TN using persulfate digestion and DMP

Dr. Christian Prokisch I CProkisch@mn-net.com I 01.08.2024

MACHEREY-NAGEL

www.mn-net.com

Agenda

Persulfate digestion followed by detection using DMP

Data

Standard Methods 4500-N F

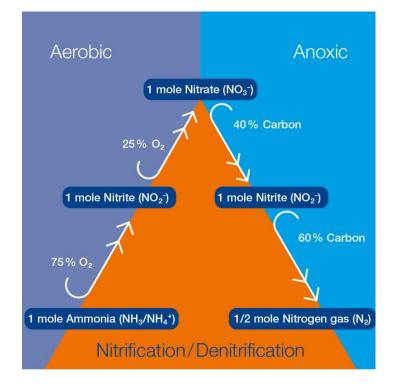
Significance of detecting Nitrogen in Water

- Essential for environmental and human health
- Indicator of water quality and ecosystem balance
- Critical for regulatory compliance and pollution control
- Impacts drinking water safety and aquatic life

Current regulatory background

- EPA sets standards for nitrogen in drinking water
- Clean Water Act regulates nitrogen discharge
- Nutrient Criteria Program guides state-level standards
- Ongoing efforts to adopt numeric nutrient criteria

Goal of this presentation


- Revisit an established method for total nitrogen detection in water
- Propose standardization for potential nationwide regulation
- Present data supporting method's reliability and applicability
- Discuss implications for future water quality regulations

Sources and forms of Nitrogen

- Sources: Agriculture, wastewater, atmospheric deposition, urban runoff
- Forms: Organic nitrogen, ammonium (NH₄+), nitrate (NO₃⁻), nitrite (NO₂⁻)
- Natural vs. anthropogenic sources
- Nitrogen cycle in aquatic environments

Effects and Global Trends

- Effects of excess Nitrogen
 - Eutrophication and algal blooms
 - Hypoxia and fish kills
- Global trends in Nitrogen pollution
 - Drinking water contamination (e.g., blue baby syndrome)
 - Global increase in nitrogen pollution over past century
 - Regional variations and hotspots

Existing methods

- ISO 23697-1:2023 and ISO 23697-2:2023:
 Small-scale sealed tube methods
- ISO 29441:2010: UV digestion method
- Standard Methods including but not limited to
 - Flow injection analysis
 - Persulfate digestion followed by any Nitrate determination
 - Conductimetric determination of inorganic nitrogen
 - High temperature combustion

Limitations of the current methods

- Lack of validation data acceptable for EPA regulation
- Insufficient statistical robustness for US regulatory purposes
- Absence of comprehensive interlaboratory studies for some methods

Persulfate digestion followed by detection using DMP

Brief overview

- Established method for total nitrogen detection
- Persulfate digestion converts all nitrogen to nitrate
- Detection using 2,6-Dimethylphenol colorimetry
- Small-scale sealed tube method Potential applications

Digestion step using Persulfate

- Alkaline oxidation at 120 °C
- Converts organic and inorganic nitrogen to nitrate
- Uses potassium persulfate and NaOH
- Requires heating block and digestion tubes

Detection step using Dimethylphenol

- Nitrate detection via colorimetric reaction
- 2,6-Dimethylphenol as the color reagent
- Photometric evaluation at specific wavelengths
- Requires acid mixture and photometer

Preparation

- Collection of water samples (groundwater, surface water, wastewater)
- Filtration if necessary to remove particulates
- Preparation of calibration standards using nitrate solution
- Creation of digestion check standard using glutamic acid solution
- Preparation of reagent blanks

Equipment and reagents

- Equipment: Heating block, digestion tubes, detection tubes, photometer
- Key reagents: Potassium persulfate, NaOH, 2,6-Dimethylphenol
- Acid mixture: Phosphoric acid and sulfuric acid (1:1)
- Ammonia-free and nitrate-free water
- Stock and intermediate solutions for standardsCollection of water samples (groundwater, surface water, wastewater)

Analytical Procedure

- Sample preparation and standard creation
- Digestion: Sample + persulfate reagent, heated at 120°C for 30 min
- Cooling of digested sample
- Detection: Addition of acid mixture and 2,6-Dimethylphenol
- Photometric measurement at 340–365 nm
- Quality control measures throughout

