

Breaking Barriers that Limit Non-Targeted Analysis Through Stakeholder Engagement and Outreach

Ruth Marfil-Vega¹, Christine Fisher², James McCord³, Sara Nason⁴

BP4NTA Past-Chairs, Chair, and Vice-Chair

¹Shimadzu Scientific Instruments ²Food and Drug Administration ³Environmental Protection Agency ⁴Connecticut Agricultural Experiment Station

Acknowledgements

Committee members:

Sara Nason (Co-chair) Yong-lai Feng (Co-chair) Jon Sobus **Ruth Marfil-Vega** James McCord **Stéphane Bayen Christine Fisher** Alli Phillips **Greg Johnson** John Sloop **Keaton Nahan** Esra Mutlu Angela Batt

The Connecticut Agricultural Experiment Station Putting Science to Work for Society since 1875

Thank you to all who have come to our discussion meetings!

Today's Road Trip

- Non-Targeted Analysis
- Best Practices 4 Non-Targeted Analysis
- Outcomes from Stakeholders
 - **Engagement and Outreach**

Non-Targeted Analysis (NTA): What it is

NON-TARGETED ANALYSIS

The characterization of the chemical composition of any given sample without the use of a priori knowledge regarding the sample's chemical content. The resulting detections may be used to classify samples (using the entire chemical profile), and/or subsequent analyses may focus on the identification of individual chemicals.

Also referred to as "non-target screening" and "untargeted screening".

SUSPECT SCREENING

The identification of chemicals and/or chemical classes detected by an instrument, typically a mass spectrometer, by comparison to a predefined user list or library containing known chemicals of interest.

Non-Targeted Analysis (NTA): Advantages

- Classify samples (e.g., adulterated vs. authentic)
- Identify unknown/unexpected compounds
- HRMS generates information-rich data
- Enable versatile workflows
- Allow retrospective analysis

NTA is a tool

for more than

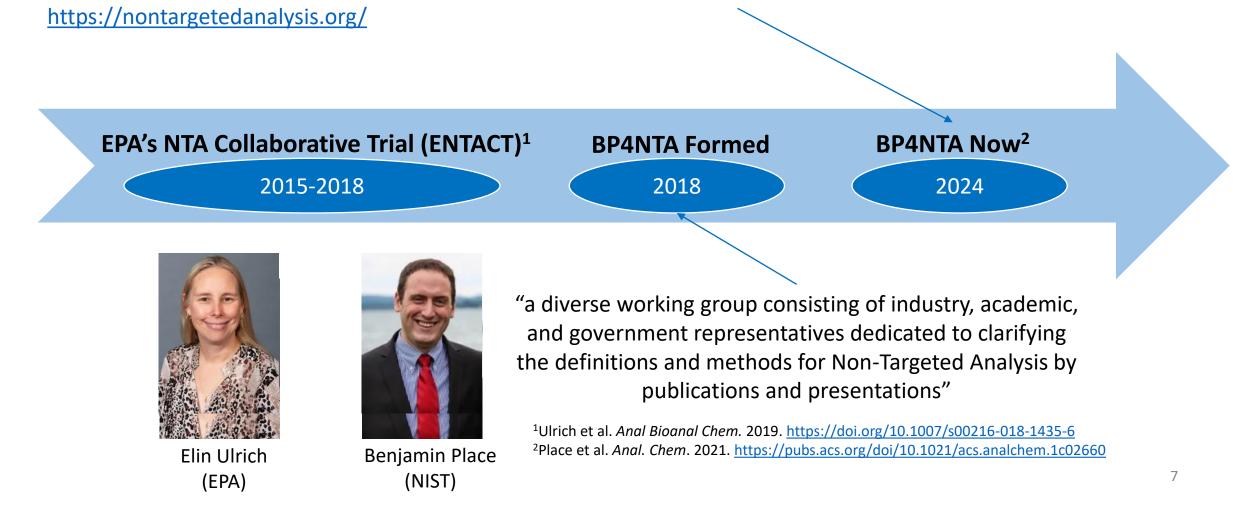
identifying

unknowns

What does the Application of NTA look like for the Analysis of Unknowns?

