819	0.0846	319.29	34.61	10772	
Allyl chloride	т		1 2.979	41.0	0.5003	0.0391	12.79	7.8	0.1229	0.3910	0.1173	119.63	51.80	3467	
Methylene Chloride	т		1 3.142	49.0	0.5522	0.0397	13.92	7.2	0.1247	0.3967	0.1190	265.32	15.34	3990	
trans-1,2-Dichloroethene	т		1 3.507	61.0	0.5580	0.0362	15.41	6.5	0.1138	0.3621	0.1086	307.22	14.06	4280	
Methyl tert-butyl ether [MTBE]	т		1 3.542	73.0	0.5333	0.0275	19.40	5.2	0.0864	0.2749	0.0825	236.66		15793	
1,1-Dichloroethane	т		1 4.155	63.0	0.5395	0.0410	13.17	7.6	0.1287	0.4096	0.1229	305.36	13.59	4133	
2,2-Dichloropropane	т		1 4.993	77.0	0.5791	0.0665	8.70	11.5	0.2091	0.6655	0.1996	155.82		4141	
cis-1,2-Dichloroethene	т		1 5.023	61.0	0.5736	0.0352	16.30	6.1	0.1106	0.3518	0.1055	194.38	32.14	4445	
2-Butanone [MEK]	т		1 5.117	43.0	0.5564	0.0583	9.55	10.5	0.1831	0.5826	0.1748	344.04	12.11	2800	
Bromochloromethane	т		1 5.335	49.0	0.5587	0.0265	21.08	4.7	0.0833	0.2651	0.0795	193.99		2632	
Chloroform	т		1 5.472	83.0	0.5646	0.0145	38.96	2.6	0.0455	0.1449	0.0435	245.24	22.07	5372	
1,1,1-Trichloroethane	т		1 5.645	97.0	0.5335	0.0254	21.02	4.8	0.0798	0.2538	0.0761	228.80	21.64	4714	
1-Chlorobutane	т		1 5.810	56.0	0.5287	0.0280	18.85	5.3	0.0881	0.2804	0.0841	347.25	20.43	6886	
Carbon Tetrachloride	т		1 5.851	117.0	0.5402	0.0357	15.12	6.6	0.1123	0.3574	0.1072	197.71	56.00	4572	
1,1-Dichloro-1-propene	т		1 5.868	75.0	0.5456	0.0317	17.21	5.8	0.0997	0.3171	0.0951	348.69	14.98	5046	
Benzene	т		1 6.107	78.0	0.5298	0.0201	26.30	3.8	0.0633	0.2014	0.0604	216.79		14717	
1,2-Dichloroethane	т		6.159	62.0	0.5291	0.0347	15.25	6.6	0.1091	0.3470	0.1041	322.05	14.50	4303	
Trichloroethene	т		1 6.876	130.0	0.5540	0.0475	11.66	8.6	0.1494	0.4753	0.1426	48.31		4745	
1,2-Dichloropropane	т		1 7.120	63.0	0.5348	0.0354	15.13	6.6	0.1111	0.3536	0.1061	264.62	16.81	4137	
Dibromomethane	т		1 7.251	174.0	0.5182	0.1212	4.27	23.4	0.3810	1.2124	0.3637	68.55	63.47	2860	
Bromodichloromethane	т		1 7.445	83.0	0.5321	0.0459	11.58	8.6	0.1444	0.4595	0.1378	263.00	18.31	4729	
cis-1,3-Dichloropropene	т		1 7.923	75.0	0.4723	0.0252	18.74	5.3	0.0792	0.2520	0.0756	351.57	17.76	6109	
4-methyl-2-pentanone [MIBK]	т		1 8.119	43.0	0.4572	0.0320	14.27	7.0	0.1007	0.3204	0.0961	222.03	67.26	9195	
Toluene	т		1 8.252	91.0	0.5508	0.0204	27.03	3.7	0.0640	0.2037	0.0611	316.82	74.96	19126	
trans-1,3-Dichloropropene	Т		1 8.513	75.0	0.4498	0.0209	21.52	4.6	0.0657	0.2091	0.0627	299.64	16.75	5001	
1,1,2-Trichloroethane	Т		1 8.694	97.0	0.5481	0.0474	11.55	8.7	0.1491	0.4745	0.1423	274.29		4393	
Tetrachloroethene	т		1 8.802	166.0	0.5654	0.0243	23.30	4.3	0.0763	0.2427	0.0728	42.46	154.73	5867	
1,3-Dichloropropane	Т		1 8.858	76.0	0.5207	0.0255	20.43	4.9	0.0801	0.2548	0.0765	263.50		7307	, v
<		1												·	>
Select All									Co	ру	Set MDL	Set LO	Q S	Set LOD C	ancel

Raw Data

Chang the Total Amount to that the method call out to be extracted.

