Thermo Fisher s c | e N T | F | C

Novel developments in Inductively Coupled Plasma Mass Spectrometry: How can the analysis of complex samples be made simple?

Andy Fornadel, PhD

Product Marketing Manager Thermo Fisher Scientific

The world leader in serving science

Typical challenges faced by laboratories analyzing trace elements

Highly diverse matrix samples

Interruptions due to maintenance

Operational complexity

Personnel that operate several different instrument types

Reducing environmental impact

Application of ICP-MS

ICP-MS is best suited in terms of performance but with historical challenges

andy.fornadel@thermofisher.com | 6-August-2024

EPA methods for environmental analysis

- EPA method 6020B is one of the most applied guidelines in environmental laboratories
- Often used as a starting point for method creation in other industries
- In contrast to EPA method 200.8*, the use of Collision/Reaction Cells (CRC) is permitted

21 elements

- ✓ Method for regulatory compliance
- \checkmark QC acceptance criteria for lab accreditation

18 common elements

Thermo Fi

23 elements

For guidance purpose, performance-based method

Water Analysis using ICP-MS

- 1: Non-spectral interferences
- Signal suppression and enhancement
 - Suppression caused by high levels of easily ionised elements (Na, K, Mg) in the sample
 - Enhancement caused by the presence of carbon in the samples (As and Se in particular affected)

- 1: Non-spectral interferences
- Signal suppression and enhancement
 - Suppression caused by high levels of easily ionised elements (Na, K, Mg) in the sample
 - Enhancement caused by the presence of carbon in the samples (As and Se in particular affected)
- Can correct for signal suppression using internal standards and matrix matching standards to samples
- Can overcome enhancement effects also by sample to standard matrix matching
 - By adding an organic solvent such as isopropanol to all blanks, standards and samples

- 2: Spectral interferences
- Sub-divided into 'polyatomic' and 'isobaric'
- Polyatomic interferences formed from combination of plasma gases and sample matrix constituents
 - ⁴⁰Ar¹⁶O⁺ on ⁵⁶Fe⁺, ⁴⁰Ar³⁵Cl⁺ on ⁷⁵As⁺, ⁴⁰Ar₂⁺ on ⁸⁰Se⁺

Gold

- 2: Spectral interferences
- Sub-divided into 'polyatomic' and 'isobaric'
- **Polyatomic interferences** formed from combination of plasma gases and sample matrix constituents
 - ⁴⁰Ar¹⁶O⁺ on ⁵⁶Fe⁺, ⁴⁰Ar³⁵Cl⁺ on ⁷⁵As⁺, ⁴⁰Ar₂⁺ on ⁸⁰Se⁺
- **Isobaric interferences** caused by overlap of isotopes of different elements that have the same mass
 - ⁴⁸Ca⁺ on ⁴⁸Ti⁺, ⁶⁴Ni⁺ on ⁶⁴Zn⁺

- 2: Spectral interferences
- Sub-divided into 'polyatomic' and 'isobaric'
- **Polyatomic interferences** formed from combination of plasma gases and sample matrix constituents
 - ⁴⁰Ar¹⁶O⁺ on ⁵⁶Fe⁺, ⁴⁰Ar³⁵Cl⁺ on ⁷⁵As⁺, ⁴⁰Ar₂⁺ on ⁸⁰Se⁺
- Isobaric interferences caused by overlap of isotopes of different elements that have the same mass
 - ⁴⁸Ca⁺ on ⁴⁸Ti⁺, ⁶⁴Ni⁺ on ⁶⁴Zn⁺
- Doubly charged ion interferences, formed from elements having a 2nd ionization potential lower than the ionization potential of argon (15.8 eV)

AU

- Type of isobaric interference
- Appear at half the parent isotope mass
- ¹⁵⁰Nd²⁺ on ⁷⁵As⁺, ¹⁵⁶Gd²⁺ on ⁷⁸Se⁺

Removing interferences with single quadrupole ICP-MS

5% HNO₃ 5% HCI, 1% IPA 1% H₂SO₄ 200ppm Sodium, 500ppm Phosphorous, 200ppm Calcium

- Chlorine causes severe interferences on vanadium (³⁵Cl¹⁶O⁺), chromium (³⁵Cl¹⁶O¹H⁺) and arsenic (⁴⁰Ar³⁵Cl⁺)
- Carbon interferes with chromium (⁴⁰Ar^{12,13}C⁺)
- Sulfur causes interferences with titanium (³²S¹⁶O⁺) or vanadium (³²S¹⁸O¹H⁺)
- Sodium may bias results for copper (⁴⁰Ar²³Na⁺)

He KED collision cell

- Cell with ion lenses purged with He reduces polyatomic interferences.
 - Some designs also serve as a "prefilter" to the quadrupoles

Polyatomic interference of selenium

Symbol	Mass	Abundance	Interferences
74Se	73.9225	0.90	74Ge(36.500%); 16O
76Se	75.9192	9.00	76Ge(7.800%); 36Ar
77Se	76.9199	7.60	40Ar + 37Cl(24.133%).
78Se	77.9173	23.60	78Kr(0.350%); 14N + .
80Se	79.9165	49.70	80Kr(2.250%); 40Ar +
82Se	81.9167	9.20	82Kr(11.600%); 1H + .