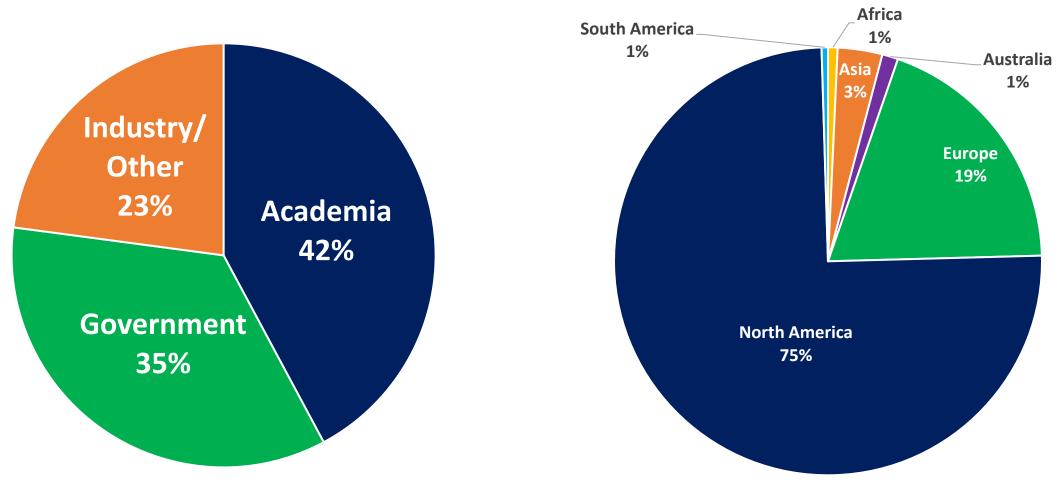
- Classify samples

 (e.g., adulterated vs. authentic)
- Identify unknown/unexpected compounds
- HRMS generates information-rich data
- Enable versatile workflows
- Allow retrospective analysis



Challenges

- Limited reporting quality-poor reproducibility
- Ability to compare data/results between labs
- Ensuring quality data (lack of accreditation)
- Performance assessment
- Lack of reference materials/methods/standards
- Lack of understanding & community-wide adopted definitions
- Uncertainty
- Complex workflows
- Time-intensive analysis
- Incomplete databases
- Valuable outputs for diverse stakeholders (quantitative NTA-qNTA...)
- Sustainable storage of large amounts of data



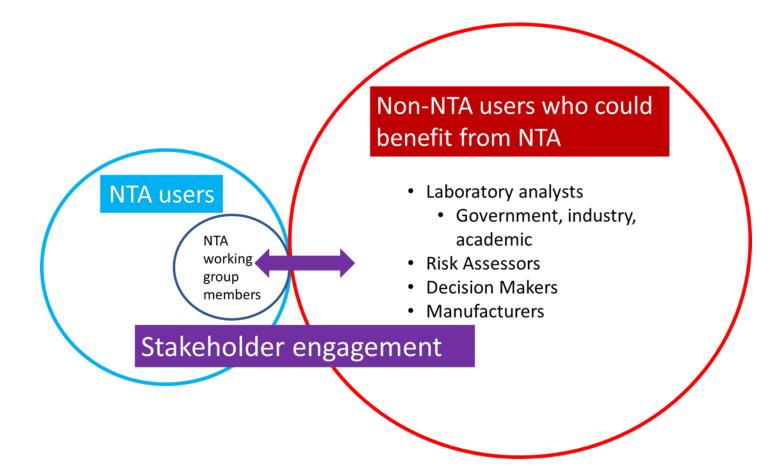
A consensus-based working group formed to address challenges in mass spectrometry-based non-targeted analysis (NTA) studies by developing best practices and harmonizing standards in support of the scientific community and decision makers.

~300 Members – September 2023 ~415 Members – April 2024

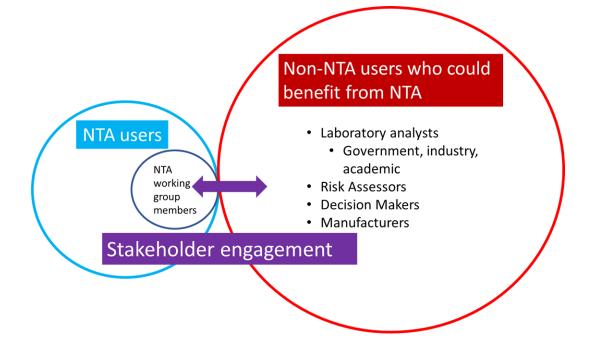
Leadership and Structure

BP4NTA is Addressing Challenges in NTA!

