Targeted and Non-Targeted Analysis LC-Orbitrap MS workflow for the analysis of more than 40,000 PFAS compounds

Cynthia Grim, M.S.

Product Applications Specialist III, Environmental and Food Safety NEMC 2024 August 6th 2024

The world leader in serving science

cynthia.grim@thermofisher.com | 6-June-2024

Agenda

• What are PFAS and why study them?

- Considerations for selecting the right workflow for targeted and non-targeted analysis in one injection
- Summary of the capabilities of Compound Discoverer[™] library to analyze PFAS in surface water, AFFF foam, and food contact material samples
- What's next?

Background – What are PFAS compounds?

- PFASs are **P**er- and **P**oly**F**luorinated Alkyl **S**ubstances. Exclusively anthropogenic.
- Structures contain a hydrophobic perfluoroalkyl backbone and a hydrophilic end group
- Include a diverse range of compounds with a variety of chain lengths and end groups
- Industrial uses
 - Industrial polymers
 - Stain repellants
 - Aqueous film forming foams (AFFF) fire fighting applications
- Areas of elevated concentrations and concern are:
 - Airports
 - Run-off from incidents of fire
 - Landfill leachate
 - WWTP effluent

Thermo

PFAS transport through the environment

Thermo Fisher S C I E N T I F I C

PFAS testing workflows

Section 2017 Consumables – Validated Methods – Application Support and Service – PFAS Libraries – Compliance Software

If you've missed our poster (TP068)...

Automated dispersive liquid liquid microextraction for PFAS analysis in drinking water

- 56 compounds covering compounds of interest for EU and US regulations
- 18 minutes to extract two samples
- 15 mL sample, sub ppt quantitation
- Non-targeted analysis in a separate injection

Poster will be available on https://thermofisher.com/asms

Experimental

cynthia.grim@thermofisher.com | 6-June-2024

Acquisition Method Details

Orbitrap Exploris 240 Mass Spectrometer

The Thermo ScientificTM Orbitrap ExplorisTM 240 mass spectrometer provides the performance and versatility needed to drive discovery and identification, and the quantitative precision and accuracy to confidently scale up for impact.

Mass range: 40 - 6000 m/z

Quad isolation: down to 0.4 Da & up to *m/z* 2500

Max resolution: 240,000 at *m/z* 200

Mass Accuracy: 3 ppm RMS external, 1 ppm RMS internal with Thermo Scientific[™] EASY-IC[™] Source

Polarity Switching: one Full Cycle @ >1.4 Hz in Full MS, >1.6 Hz in tSIM (R = 60,000)

Thermo

Dissociation: Higher energy Collisional Dissociation (HCD)

Scan Analysis: Full MS, tSIM, dd-MS2 (Top N), tMS2, AIF, AcquireX workflow

Multiplexing: up to 20 for tSIM, up to 2 for tMS2

Thermo Fisher

Analytes

Compound	CAS
Perfluoroalkyl carboxylic acid	ds
PFBA	375-22-4
PFPeA	2706-90-3
PFHxA	307-24-4
PFHpA	375-85-9
PFOA	335-67-1
PFNA	375-95-1
PFDA	335-76-2
PFUnA; PFUdA	2058-94-8
PFDoA	307-55-1
PFTrDA; PFTriA	72629-94-8
PFTeA	376-06-7
PFHxDA*	67905-19-5
PFODA*	1763-23-1
Fluorotelomer sulfonic acids	
4:2 FTSA; 4:2 FTS	757124-72-4
6:2 FTSA; 6:2 FTS	27619-97-2
8:2 FTSA; 8:2 FTS	39108-34-4
10:2 FTSA; 10:2 FTS*	120226-60-0

Compound	CAS
Perfluoroalkyl sulfonic acids	(acid form)
PFBS	375-73-5
PFPeS	2706-91-4
PFHxS	355-46-4
PFHpS	375-92-8
PFOS	1763-23-1
PFNS	68259-12-1
PFDS	335-77-3
PFUnDS*	749786-16-1
PFDoS	79780-39-5
PFTrDS*	343629-46-9
Fluorotelomer carboxylic acid	ds
3:3 FTCA	356-02-5
5:3 FTCA	914637-49-3
7:3 FTCA	812-70-4
Per- and Polyfluoroether carb	ooxylic acids
HFPO-DA (Gen X)	13252-13-6
DONA; ADONA	919005-14-4
PFMPA	377-73-1
NFDHA	151772-58-6
PFMBA	863090-89-5