 Single analysis mode He KED achieved excellent interference removal and detection of low concentration (below 1 µg·L⁻¹) analytes with high ratio of signal/background.

Removing interferences with single quadrupole ICP-MS

5% HNO_3 5% HCI, 1% IPA 1% H_2SO_4 200ppm Sodium, 500ppm Phosphorous, 200ppm Calcium Same matrix spiked with Li, Be, B, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Co, Ni, Cu, Zn, Ga, Ge, As, Se at 10 μ g·L⁻¹ each

Thermo Fisher

Removing interferences with single quadrupole ICP-MS

STD mode: Polyatomic interference leads to poor IDL and elevated BEC

Thermo Fisher

KED mode: Polyatomic interference removed - IDL below 5 ppt

Argon Gas Dilution

Auxiliary flow of argon gas added to aerosolized sample

I hermo F

• Performs **online dilution** in aerosol, reduces time/error associated with manual liquid dilution

Reduces matrix load into plasma

- Reduces signal suppression from abundant, easily-ionized species (Na, Ca, K, etc.)
- Reduces matrix/salt build-up in instrument, carryover

Argon Gas Dilution

Thermo Fisher S C I E N T I F I C

- Compatible with the standard sample introduction system components
- PFA-ST Microflow nebulizer is more resistant against blockage when analyzing high salt loads
- Argon humidification beneficial for salt-rich matrices

Argon Gas Dilution

- Tuning of the dilution level is achieved by variation of nebulizer gas flow and additional gas flow added
- As a consequence of the dilution, a lower oxide level is achieved, indicating a more robust plasma
- Tuning all dilution levels is fully automated

Sample Matrices	% TDS Content [%]	Dilution level
Drinking Water and Surface Water	< 0.5	Low
Wastewaters	< 1.0	
Soil digests, geological & mining samples	< 1.0	Mid
Brackish waters, fracking flowback solutions	< 1.5	
Brackish waters, sea water, brine solutions	< 3.0	High
Highly concentrated brine solutions	> 4.0	U

Thermo Fisher

Experimental set up

Parameter	Value
Nebulizer	Micromist Nebulizer (400 µl.min ⁻¹)
Interface cones	Ni – tipped sample and Skimmer
Skimmer cone Insert	High Matrix
Spray chamber	Cyclonic quartz
Injector	Quartz, 2.5 mm ID
Torch	Quartz Torch
RF Power (W)	1550
Number of Replicates	3
Spray Chamber Temp (⁰ C)	2.7
KED settings (gas flow rate in mL·min ⁻¹)	4.8 (with a 3V kinetic energy barrier)

Analysis samples

ltem	Place	Category	Note
Tap water 1	Bremen West	Tap water	-
Tap water 2	Bremen South	Tap water	-
Tap water 3	Bremen North	Tap water	-
Surface Water 1	Bremen South	Lake	Sampling location is close to a major highway
Surface Water 2	Bremen North	Lake	Sampling location is close to an area with heavy traffic
Well water	Bremen North	Well water	Ground water sample, no additional treatment
Waste water 1	Bremen	Industrial waste water	Elevated Na, Ca, Fe
Waste water 2	Bremen	Industrial waste water	Elevated Na, Ca, Fe
Brackish water 1	-	Brackish water	Simulated
Brackish water 2	-	Brackish water	Simulated
SLRS-5	Ottawa	River	CRM
NASS-6	Nova Scotia	Seawater	CRM