		-				
Challenge	Educational Materials	Study Reporting Tool	Study Planning Tool	Performance Manuscript	Databases /Libraries	Link to Tox/Fate
Lack of demand for NTA data	」 ₽					•••
Not knowing when NTA is appropriate	」					
Lack of physical resources			」 ▲ 『 ~		•••	
Lack of knowledge (laboratory)	」	\bigcirc		\bigcirc		
Lack of data processing tools					•••	•••
Inability to ensure data quality		\bigcirc	」	\bigcirc	•••	
Lack of comparability between labs		\bigcirc	」	\bigcirc	•••	
Lack of knowledge (end-users)	」	\bigcirc	」 ▲ 『 、	\bigcirc		•••

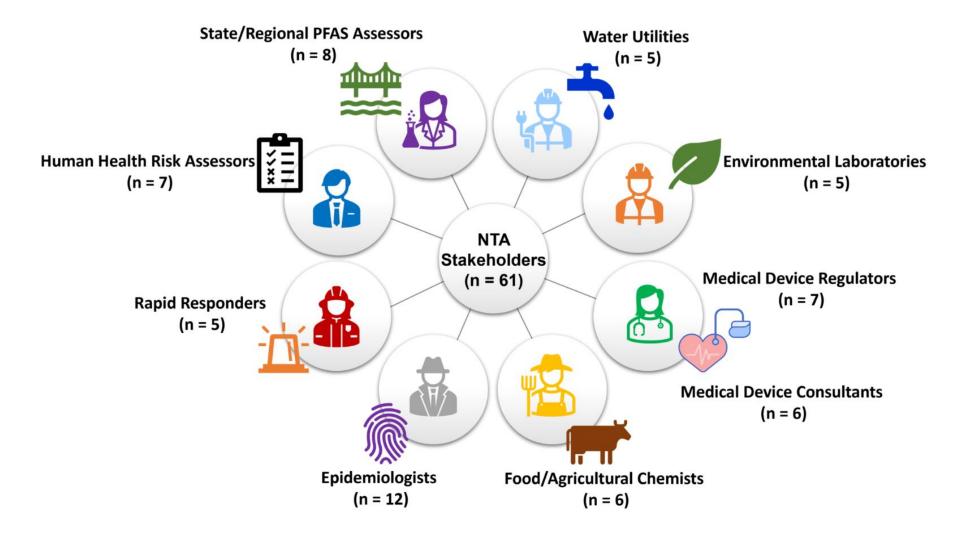

What BP4NTA has accomplished so far

- Dissemination of scientific knowledge through the publication of six (6) peer-reviewed manuscripts and presentations at various conferences:
 - Introducing BP4NTA: Place & Ulrich et al. Anal. Chem. 2021
 - Describing & evaluating the Study Reporting Tool (SRT): Peter & Phillips et al. Anal. Chem. 2021
 - Promoting SRT use in exposure science: Phillips & Peter et al. J Exp Sci Envi Epid 2023
 - Proposing a tool to assess NTA chemical space: Black & Lowe et al. ABC 2022
 - Describing current approaches for NTA performance assessment: Fisher & Peter et al. ABC 2022
 - On/off-line prioritization of features (Collaboration: Kruve & Szabo): Szabo et al. ABC 2024
- Distribution of scientific and applied knowledge, and other relevant information in <u>WEBSITE</u> and through social media:
 - Reference content, SRT, NTA literature, Job postings, New member requests, Educational materials (videos/flyers/etc.)