Compound	CAS
Per- and Polyfluoroether sulf	onic acids
6:2 CI-PFESA; 9CI- PF3ONS	756426-58-1
8:2 CI-PFESA; 11CI- PF3OUdS	763051-92-9
PFEESA	113507-82-7
Perfluoroalkyl sulfonamides	
FBSA; PFBSA*	30334-69-1
MeFBSA; MePFBSA*	68298-12-4
FHxSA*	41997-13-1
FOSA; PFOSA	754-91-6
MeFOSA; N-MeFOSA	31506-32-8
EtFOSA; N-EtFOSA	4151-50-2
Perfluorooctane sulfonamido	acetic acids
NMeFOSAA; MeFOSAA	2355-31-9
NEtFOSAA; EtFOSAA	2991-50-6
Perfluorooctane sulfonamide	ethanols
MeFOSE	24448-09-7
EtFOSE	1691-99-2
Other	
PFECHS	646-83-3
6:2 diPAP*	57677-95-9
8:2 diPAP*	678-41-1
6:2/8:2 diPAP*	943913-15-3

* Non-EPA 1633 compounds were used for confirmation purposes only

Experimental – Liquid Chromatography

Thermo Scientific Vanquish Flex Binary UHPLC System with PFAS Upgrade Kit

- Mobile Phase A: UHPLC-MS grade water + 0.1% Optima™ LC/MS grade acetic acid
- Mobile Phase B: 78% ACN + 20% MeOH + 2 mM ammonium acetate (aq)
- Gradient: See table
- PFAS Delay Column: 3.0 x 50 mm, 1.9 µm Thermo Scientific[™] Hypersil GOLD[™]
- Analytical Column: 2.1 x 100 mm, 2.2 µm Thermo Scientific[™] Acclaim RSLC C18
- Column Temperature: 40 °C
- Injection Volume: 5 µL (with Strong Solvent Loop)
- Autosampler Temperature: 22 °C (to minimize PFAS adsorption losses)

No Time		[ml/min]	%B	Curve
1	0.000		Run	
2	0.000	0.400	5.0	5
3	1.000	0.400	30.0	5
4	2.000	0.400	45.0	5
5	3.000	0.400	0.400 55.0	
6	14.250	0.400	100.0	5
7	17.500	0.400	100.0	5
8	17.700	0.400	5.0	5
9	22.000	0.400	5.0	5
10	New Row			
11	22.000		Stop Run	l:

Elan

All chemicals listed are from Thermo Fisher Scientific

Experimental – Mass Spectrometry

Thermo Scientific Orbitrap Exploris 240 Mass Spectrometer

- **Ionization Mode:** HESI, Negative mode
 - HESI source parameters: see figure at right
- MS Acquisition Modes: Full-Scan MS, Data-Dependent MS2 (DDMS2)
 - Full-MS scan range: m/z 150-1100; RF Lens = 55%
- DDMS2 Parameters: Quad Isolation Width = 1.5 Da; Stepped CE (Absolute) = 2, 10, 25, 55 V; Maximum Ion Time = 50 ms; see more details on next slide
- Resolution: Full-Scan MS = 240,000 FWHM; DDMS2 = 30,000 FWHM
- Mild Trapping: On; to limit precursor ion fragmentation
- **EasyIC:** On (Scan-to-scan); for all acquisition modes (for best mass accuracy)

Ion	Source Properties	
	Ion Source Type	H-ESI *
	Spray Voltage	Static *
	Positive Ion (V)	3400
	Negative Ion (V)	1000
	Gas Mode	Static -
	Sheath Gas (Arb)	55
	Aux Gas (Arb)	12
	Sweep Gas (Arb)	0.5
	lon Transfer Tube Temp (°C)	225
	Vaporizer Temp (°C)	250
	APPI Lamp	Not in Use +

Experimental – Mass Spectrometry (2)