Thermo Fisher

SCIENTIFIC

Accuracy - river water CRM SLRS-5

Concentration results in µg·L⁻¹

	CRM values	Measured	Recovery (%)	Result		CRM values	Measured	Recovery (%)	Result
AI	49.5	50.6	102%	 Image: A second s	Мо	0.27	0.27	100%	 Image: A second s
Sb	0.3	0.35	117%	 Image: A second s	Ni	0.476	0.525	110%	×
As	0.413	0.478	116%	 Image: A second s	Sr	53.6	55.9	104%	 Image: A second s
Ва	14.0	15.2	109%	~	U	0.093	0.092	99%	 Image: A second s
Cr	0.208	0.216	104%	~	V	0.317	0.304	96%	 Image: A second s
Со	0.05	0.052	104%	\checkmark	Zn	0.845	0.960	114%	 Image: A second s
Cu	17.4	18.7	107%	 Image: A second s	Na	5,380	4,890	91%	 Image: A second s
Fe	91.2	91.3	100%	 Image: A second s	Mg	2,540	2,450	96%	 Image: A second s
Pb	0.081	0.077	95%	 Image: A second s	K	839	823	98%	 Image: A second s
Mn	4.33	4.64	107%	~	Ca	10,500	9,900	94%	~

Accuracy - Seawater

NAAS-6: Seawater CRM

Analyte	Certified conc (µg.L ⁻¹)	Obtained conc (µg.L ⁻¹)	% Accuracy
As	1.43	1.64	114.7
Cd	0.0311	0.026	87.5
Со	0.015	0.027	118.6
Mn	0.53	0.598	112.9
Мо	9.89	10.553	106.7
Ni	0.31	0.359	115.9
V	1.46	1.64	112.3

Spike and accuracy check in seawater

Analytes	Spiked conc (µg.L ⁻¹)
As, Cd, Co, Mn, Ni, Pb & Tl	4
Cr, Cu, Sb, Zn	8
Se, V	20
Ba	40
AI	80
Fe	800

Spike and recovery – waste and brackish water

Analyte	Observed concentration (mg·L ⁻¹)		Spiked	Observed c (mg	oncentration g·L ^{_1})		Average %
	Sample 1 (unspiked)	Sample 2 (unspiked)	(mg·L ⁻¹)	Sample 1 (spiked)	Sample 2 (spiked)	70 RPD	recovery
Ag	< 0.0001	<0.0001	0.02	0.021	0.021	2.4	103
AI	<0.025	<0.025	10	10.1	9.4	7.2	97
As	<0.001	<0.001	0.2	0.179	0.181	1.1	90
Ва	<0.001	<0.001	0.2	0.185	0.185	0.0	92
Ве	<0.001	<0.001	0.2	0.221	0.196	12.0	104
Ca	455.2	451.6	N/A	N/A	N/A	0.9	N/A
Cd	<0.001	<0.001	0.2	0.174	0.171	1.7	86
Со	<0.001	<0.001	0.2	0.177	0.177	0.0	88
Cr	<0.001	<0.001	0.2	0.179	0.176	1.7	88
Cu	<0.001	<0.001	0.2	0.183	0.177	3.3	90
Fe	38.8	39.6	10	47.3	47.1	0.4	80
Hg	<0.0001	<0.0001	0.5	0.473	0.513	8.1	99
К	86.1	85.2	10	95.2	94.4	0.8	92
Mg	90.2	93.1	N/A	N/A	N/A	3.1	N/A
Mn	<0.001	<0.001	0.2	0.185	0.182	1.6	91
Мо	<0.001	<0.001	0.2	0.198	0.2	1.0	99
Na	175	169	N/A	N/A	N/A	3.7	N/A
Ni	<0.001	<0.001	0.2	0.184	0.183	0.5	91
Pb	<0.001	<0.001	0.2	0.176	0.177	0.6	88
Sb	<0.001	<0.001	0.2	0.192	0.188	2.1	95
Se	<0.001	<0.001	0.2	0.178	0.184	3.3	90
TI	<0.001	<0.001	0.2	0.171	0.17	0.6	85
V	<0.001	<0.001	0.2	0.176	0.178	1.1	88
Zn	<0.001	< 0.001	0.2	0.171	0.167	2.4	84

Thermo Fisher

SCIEN'

Robustness

- Daily sample load was approximately 300 samples per day
- Stability of CCV analytes and internal standards as a check for deviation

24 andy.fornadel@thermofisher.com | 6-August-2024

- ICP-MS is a highly sensitive, multi-element technique for the analysis of environmental samples, such as drinking water, surface water, and wastewater
- Historically challenging with diverse and complex matrices
 - Some challenges addressed through careful sample preparation, offline dilution, matrix matching, use of internal standards
- Modern developments in ICP-MS technology have lessened common challenges
 - KED collision cell (with low mass cutoff)
 - Argon gas dilution
 - Robust sample introduction and interface components
- Enables routine, high-throughput analysis of mixed-matrix samples while yielding excellent recoveries and stability
- ICP-MS is growing in routine use to benefit from high sensitivity while minimizing operational challenges and spectral interferences.

Thank you

The line has been unmuted for questions.

25 andy.fornadel@thermofisher.com | 6-August-2024