 Seminar series keeps BP4NTA members abreast of NTA research across disciplines and sparks collaborations – during monthly meeting (available to members only)

Stakeholder Outreach: Identifying and Prioritizing NTA Challenges


Stakeholder Outreach: Identifying and Prioritizing NTA Challenges

Stakeholder Committee Goal:

Meet with various stakeholder groups to determine the drivers and barriers affecting NTA adoption

Stakeholder Outreach: Stakeholders' Participation

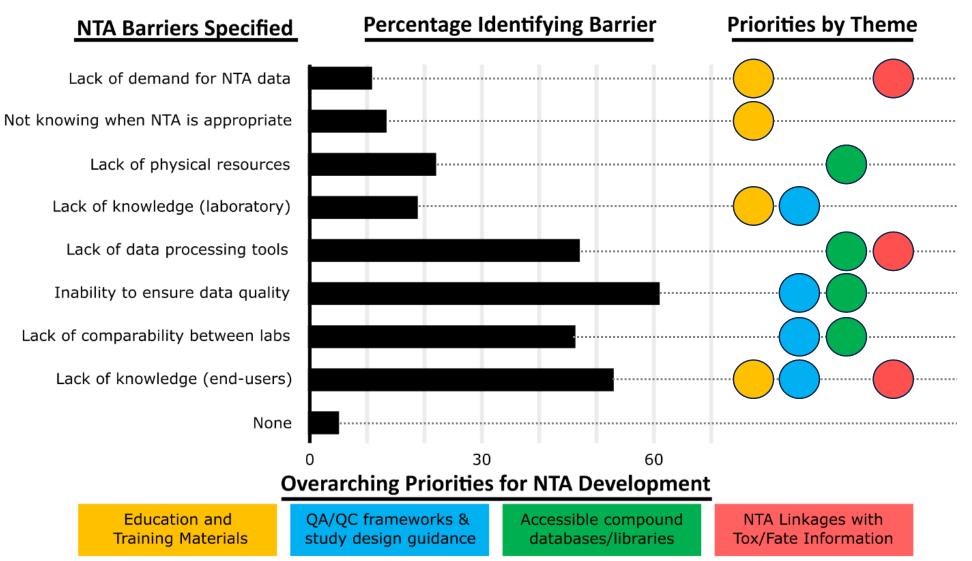
Focus Group Meeting Format

- Attendee introductions
- Introduction to BP4NTA
- Define NTA
- Discussion questions
- Follow-up poll

Discussion Questions

- Do you currently use NTA methods in your work? How?
- What are the biggest opportunities for using NTA methods in your field?
- What are the biggest barriers inhibiting NTA method use in your lab?
- How are NTA results reported and used in your field?
- What resources would be useful for incorporating more NTA methods in your work?
- Are you interested in participating in the creation/testing of these resources?

Follow-up Poll


- Barriers to adoption
- Potential efforts useful for the stakeholders
- Current BP4NTA efforts relevant to stakeholders
- Relevant conferences and meetings

- 1. Lack of fundamental scientific understanding (laboratory analysts)
- 2. Lack of fundamental scientific understanding (end users of data)
- 3. Lack of access to necessary resources (e.g., instrumentation, lab space, personnel)
- 4. Lack of access to tools for data processing and analysis
- 5. Inability to ensure data quality (e.g. lack of accreditation opportunities, reference methods, established performance benchmarks)
- 6. Lack of ability to compare NTA data between labs
- 7. Lack of demand for NTA data
- 8. Lack of structure for determining when NTA analysis of a sample is appropriate
- 9. None of these
- 1. A standardized NTA method published by a government agency or other organization
- 2. Performance testing opportunities for NTA
- 3. NTA specific reference materials (e.g., open source databases and libraries)
- 4. NTA specific analytical standards
- 5. NTA training opportunities at workshops, conferences, or webinars
- Materials for helping regulators and non-scientists understand NTA data (e.g., videos and fact sheets)

Non-Targeted Analysis (NTA): Challenges

Non-Targeted Analysis (NTA): Challenges

Nason & McCord et al. Manuscript in Progress.