DDMS2 Parameters – Orbitrap Exploris 240 Mass Spectrometer

- Intensity: threshold for MS2 event (7.0E4)
- Dynamic Exclusion: excludes precursor ion from MS2 after N events and X sec
 - N = 1 events, X = 5 sec
- Targeted Mass: list of precursor ions for MS2 above Intensity and in RT
 Window (if set)
 - 102 PFAS targets (native and isotopically-labeled compounds)
 - Checked "Perform dependent scan on most intense ion if no targets found"
- **Targeted Mass Exclusion:** list of precursor ions to not consider for MS2 within RT Window (if set)
- Apex Detection: MS2 within % of half of user set Expected LC Peak Width (30%)

Note: integer (4) in "scans" box represents number of DDMS2 events after each Full Scan

A LOOM & LOOM & A LOOM & A

Results

Calibration curve results acquired and processed in Thermo Scientific[™] Chromeleon[™] Chromatography Data System

13 cynthia.grim@thermofisher.com | 6-June-2024

Calibration Level 8 – Chromatogram (XICs)

62.5 ng/mL – 1562.5 ng/mL (Methanol with 4% water, 1% NH4OH, 0.625% HOAc)

Thermo Fisher

XIC windows set to ± 5 ppm

Calibration results: PFOS (sum, neat), Full-MS

0.1 - 62.5 ng/mL (sum, salt form), Linear, 1/x weighting, r² > 0.9998

Injection Name	Туре	Level	RT	Quant Ion	Area	Amount	Accuracy
Selected Peak:			min	m/z	counts*min		%
Cal 1 - 5 uL	Calibration Standard	1	9.42	498.93020	4768	0.1126	111.1803
Cal 2 - 5 uL	Calibration Standard	2	9.40	498.93020	10229	0.1946	97.2156
Cal 3 - 5 uL	Calibration Standard	3	9.40	498.93020	30842	0.4823	96.3301
Cal 4 - 5 uL	Calibration Standard	4	9.38	498.93020	83377	1.2359	98.8580
Cal 5 - 5 uL	Calibration Standard	5	9.40	498.93020	168904	2.4349	97.3243
Cal 6 - 5 uL	Calibration Standard	6	9.38	498.93020	337439	4.8952	97.8583
Cal 7 - 5 uL	Calibration Standard	7	9.38	498.93020	883398	12.3721	98.9665
Cal 8 - 5 uL	Calibration Standard	8	9.37	498.93020	4615301	62.8225	100.5133

PFOS demonstrates high accuracy and linearity

Thermo Fisher

Calibration results: (additional)

	lnj.	Injection Name	Туре	Level	RT	Quant Ion	Area	Amount	Accuracy
	No.	Selected Peak:			min	m/z	counts*min		%
	6	Cal 1 - 5 uL	Calibration Standard	1	5.99	241.01050	5055	0.565	111.5903
	7	Cal 2 - 5 uL	Calibration Standard	2	5.98	241.01050	10885	0.964	96.3385
3:3 FTCA	8	Cal 3 - 5 uL	Calibration Standard	3	5.98	241.01050	29690	2.372	94.6357
r ² > 0.9996	9	Cal 4 - 5 uL	Calibration Standard	4	6.00	241.01050	80704	5.906	94.1904
0.5 210 25 ng/ml	10	Cal 5 - 5 uL	Calibration Standard	5	6.00	241.01050	171588	12.263	98.0705
0.5 – 510.25 fig/file	11	Cal 6 - 5 uL	Calibration Standard	6	5.99	241.01050	347343	24.838	99.3508
Linear, 1/x weighting	12	Cal 7 - 5 uL	Calibration Standard	7	6.00	241.01050	923560	65.060	103.9362
	13	Cal 8 - 5 uL	Calibration Standard	8	5.99	241.01050	4618092	308.527	99.4416
	lni.	Injection Name	Туре	Level	RT	Quant Ion	Area	Amount	Accuracy
	No.	Selected Peak:	171-2		min	m/z	counts*min		%
	6	Cal 1 - 5 uL	Calibration Standard	1	8.22	412.96640	3767	0.094	94.2427
PFOA (sum)	7	Cal 2 - 5 uL	Calibration Standard	2	8.21	412.96640	9536	0.205	102.7949
r ² > 0.9999	8	Cal 3 - 5 uL	Calibration Standard	3	8.21	412.96640	25416	0.507	101.4630
0.1 + 62.5 ng/m	9	Cal 4 - 5 uL	Calibration Standard	4	8.22	412.96640	65812	1.242	99.3772
0.1 – 02.5 fig/fil	10	Cal 5 - 5 uL	Calibration Standard	5	8.18	412.96640	136699	2.545	101.7818
Linear, 1/x weighting	11	Cal 6 - 5 uL	Calibration Standard	6	8.17	412.96640	277080	5.052	101.0458
	12	Cal 7 - 5 uL	Calibration Standard	7	8.15	412.96640	723101	12.342	98.7199
	13	Cal 8 - 5 uL	Calibration Standard	8	8.17	412.96640	3581412	62.559	100.0956
	Ini	Inication Name	Turna	Lawal	DT	Quantian	A	Amount	
	inj.	Injection Name	туре	Level	KI	Quant ion	Area	Amount	Accuracy
	NO.	Col 1 5 ul	Colibration Standard	1	5.01	226.07420	Counts min	0.405	70
4:2F15	7	Cal 2 - 5 uL	Calibration Standard	2	5.01	320.97430	21662	0.405	00.5000
r ² > 0.9999	0	Cal 2 - 5 uL	Calibration Standard	2	5.70	320.97430	21003	1 001	99.5969
0.4 – 250 ng/mL	0	Cal 4 - 5 uL	Calibration Standard	3	5.79	226.97430	145224	1.901	99.0594
	10	Cal 5 - 5 uL	Calibration Standard	4	5.70	226.97430	206275	4.070	97.5155
Linear, 1/x weighting	11	Cal 6 - 5 uL	Calibration Standard	6	5.79	326.97430	615426	20 222	101 6414
	12	Cal 7 - 5 ul	Calibration Standard	7	5.78	326 97430	1618371	50.637	101.2594
	13	Cal 8 - 5 ul	Calibration Standard	8	5.77	326 97430	7669632	249 185	99.6732
	10	ouro ouc	ounoration otanuaru	0	0.11	020.01400	1000002	240.100	00.0102