In Amount set the Amount the chemist extracted

The final concentration now shows the corrected amount based on the two weights

Explanation:

We utilize other applications to perform calculations only to enter them into MassHunter. Time is lost during data processing, and validation steps due to this. The dilution factor column for soil batches is a prime example; When calculating dilution factor, we use the formula: DF = Final weight / Initial weight All the client samples have different initial weights, so we enter them into Microsoft Excel to calculate the dilution factor. We then copy it from Excel and paste it into MassHunter. However, we already enter initial weight into a User Defined column for reporting purposes (

1	rile c		view Ana	iyze wiethoù	opuate Library r	veport i	oois neip															
I	1	, 6	. 6 (📜 Analyze B	atch 🔻 🔞 🛛 Layo	ut: 📈		Resto	ore Default Lay	vout												
Ba	tch Tal	ole																				
I	Sampl	e: 👔	524IDO	с	▼ ↓ S	ample Ty	pe: <all></all>		▼ Com	pound: 🔙	Dichlor	rodifluorom	nethane	🕶 📑 ISTC	Fluorobe	nzene		Ē	i ↓∎ [P	🖻 🕈 🏹
					Sampl	e				Dichlorod		Dichlo	orodifluorome	thane Results		Qualifie	Qualifier.	. Fluoro	benzene	Qualifie		
	0	Ÿ	Name	Data File	Туре	Level	Acq. Date-Time	Amt.	Tot. Amt. Dil	. Exp. Conc.	RT	Resp.	MI Calc. Co	nc. Final Conc	. Accuracy	Ratio M	Ratio M	I RT	Resp.	Ratio MI	1	
	0	٣	.5 ppb	524cal1.D	Cal	.5	9/18/2013 4:32 AM		1.0	0.5000	1.159	8125	0.4	860 0.486	0 97.2	34.2	23.3	6.458	210400	1.9]	
			1 ppb	524cal2.D	Cal	1	9/18/2013 4:54 AM		1.0	1.0000	1.162	16965	1.0	223 1.022	3 102.2	32.4	13.6	6.461	208857	2.1		
		٣	2.5 ppb	524cal3.D	Cal	2.5	9/18/2013 5:16 AM		1.0	2.5000	1.159	43359	2.7	211 2.721	1 108.8	32.1	10.3	6.461	200546	1.2		
			5 ppb	524cal4.D	Cal	5	9/18/2013 5:39 AM		1.0	5.0000	1.162	81276	4.7	613 4.761	3 95.2	32.0	12.0	6.461	214838	1.6		
			10 ppb	524cal5.D	Cal	10	9/18/2013 6:01 AM		1.0	0 10.0000	1.162	156263	9.4	013 9.401	3 94.0	34.5	11.0	6.461	209191	2.0		
			25 ppb	524cal6.D	Cal	25	9/18/2013 6:23 AM		1.0	25.0000	1.165	344422	21.5	566 21.556	6 86.2	32.8	11.0	6.461	201088	2.5		
			50 ppb	524cal7.D	Cal	50	9/18/2013 6:45 AM		1.0	50.0000	1.162	872831	52.8	424 52.842	4 105.7	32.2	10.7	6.461	207885	2.0		
			100 ppb	524cal8.D	Cal	100	9/18/2013 7:07 AM		1.0	0 100.0000	1.162	1846774	110.5	714 110.571	4 110.6	31.6	10.1	6.463	210207	1.7		
			524ccc2	524ccc2.D	CC	CC	9/19/2013 1:30 AM		1.0	0 10.0000	1.162	115244	7.1	791 7.179	1 71.8	34.2	11.0	6.461	202033	1.8 🗌		
			blank	blank6.D	Blank		9/18/2013 7:30 AM		1.0	ו	1.159	261	0.0	159 0.015	9			6.461	206967	2.1		
	0	٣	blank	blank7.D	MatrixBlank		9/18/2013 8:15 AM		1.0)	1.168	163	0.0	100 0.010	0	25.1	106.3	6.461	204812	1.5		
Þ			524IDOC	524IDOC1.D	MatrixSpike		9/19/2013 12:01 AM	20	30 1.0	ו	1.165	85566	5.3	270 7.990	5	31.9	11.2	6.461	202161	1.6		
			524IDOC	524IDOC2.D	MatrixSpikeDup		9/19/2013 12:23 AM		1.0)	1.159	80850	5.0	227 5.022	7	31.0	11.5	6.461	202589	2.1		
			524IDOC	524IDOC3.D	QC	5	9/19/2013 12:45 AM		1.0	5.0000	1.162	82769	5.1	757 5.175	7 103.5	32.0	11.1	6.461	201268	2.1		
			524IDOC	524IDOC4.D	QC	5	9/19/2013 1:08 AM		1.0	5.0000	1.162	79687	5.1	095 5.109	5 102.2	32.3	10.7	6.463	196286	1.8		

X

ΨX.