Proposed Actions Items to Address Challenges

Increasing Resources Needed

Category	Small Resource Requirements	Moderate Resource Requirements	Large Resource Requirements
Education and Training Materials	 Fact sheets Case studies Tutorial videos 	 Workshop training materials Official author guidelines 	 Intensive training courses with completion certificates Multi-laboratory studies
QA/QC frameworks and study design guidance	 Study reporting guidelines Single laboratory validation studies 	 Guidance for study planning, workflow development, and QA/QC assessment Harmonized study reporting requirements 	 Universal reference mixtures and materials Performance testing/accreditation Multi-laboratory validation studies
Accessible Compound Databases and Libraries	 Community input for open-source databases/libraries Submission templates for open-source libraries 	 Curation, collation, and annotation of available data by research area Integration of advanced information for library annotation (e.g., RT prediction, chemical space coverage) 	 Institutionally sponsored efforts to close data gaps in accessible mass spectral information
NTA Linkages with Toxicity and Fate Information	 Incorporation of existing toxicity data within existing NTA databases Development of quantitative models and approaches (e.g., qNTA) to link NTA results with toxicity values 	 Expansion and validation of quantitative models and approaches (e.g., increased scope, number of applications and laboratory implementations) 	• Institutionally sponsored efforts to develop quantitative tools that link NTA and toxicity data for risk estimation

BP4NTA is Addressing Challenges in NTA!

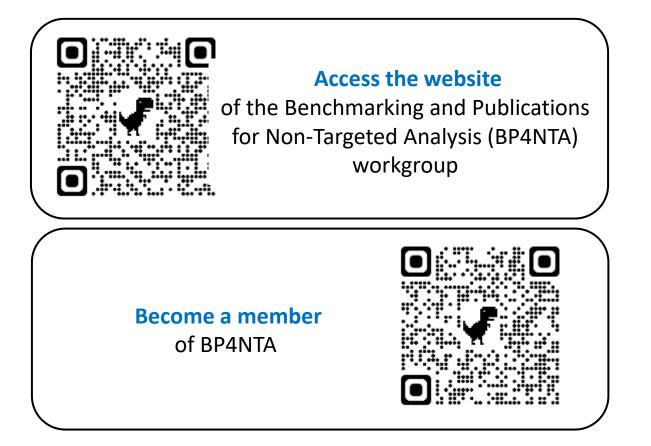
Challenge	Educational Materials	Study Reporting Tool	Study Planning Tool	Performance Manuscript	Databases/ Libraries	Link to Tox/Fate
Lack of demand for NTA data	」 ▲ 『 ~					•••
Not knowing when NTA is appropriate	」 ▲ ²					
Lack of physical resources			」		•••	
Lack of knowledge (laboratory)	」	\bigcirc	」	\bigcirc		
Lack of data processing tools					•••	•••
Inability to ensure data quality		\bigcirc	」	\bigcirc	•••	
Lack of comparability between labs		\bigcirc	₽	\bigcirc	•••	
Lack of knowledge (end-users)	ראב.	\bigcirc	」 ▲ 『 『 『 『 『 『	\bigcirc		•••

Outcomes from Stakeholders Outreach

Challenge	Educational Materials	Study Reporting Tool	Study Planning Tool	Performance Manuscript	Databases/ Libraries	Link to Tox/Fate
Lack of demand for NTA data	₽₽ [₽]					•••
Not knowing when NTA is appropriate	حم ^ح					
Lack of physical resources						
Lack of knowledge (laboratory)	」 ₽ [₽]	\bigcirc	₽₽ _₽	\bigcirc		
Lack of data processing tools						•••
Inability to ensure data quality		\bigcirc	₽₽ [₽]	\bigcirc		
Lack of comparability between labs		\bigcirc	₽₽ [₽]	\bigcirc		
Lack of knowledge (end-users)	」 ₽	\bigcirc		\bigcirc		•••

- Completed product available
- = We are working on it
 - ... = We are just getting started

- Defined an initial roadmap to address the challenges for NTA implementation
 - Categorized and prioritized the challenges
 - Identified action items to address them
- Prepared a peer-reviewed manuscript to disseminate outcomes (Nason & McCord et al.)
- Incorporated outcomes into BP4NTA's activities
- Started presenting outcomes at conferences relevant to stakeholders to expand engagement



We want you!

Accomplishing these goals requires concerted effort across similar groups, organizations, agencies, etc.!

See an effort you are interested in? Join us!

Part of a group working on something similar? Let's collaborate!

For more information, contact the BP4NTA Chairs at: James McCord (Chair): <u>mccord.james@epa.gov</u> Sara Nason (Vice-Chair): <u>sara.nason@ct.gov</u>

Thank you!

Ruth Marfil-Vega (Past-Chair) <u>rmmarfilvega@shimadzu.com</u>