Calibration results: (additional, 2)

17

	Inj.	Injection Name	Туре	Level	RT	Quant Ion	Area	Amount	Accuracy
	No.	Selected Peak:			min	m/z	counts*min		%
	6	Cal 1 - 5 uL	Calibration Standard	1	7.27	376.96890	22550	0.484	117.4951
	7	Cal 2 - 5 uL	Calibration Standard	2	7.26	376.96890	42483	0.773	96.5172
ADONA	8	Cal 3 - 5 uL	Calibration Standard	3	7.25	376.96890	113394	1.947	97.2975
r ² > 0.9994	9	Cal 4 - 5 uL	Calibration Standard	4	7.27	376.96890	308976	4.739	94.4971
0.4 - 250 ng/mL	10	Cal 5 - 5 uL	Calibration Standard	5	7.25	376.96890	627213	9.678	96.6771
Linear 1/x weighting	11	Cal 6 - 5 uL	Calibration Standard	6	7.24	376.96890	1325208	19.037	94.9439
Emoar, nx worghting	12	Cal 7 - 5 uL	Calibration Standard	7	7.23	376.96890	3457916	48.388	96.6687
	13	Cal 8 - 5 uL	Calibration Standard	8	7.24	376.96890	17447428	253.151	101.2450
	Ini.	Injection Name	Туре	Level	RT	Quant Ion	Area	Amount	Accuracy
	No.	Selected Peak:	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		min	m/z	counts*min		%
	6	Cal 1 - 5 uL	Calibration Standard	1	11.80	616.00920	9314	1,139	112,2727
N-MeFOSE (total)	7	Cal 2 - 5 uL	Calibration Standard	2	11.79	616.00920	18539	1,9070	95,1230
r ² > 0.9998	8	Cal 3 - 5 uL	Calibration Standard	3	11.78	616.00920	53277	4,9785	99.5673
1.0 - 6250 ng/mL	9	Cal 4 - 5 uL	Calibration Standard	4	11.77	616.00920	144333	12.1276	96.9290
Linear, 1/x weighting	10	Cal 5 - 5 uL	Calibration Standard	5	11.77	616.00920	284057	23.9058	95.4230
	11	Cal 6 - 5 uL	Calibration Standard	6	11.78	616.00920	605541	49.761	99.5200
	12	Cal 7 - 5 uL	Calibration Standard	7	11.77	616.00920	1561127	122.9009	98.2920
	13	Cal 8 - 5 uL	Calibration Standard	8	11.78	616.00920	8507157	628.7793	100.6010
	Ini	Injection Name	Туро	Lovol	DT	Quantion	Area	Amount	Ассигаси
	No.	Selected Deak	Type	LEVEI	min	m/z	counte*min	Anount	Mccuracy %
9CI-PF3ONS	6	Cal 1-5 ul	Calibration Standard	1	9.96	530,89560	17044	0.3538	86 9510
r ² > 0.9990	7	Cal 2 - 5 ul	Calibration Standard	2	9.95	530,89560	35974	0.3350	96 7699
0.4 - 250 ng/mL	8	Cal 3 - 5 ul	Calibration Standard	3	9.95	530,89560	95399	2 0511	102 4930
Linear, 1/x weighting	9	Cal 4 - 5 ul	Calibration Standard	4	9.94	530,89560	248439	5.0306	100 6077
	10	Cal 5 - 5 uL	Calibration Standard	5	9.95	530 89560	510642	10 3359	103,2496
	11	Cal 6 - 5 uL	Calibration Standard	6	9.94	530 89560	1050031	20,7571	103.6476
	12	Cal 7 - 5 uL	Calibration Standard	7	9.93	530,89560	2782595	53.0004	105.6610
cynthia.grim@thermofisher.com 6-June-2024	13	Cal 8 - 5 uL	Calibration Standard	8	9.93	530.89560	14228015	245.8961	98.3310

