

EPA Method 1621

Determination of Adsorbable Organic Fluorine in Aqueous Matrices by Combustion Ion Chromatography

S. Bekah Burket, Ph.D. EPA OW/OST/Engineering and Analysis Division

The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the Agency. Any mention of trade names or commercial products does not constitute EPA endorsement or recommendation for use.

The EPA acknowledges the support of the several organizations and individuals who participated in the validation of Method 1621, including members of the EPA's workgroup, the laboratories that participated in the study, the organizations that provided the bulk samples of wastewater, and the EPA's support contractor staff who oversaw the day-to-day operations during the study and assisted in the preparation of study reports and method documents. At a minimum, that includes the following:

Thank you!

- EPA ORD/CESER
- EPA Robert S. Kerr Environmental Research Laboratory, Ada, OK
- Delaware River Basin Commission
- Hampton Roads Sanitation District
- Massachusetts Water Resources Authority
- Los Angeles City Sanitation
- ASTM D19
- General Dynamics Information Technology

- Pace Analytical Services, MA
- Enthalpy Analytical
- Eurofins, Lancaster, PA
- Mandel Scientific Inc.
- SGS AXYS, Canada
- Thermo Fisher, IC Applications Lab
- Trace Elemental Instruments
- University of North Carolina at Charlotte

Increasing body of literature for PFAS, including human health and ecotoxicology, treatment technologies, occurrence, and analytical methods

Environmental Measurement Symposium, August 5-9, 2024

5

Target vs. Non-target Analysis

- Target:
 - Only find what you're looking for
 - Known analytes
 - Standards available
- Non-target:
 - Known and unknown analytes
 - Data can be reanalyzed

Analytical challenges of PFAS

- State, local and International regulatory agencies taking action to address release of PFAS
- Thousands of PFAS in use
- Challenging and expensive to develop targeted methods
 ~100 PFAS standards
- Stakeholder need for aggregate methods

8

Adsorbable Organic Fluorine

- Increasing demand for aggregate methods like AOF
- Naturally occurring
 organofluorines are rare
- Collaborated with ASTM D19 and EPA ORD on singlelaboratory validation of Draft Method 1621 for AOF

Timeline

Jun. 2019 First draft study plan		May 2021 SLV study plan finalized		Sep. 2022 MLV study plan finalized		
	Aug. 2020 EPA Workgroup formed		Apr. 2022 Draft Method 1621 posted to website		Jan. 2024 Final Method 1621 posted to website	

- The main objective of the validation was to develop and characterize the performance of a new method for adsorbable organofluorine that:
 - Provided an aggregate response for adsorbable organofluorine compounds using CIC
 - Could measure AOF at levels useful as a screening tool
 - Could be implemented in a typical environmental laboratory using commercially available materials and instrumentation

Environmental Measurement Symposium, August 5-9, 2024

- Sample matrix selection:
 - Total suspended solids (TSS) > 40 mg/L
 - Total dissolved solids (TDS) > 100 mg/L
 - Oil and grease (O&G) > 20 mg/L
 - Conductivity as NaCl > 120 mg/L
 - Hardness as CaCO3 > 140 mg/L

- Aqueous matrices included across both the SLV and MLV:
 - POTWs
 - Bus washing station
 - Hospital effluent
 - Metal finisher
 - Industrial discharger
 - Chemical manufacturer
 - Surface water
 - Dairy effluent
 - Pharmaceutical effluent

- Single-Laboratory Validation completed April 2022:
 - Calibration and sorbent testing
 - Recovery ranged from about 40-200% for analytes tested:
 - 36 individual PFAS
 - 3 different mixed PFAS standards
 - 3 fluorinated pharmaceuticals
 - 3 fluorinated pesticides
 - IPR and MDL studies
 - Ten wastewater and surface water matrices were tested at two spike concentrations

https://www.epa.gov/cwa-methods/cwa-analytical-methods-and-polyfluorinated-alkyl-substances-pfas