📅 Agilent MassHunter Quantitative Analysis (for GCMS and LCMS) - 091713 - training 1.batch.bin

Diluted amount and recalculated amount

Manual Integration Before and After

The Red line Below the Green integrated peaks show where the data system set the integration. The annotation gives a reason for the annotation and the reviewers initials .

	Agilent MassHunter Quantitative Analysis (for GCMS and LCMS) - Pace Dioxins 05062024 - 05052024											bin							- 0	\times	
F	ile Ed	lit View	Analyze	Metho	od U	pdate Librar	y Report To	ols Help													
1	a 👝	, 🛃 🖻	a (Ç⊒ A	nalyze	Batch	h 🕶 🕜 📗 I	ayout: 🔙 📗		A 🗵	Restore Defau	It Layout										
Bate	h Tabl	le																		- ×	
1 s	ample	e 👔 SAI	MP 10683	74000)1 - JF	MI 👻 🎩	Sample Typ	e: <all></all>		-	Compound	d: 💷 13C-	2378-TC •	- 3	ISTD: 13	sc- 🖬 .		III 🖡 📢	💎 💎	ج 🕈	•> •
				Sam	ple				13C-237	78-TCDF Metho	d				13C-23	378-TCDF Re	esults			Qualifi	7
	D	や Name	Data File	Туре	Level	Acq. Date-Ti	me Dil.	Exp. Conc.		User Annotat	ion	RT	Resp.	MI	Calc. Conc.	Final Conc.	Accuracy	Target Resp	onse Origina	I Ratio	
		Y CA	H2402	CC	L3	2/28/2024 2:	3 3.	0 100.0000				24.754	121464160		107.0299	321.0897	107.0			93.6	
		BL	H2402	BI		2/28/2024 3:	2 1.	0				24.711	12564596		118.5784	118.5784				94.0	
2	_	Y SA	H2402	Sa		2/28/2024 4:	1 3.	0	poor integ	ration DRW		24.694	17644886		58.8595	176.5784			2653156	7 10	
	••	SA	H2402	Sa		2/28/2024 5:	0 1.	0				24.694	32/63566	H	/9.0159	/9.0159				92.9	
		5A	H2402	Sa		2/28/2024 6	4 1					24.000	30820430	H	00.0310	00.0310				92.4	
	-	SA.	H2402	Sa		2/28/2024 7:	3 1.					24.660	30561171	H	72 5141	72 5141				92.1	
		SA	H2402	Sa		2/28/2024 8	2 1					24.002	37623813	H	80 7647	80.7647				92.1	
μ																					
Con	pound	l Informatio	n																	- ×	
	₹ ↔	• ‡ <u>R</u>		1	. (4	I 🖃 🔼	🛣 ш 🚖	1	. Л 🗖 🗖	* 🏧 🔺 🖄	AA		NI LT	GT	BA CO	RT INT					
+ M	RM (3	15.9 -> 252	.0) H24022	8A_03.	D						+ MRM (3	17.9 -> 254.0)	H240228A_0	03.D							
2월 3	×10 ⁶ -					* R1	=24.694 min.				읕 ×10 €]	Ratio = 108.	9 (113.4 %)			* RT=24.694	4 min.				
ē	2-					Calc. Co	nc.=58.8595 ng	/ml			ଅଁ 1.8-					Calc. Con	D.= -				
	1.75-					Final Cor	ic.=176.5784 ng	/ml			1.6-					Final Cond	0.= -				
	1.5-										1.4-										
	1.25-										1-										
	0.75										0.8-					/ I \					
	0.5-										0.6-										
	0.25-						V				0.2						(
1	0-										- 0-										-
	, i	224	22 6 2		24 2	42 244 3		5 25 2 24	54 25 6	25.9 26	-0.2-	22.4	22 6 22 0	24	24.2 24	1 24 6 24	12 25	25.2 25.4	25 6 25	2 26	-
		23.4	20.0 2				.4.0 24.0 2	J 2J.Z Zi	Acquis	ition Time (min		2.3.4	20.0 20.0	24	24.2 24.	- 24.0 24	7.0 20	20.2 20.4	Acquisition	Time (min)	
-																					
													10000000000								

Agilent CrossLab

From Insight to Outcome