Results

Targeted analysis of surface water extracts

NO. 10. 11. 11. 42.

Sample processing

- Surface water samples
 - 250 mL volume, two different locations
 - Spiked with additional compounds to demonstrate performance
 - Extracted following EPA 1633 using WAX/GCB cartridges (50x concentration factor)
- Food contact materials
 - Old paper plates
 - Extracted by automated solvent extraction
- Diluted AFFF samples
 - Provided by collaborator Dr. Lee Ferguson
 - Reconstituted in 96% MeOH, 4% water, 1% NH4OH, 0.625% HOAc

Thermo

Chromatograms – PFOS, total

Branched and linear isomers

PFOS retains high signal to noise and good peak shape across matrix types

Quantitative results – Surface water

Concentrations reported in the salt form, sum of branched and linear isomers where relevant

Compound	250 mL River water – San Jose (ppt)	250 mL River water – Alviso (ppt)
PFBA	67.2	17.3
PFPeA	43.9	8.9
PFHxA	9.1	8.1
PFHpA	5.4	3.2
PFOA (total)	11.2	27.9
PFBS	10.7	4.4
PFHxS (total)	10.8	25.8
PFOS (total)	36.6	10.7
HFPO-DA	N.D.	90.5
ADONA	19.1	N.D.
NFDHA	30.5	N.D.
4:2FTS	N.D.	25.0
6:2FTS	30.2	19.5
8:2FTS	19.5	N.D.
7:3FTCA	17.2	N.D.

A 1000 & 1 000 & 7 000 2 4

Results

NTA of PFAS in food contact materials, surface water, and AFFF foams

STE 318 538 -22

Compound Discoverer[™] 3.3 SP3

PFAS Unknown ID w Database Searches and Molecular Networks

Increasing confidence in identifying PFAS compounds

Harnessing the power of high resolution accurate mass and MS² Analysis

Increasing Confidence in Compound Identification

Data reduction approach

Moving towards a finalized list of compounds annotated with Level 1 confidence

Data reduction approach

Moving towards a finalized list of compounds annotated with Levels 1–5 confidence

Annotating at Level 3 confidence

Utilizing multiple fragmentation libraries to gain confidence in structure elucidation

Compo	ounds 😽	Compounds per File	Features per File	mzCloud Results	mzVa	ult Results	ChemSpi	der	Results	Input Files	Study Info	0
F	Name			Formula		m/C	md/C	F	Annot.	∆Mass [ppm]	Calc. MW	
10	PFHxSi			C6 H F13 O2 S		56.42550	-0.00758	13		-1.48	383.94840	
19 🗇	PFOS_br			C8 H F17 O3 S		66.83765	-0.00842	17		-0.96	499.93701	
	6.2 ETSA			C0 US 512 N 02 S		11 707 10	0.00000	30		1.77	125 00050	