Granular Activated Carbon Column Vendor Comparison							
Vendor	Capping Material	Replicate 1	Replicate 2	Replicate 3	Mean	Std Dev	
GAC + Capping Material (µg F ⁻ /	(L)						
Nittoseiko-Mandel	Glass wool	0.245	0.145	0.371	0.254	0.113	
CPI	Glass wool	0.035	0.184	0.060	0.093	0.080	
UCT Enviro-Clean	Glass wool	0.180	0.224	0.360	0.255	0.094	
Analytik-Jena (AOX/TOX)	Glass wool	8.51	9.27	11.02	9.60	1.29	
Analytik-Jena (Low Fluorine)	Cellulose acetate	0.201	0.165	0.465	0.277	0.164	
Sigma-Aldrich	Cellulose acetate	0.289	-0.148	-0.154	-0.004	0.254	
GAC Only (μg F ⁻ /L)							
Nittoseiko-Mandel		0.361	0.401	0.242	0.335	0.083	
CPI		-0.018	-0.017	-0.042	-0.026	0.014	
UCT Enviro-Clean		-0.029	0.096	-0.027	0.013	0.072	
Analytik-Jena (AOX/TOX)		0.770	0.822	0.740	0.777	0.041	
Analytik-Jena (Low Fluorine)		0.088	-0.003	-0.021	0.021	0.058	
Sigma-Aldrich		0.095	0.132	0.088	0.105	0.024	

Background Fluorine Contribution by Column Capping Material								
		Average µg F⁻/L						
	GAC	GAC + Capping	Capping	Capping				
Vendor			Material	Material				
Nittoseiko-Mandel	0.335	0.254	-0.081	0				
CPI	-0.026	0.093	0.093	100.0				
UCT Enviro-Clean	0.013	0.255	0.242	94.9				
Analytik Jena (Low Fluorine)	0.021	0.277	0.256	92.4				

Adsorption of PFBS at 600 ng per GAC Vendor

		Percent Recoveries						
GAC Vendors	Rep 1	Rep 2	Rep 3	Rep 4	Mean	RSD (%)		
Nittoseiko-Mandel*	67.7	82.1	88.7	91.3	82.5	12.8		
CPI*	118.6	70.7	74.7	81.2	86.3	7.7		
UCT Enviro-Clean*	64.7	73.1	77.4	173.1	97.1	52.5		
Analytik-Jena (Low Fluorine)	82.9	93.2	91.4	100.1	91.9	7.7		

*Issues with capping material during elution

Carbon Migration from GAC Columns

Adsorption of PFBS at 600 ng per GAC Vendor

GAC Vendors	Rep 1	Rep 2	Rep 3	Rep 4	Mean	RSD (%)
Nittoseiko-Mandel*	67.7	82.1	88.7	91.3	82.5	12.8
CPI*	118.6	70.7	74.7	81.2	86.3	7.7
UCT Enviro-Clean*	64.7	73.1	77.4	173.1	97.1	52.5
Analytik-Jena (Low Fluorine)	82.9	93.2	91.4	100.1	91.9	7.7

*Issues with capping material during elution

Carbon Migration from GAC Columns

- During the SLV, we also tested:
 - Background levels of inorganic fluorine with two forms of nitrate washes
 - NaNO₃
 - KNO₃
- Compound recoveries by direct combustion

- During the SLV, we also tested:
 - Background levels of inorganic fluorine with two forms of nitrate washes
 - NaNO₃
 - KNO₃
- Compound recoveries by direct combustion
- Adsorption of individual PFAS compounds at 6 μg F-/L and 19 μg F-/L
 - subset of eight individual PFAS selected after extensive method validation at ORD that included 35 individual PFAS, two fluorinated pharmaceuticals and two fluorinated herbicides

Average % recoveries for adsorption capacity of select individual compounds at (~6 and ~19 µg F-/L)

- During the SLV, we also tested:
 - Background levels of inorganic fluorine with two forms of nitrate washes
 - NaNO₃
 - KNO₃
- Compound recoveries by direct combustion
- Adsorption of individual PFAS compounds at 6 μg F-/L and 19 μg F-/L
- % breakthrough from top GAC to bottom GAC
- Analytical interferences
 - Inorganic fluorine: adding nitrate to sample increased allowable inorganic fluorine to 8 mg/L
 - Inorganic chloride: tested 100, 500, and 1000 mg Cl-/L

- Method defined parameter
- Sample preparation
 - 100 mL
 - 90 days @ 0-6° C
 - Measure TSS
 - Verify sample $pH \ge 5$
 - Check for chlorine and dechlorinate
 - if needed
 - Determine concentration of inorganic fluoride
 - Sample volume determined by weight
 - Add 0.5 mL of 2M sodium nitrate

- Slowly load sample onto GAC columns
- Wash GAC columns with 25 mL of 0.01 M sodium nitrate
- Rinse with 20 mL reagent water
- Dry columns
- Transfer carbon to combustion boats
- Sample ready for combustion and analysis

- Multi-Laboratory Validation completed January 2024:
 - 10 labs, 9 wastewaters and surface water matrices were tested at three spike concentrations
 - Calibration testing (including extended range up to 100 µg F-/L)
 - PFHxS used in every test matrix; PFBA, PFOS, and a mixed standard were also tested
 - Initial precision and recovery and method detection limit
 - % breakthrough was ≤ 50% for 94% of the 475 detected results across the nine wastewater matrices tested