Advantages

- High accuracy and precision in nitrogen measurement
- Consistent results across different water types
- Simplified procedure with commercially available test kits
- Reduced need for complex sample preparation

Advantages

- Lower operational costs compared to traditional methods
- Reduced reagent consumption and waste generation
- Environmentally friendly with fewer hazardous chemicals
- Supports sustainable water quality monitoring practices
 Low operational costs

Data

ISO interlab trial – design

Sample ID	Matrix	NO ₃ -N	NH ₄ -N	TNb
А	Ground water	1	0,1	n.a.
В	Swimming pool water	7 – 8	0,5	n.a.
С	Waste water 1	40	3	n.a.
D	Waste water 2	8	40	n.a.
E	Waste water 3	n.a.	n.a.	10
F	Waste water 4	n.a.	n.a.	60
G	Waste water 5	n.a.	n.a.	80
Н	Surface water	10 – 12	0.8	n.a.
1	QC standard	1	8	13

Data

ISO interlab trial – Symbols used

Symbols used	
I	number of laboratories after outlier rejection
n	number of individual test results after outlier rejection
0	percentage of outliers
Х	assigned value
$\overline{\overline{\mathbf{X}}}$	overall mean of results (without outliers)
η	recovery rate
s _R	reproducibility standard deviation
C _{V,R}	coefficient of variation of reproducibility
s _r	repeatability standard deviation
C _{V,r}	coefficient of variation of repeatability

ISO interlab trial – results

Sample	Matrix	I	n	0	Х	$\overline{\overline{\mathbf{X}}}$	η	s _R	$C_{ m V,R}$	S _r	C _{V,r}
				%	µg/L	µg/L	%	µg/L	%	µg/L	%
E	Waste water 3	41	164	10,9	-	16,30	-	0,864	5,3	0,281	1,7
F	Waste water 4	45	180	4,3	-	61,63	-	3,526	5,7	1,530	2,5
G	Waste water 5	45	179	4,8	-	70,42	-	9,996	14,2	2,341	3,3
T	QC standard	44	174	8,4	13,033	13,15	100,9	0,698	5,3	0,260	2,0

Standard Methods 4500-N F

Standard Methods 4500-N F

Current status

- Received charge in January 2024
- First draft created in March 2024
- Comments received in April 2024
- Second draft sent out in July 2024
- Comment period open until July 19, 2024
- Review and incorporation of comments pending

Method validation plans

- Aiming for Tier 3-like validation (nationwide use)
- Nine-laboratory interlaboratory study planned
- Minimum of nine different matrix types to be tested
- Method detection limit (MDL) determination by each lab
- Recovery studies and real sample analysis across application range

Facilitating Participation in the Interlaboratory Trial

- Custom-made vials compatible with market-leading instruments
- Fits HACH photometers and heating blocks
- Eliminates need for reagent preparation by participants
- Reduces potential sources of error
- Lowers barrier to participation for laboratories Aiming for Tier
 3-like validation (nationwide use)

Call to Action – Join Our Interlaboratory Trial

- Seeking laboratories for method validation
- Opportunity to shape future water quality standards
- Easy participation with provided custom vials
- Gain early experience with potential future regulatory method
- Contact information for expressing interest:
 - cprokisch@mn-net.com

- Established method for total nitrogen detection revisited
- Persulfate digestion with 2,6-Dimethylphenol colorimetry
- Advantages: accuracy, ease of use, cost-effectiveness
- Potential basis for nationwide regulation
- Ongoing standardization and validation process
- Call for participation in interlaboratory trial

Volunteers needed for total nitrogen method validation!

Dr. Christian Prokisch I cprokisch@mn-net.com I 01.08.2024

MACHEREY-NAGEL

www.mn-net.com

Image credits

[©] Jürgen Nickel (1, 31), Kekyalyaynen (4), psdesign1 (6), Alexey Stiop (8), <u>Orlando Florin</u>
 <u>Rosu (10)</u>, Paulista (15), Alexander Raths (17), Uwe Bumann, (18,19), fotomek (25), rdnzl
 (26), Alex White (27), kerkezz (28), Swapan(30) – Adobe Stock

EPA Logo (5)

https://de.wikipedia.org/wiki/Datei:Environmental Protection Agency logo.png

ISO Logo (9)

https://commons.wikimedia.org/wiki/File:ISO_Logo_%28Red_square%29.svg