Annotating at Level 2 confidence

Utilizing multiple fragmentation libraries to gain confidence in structure elucidation

Comp	ounds 🌹	Compounds per File	Features per File	mzCloud Results	mzVa	ult Results	ChemSpi	der	Results	Input Files	Study
F	Name			Formula		m/C	md/C	F	Annot. /	Mass [ppm]	Calc. M
10	6:2FTS			C8 H5 F13 O3 S		58.18858	-0.00345	13		-1.30	427.974
11 👳	PFBS			C4 H F9 O3 S		76.63501	-0.01272	9		-0.20	299.950
12 🗇	PFTrDA			C13 H F25 O2		47.80965	-0.00306	25		-0.36	663.957

2023 HRAM MS² Spectral Library (NIST)

Annotating at Level 2 confidence

Utilizing multiple fragmentation libraries to gain confidence in structure elucidation

Final list of compounds with Level 1–2 annotations

Comparisons across three samples matrices

AFFF

Name	Formula	Area (Ma 🔻	Annot. ∆Mass [ppm]
PFOS_linear	C8 H F17 O3 S	638266907	-1.08
PFOS_br	C8 H F17 O3 S	249094514	-1.02
PFHxS_linear	C6 H F13 O3 S	183756035	-1.58
6:2FTS	C8 H5 F13 O3 S	448601124	-1.30
PFBS	C4 H F9 O3 S	282373294	-0.20
PFHxS_br	C6 H F13 O3 S	243808319	-1.50
PFOS_br	C8 H F17 O3 S	141604652	-0.96
PFHpS	C7 H F15 O3 S	107661270	-1.11
PFHxA	C6 H F11 O2	93260107	-0.02
PFNA_linear	C9 H F17 O2	58049781	-1.11
PFOA_linear	C8 H F15 O2	44722196	-1.37
N-(3-(Dimethylamino)propyl)tridecafluorohexanesulphonamide	C11 H13 F13 N2 O2 S	30709050	-0.88
PFHpS_br	C7 H F15 O3 S	30040380	-1.09
PFPeA	C5 H F9 O2	27332045	-0.12
PFPeS	C5 H F11 O3 S	25143343	-1.95
PFBA	C4 H F7 O2	24618112	0.00
PFHpA	C7 H F13 O2	23512367	-1.41
PFNS	C9 H F19 O3 S	21465603	-0.58
PFUdA	C11 H F21 O2	14983329	-0.46
PFOA_br	C8 H F15 O2	12686102	-1.34
PFHxA_br	C6 H F11 O2	11346096	-0.04
8:2FTS	C10 H5 F17 O3 S	7113691	-0.52
PFNS	C9 H F19 O3 S	6123853	-0.59
PFNS_br	C9 H F19 O3 S	6000881	-0.48
PFDS_br	C10 H F21 O3 S	5434435	-0.41
PFHpA_br	C7 H F13 O2	4887134	-1.47
PFTrDA	C13 H F25 O2	3561276	-0.36
PFDS	C10 H F21 O3 S	2439703	-0.27

River Water

Name	Formula	Area (Ma 🔻	Annot. ΔMass [ppm]
PFBA	C4 H F7 O2	32425087	0.02
PFOA_linear	C8 H F15 O2	21846717	-1.31
PFPeA	C5 H F9 O2	18854941	-0.02
PFHxS_linear	C6 H F13 O3 S	18232927	-1.32
PFOS_linear	C8 H F17 O3 S	11199510	-0.70
ADONA	C7 H2 F12 O4	9583458	-1.56
PFOS_br	C8 H F17 O3 S	9031595	-0.75
PFBS	C4 H F9 O3 S	6925799	0.06
4:2FTS	C6 H5 F9 O3 S	5914067	0.07
6:2FTS	C8 H5 F13 O3 S	4946624	-1.13
PFHxA	C6 H F11 O2	4616720	0.14
PFHxS_br	C6 H F13 O3 S	3112051	-1.23
NFDHA	C5 H F9 O4	2832775	0.05
8:2FTS	C10 H5 F17 O3 S	1850560	-0.63