- 10 lab pooled MDL_s was 1.5 ppb
 - Maximum MDL_s was 2.9 ppb, maximum MDL_b was 3.2 ppb

- 10 lab pooled MDL_s was 1.5 ppb
 - Maximum MDL_s was 2.9 ppb, maximum MDL_b was 3.2 ppb
- EPA established an QC acceptance limits:
 - IPR recovery: 80 120%, with an RSD < 20%
 - OPR recovery: 70 130%
 - MS/MSD recovery: 50-150%, with an RPD \leq 30%

- 10 lab pooled MDL_s was 1.5 ppb
 - Maximum MDL_s was 2.9 ppb, maximum MDL_b was 3.2 ppb
- EPA established an QC acceptance limits:
 - IPR recovery: 80 120%, with an RSD < 20%
 - OPR recovery: 70 130%
 - MS/MSD recovery: 50-150%, with an RPD \leq 30%
- Method blank limit < 4.0 µg F-/L
 - 97% of study data fell below this limit

- 10 lab pooled MDL_s was 1.5 ppb
 - Maximum MDL_s was 2.9 ppb, maximum MDL_b was 3.2 ppb
- EPA established an QC acceptance limits:
 - IPR recovery: 80 120%, with an RSD < 20%
 - OPR recovery: 70 130%
 - MS/MSD recovery: 50-150%, with an RPD \leq 30%
- Method blank limit < 4.0 µg F-/L
 - 97% of study data fell below this limit

https://www.epa.gov/cwa-methods/cwa-analytical-methods-and-polyfluorinated-alkyl-substances-pfas

Recoveries for Different Standards Spiked into Sample #7								
Spiking		Nominal Spike	%	Recover	у	RSD		
Standard	# of Results	Conc. (µg F ⁻ /L)	Mean	Min	Max	(%)		
	18	10	64.1	41.0	86.9	23.9		
FFDA	18	30	63.6	22.8	107.8	27.5		
PFOS	18	10	93.6	41.1	145.0	23.6		
	18	30	84.5	33.3	102.3	23.8		
Mixed PFAS	18	10	83.1	36.9	107.7	22.6		
	18	30	83.1	53.7	95.2	11.7		

Comparison of Inorganic vs. Organic Standard Calibrations					
	Concentration (µg	Recovery (%)			
Calibration Std	F ⁻ /L) NaF		PFHxS		
CS-1	1.0	99.0	97.8		
CS-2	2.0	102.7	105.0		
CS-3	5.0	98.9	99.9		
CS-4	10.0	98.8	98.5		
CS-5	25.0	100.7	96.7		
CS-6	50.0	0.0 99.9 102.6			
	%RSE	2.0	4.1		

Combustion Efficiencies of Standards by Direct Combustion							
	Inorganic (Calibration	Organic Calibration				
	Mass (ng F ⁻)	% Recovery	Mass (ng F ⁻)	%			
Standard				Recovery			
NaF	1000	99.5	1000	95.9			
PFBA	302	48.6	304	98.3			
PFOS	653	108.8	667	93.4			
Mixed PFAS	742	94.6	745	99.2			

Recoveries of Mixed PFAS Standard, Inorganic vs. Organic Calibrations							
	Inorganic Calib	ration	Organic Calibration				
Nominal Spike Conc (µg F⁻/L)	Mean Recovery (%)	RPD (%)	Mean Recovery (%)	RPD (%)			
10	100.5	14.5	93.0	3.2			
30	91.6	1.8	91.5	3.1			

Some Considerations

- Not all PFAS have same performance
 - % breakthrough higher for PFBA
 - Recoveries lower for short-chain and longer chain PFAS
- Not all GAC have same performance
- Differences in data quality possible with different adsorption units

Some Considerations

UNITED STATES

- Not all PFAS have same performance
 - % breakthrough higher for PFBA
 - Recoveries lower for short-chain and longer chain PFAS
- Not all GAC have same performance
- Differences in data quality possible with different adsorption units

Images from MLV participant laboratories

Check your tubes

Takeaways

- Aggregate methods are useful tool in the PFAS toolbox
- AOF is helpful to pinpoint samples which may require follow up analysis by targeted methods, such as Method 1633
- AOF detection limits are sufficiently sensitive for screening wastewater matrices for organofluorines

For more information or additional feedback, please contact:

Dr. Bekah Burket Engineering and Analysis Division Office of Science and Technology Office of Water Phone: 202-566-2539 E-Mail: <u>burket.sarah@epa.gov</u>