FCM

Name	Formula	Area (Max.)	Annot. ∆Mass [ppm]
PFHxA	C6 H F11 O2	168232727	0.06
PFBS	C4 H F9 O3 S	23377752	0.06
PFBA	C4 H F7 O2	25163446	0.09
PFHpA	C7 H F13 O2	23503653	-1.33
PFPeA	C5 H F9 O2	13615545	-0.02
PFOA_linear	C8 H F15 O2	2927556	-1.14

Comparing finalized results to quantitative analysis

Quantitative Results from Chromeleon TM			Results from Compound Discoverer [™]	
Compound	River water – San Jose (ppt)	River water – Alviso (ppt)	Detected?	Annotation Level
PFBA	67.2	17.3	\checkmark	1
PFPeA	43.9	8.9		1
PFHxA	9.1	8.1		1
PFHpA	5.4	3.2	N.D.	
PFOA (total)	11.2	27.9	V linear isomer	1
PFBS	10.7	4.4		1
PFHxS (total)	10.8	25.8	br. & lin. isomers	1
PFOS (total)	36.6	10.7	br. & lin. isomers	1
HFPO-DA	N.D.	90.5		3
ADONA	19.1	N.D.		1
NFDHA	30.5	N.D.		1
4:2FTS	N.D.	25.0		1
6:2FTS	30.2	19.5		1
8:2FTS	19.5	N.D.		1
7:3FTCA	17.2	N.D.	N.D.	

Data visualization tools – m/C vs/ md/C plots

Comparisons of three different sample matrices: AFFF, FCM and River Water

See additional details on m/C vs. md/C plots in Kaufmann et al. J. AOAC Inter. 2022, 105, 1280–1287.

Thermo Fisher

Data visualization tools – Kendrick Mass Defect plots

Comparisons of three different sample matrices: AFFF, FCM and River Water

ThermoFisher scientific

Additional data evaluation tools

Gaining insight into the statistical differences between samples

Hierarchical Cluster Analysis Comparing Three AFFF Samples

Differential Analysis Comparing River Water Samples Alviso vs. San Jose

Thermo Fisher

Additional data evaluation tools

Using the Molecular Network tool in Compound Discoverer[™] to identify structurally-related compounds

Thermo Fisher

SCIENT

Additional data evaluation tools

Using the Molecular Network tool in Compound Discoverer[™] to identify structurally-related compounds

	Name	Formula
	PFOS_linear	C8 H F17 O3 S
	PFDS	C10 H F21 O3 S
	PFNS	C9 H F19 O3 S
	PFHpS	C7 H F15 O3 S
	PFOS_br	C8 H F17 O3 S
	PFDS_br	C10 H F21 O3 S
	PFPrS	C3 H F7 O3 S
	PFNS_br	C9 H F19 O3 S
	PFHpS_br	C7 H F15 O3 S
	PFBS	C4 H F9 O3 S
	PFNS	C9 H F19 O3 S
	PFHxS_linear	C6 H F13 O3 S
	PFOS_br	C8 H F17 O3 S
	PFHxS_br	C6 H F13 O3 S

Name **PFTrDA**

PFHxA_br

PFHpA_br

PFOA_linear

PFOA_br

PFH_xA

PFUdA

PFHpA

Formula

Thermo Fisher

cynthia.grim@thermofisher.com | 6-June-2024

Summary

- By combining Thermo Scientific[™] Orbitrap[™] MS technology with powerful software packages (Chromeleon[™] 7.3.2 CDS and Compound Discoverer[™] 3.3 SP3), a single, simple-to-use workflow that includes both targeted and non-targeted PFAS analysis was shown.
- Chromeleon[™] 7.3.2 CDS provides a flexible and effective solution for quantifying targeted PFAS compounds using high resolution accurate mass (HRAM) data.
- Utilizing comprehensive tools within Compound Discoverer[™], multiple PFAS compounds were detected and annotated at between Level 1–3 confidence across three different matrices: AFFF, River Water and Food Contact Materials, and many more annotated at Levels 4 and 5.

Acknowledgements

Collaborators

• Prof. Lee Ferguson, Duke University

Thermo Fisher Scientific

- Richard Cochran
- Jingli Hu
- Neil Rumachik
- Kevin McHale
- Ed George
- Ralf Tautenhahn

Thank you

Visit <u>https://thermofisher.com/pfas</u> and <u>https://thermofisher.com/asms</u> for more information