Overcoming Simple and Complex Matrix Interferences in Environmental Samples by QQQ-ICP-MS

Yan Cheung, Application Scientist ICP-MS Craig Jones, Applications Scientist ICP-MS

Agilent's ICP-MS Portfolio

- Most Compact Instruments on the Market
- Team of Excellent Supports

Application Scientists

Product Specialists

8900 ICP-QQQ

Important Performance Consideration for Environmental Analysis

- Sensitivity
- Interference Removal
- Matrix Tolerance
- Linear Dynamic Range

Operational Modes

Single Quad	 Q1 opens allowing all ions into ORS³
Single Quad with Band Pass Filter	 Q1 allows a range of ^m/_z into ORS³
MS/MS – On Mass	 Both Q1 and Q2 set to same mass
MS/MS – Mass Shift	 Q1 and Q2 set to different masses

ICP-MS with Octopole Reaction System (ORS) Technology

Ion Lens Design in Agilent ICP-MS

1 Guide ions through interface (Extraction Lens 1) – low voltage

2 Focus ions across the mass range (twin, conical extraction lenses)

3 Separate ions from photons and neutrals (Off-Axis Omega Lens)

Quadrupole

То detector

Octopole Reaction Cell with He

Quadrupole

То detector

Positive potential

Quadrupole

- Polyatomic ions have larger collisional cross section than atomic ions
- KED rejects polyatomic ions with relative less kinetic energy then analyte ions
- Successfully removing polyatomic interference

What about triple quadrupole ICP-MS? Is it needed?

Agilent 8900 ICP-QQQ Unique Tandem MS Instrument Layout

Triple quadrupole ICP-MS layout, with:

- 1. An off-axis deflector lens to separate the ions from photons & neutrals
- 2. A <u>first</u> quadrupole mass analyzer Q1 (a mass filter with a 1 u mass window) <u>before</u> the CRC
- 3. A collision/reaction cell capable of collision or reaction mode, and
- 4. A <u>second</u> quadrupole mass analyzer Q2 (a mass filter with a 1 u mass window)

This configuration is unique to the 8900

The highest performance, most flexible configuration; the only solution that allows complete control in reaction mode

Agilent 8900 (MS/MS) system performs well in either collision or reaction mode – without restrictions

Patented Vacuum System in Agilent 8900 ICP-QQQ

- Q1 and Q3 must be under high vacuum in order to achieve single mass resolution filtering.
- Additional turbo pump required to accommodate longer ion flight path and ensure high ion transmission.

On mass mode

Both Fe and KNH₃ detected

On mass mode

Fe⁵⁶

Ar⁴⁰

O¹⁶

Only Fe is detected

On mass mode

Examples of MS/MS on Mass Fe & Se Cal Curves: 0, 5, 10, 15 & 20 ppt.

Mass Shift Mode

ArCl interference on As: As $+ O2 \rightarrow AsO + O$ ArCl $+ O2 \rightarrow No Rxn$

56 + 35 = 91 **Fe⁵⁶ Zr⁹¹ Ar⁴⁰ As⁷⁵ 40** + 35 = 75

Effective Use of MS/MS Mass Shift with True ICP-QQQ Mass Shift Mode

MS/MS Mass Shift to Measure P, Ti, As Cal Curves: 0, 5, 10, 15 & 20 ppt

P 31 → 47 [O2 mode] DL: 1.2 ppt BEC: 9.4 ppt

As 75 → 91 [O2 mode] DL: 0.10 ppt BEC: 0.12 ppt

Bandpass Filter vs. True Quad (Q1)

Example of Titanium Analysis with NH₃ Cell Gas

- Target product ion is ${}^{48}\text{TiNH}(\text{NH}_3)_3^+$ at m/z 114
- Bandpass window 10 mass unit (mass 43-53)
- Product ions contain numerous ions at mass 114

Examples of possible product ion interferences at m/z 114: ${}^{44}Ca(NH_4)_2(NH_3)_2^+$ ${}^{45}ScNH_4(NH_3)_3^+$ ${}^{46}Ca(NH_3)_4^+$ ${}^{47}TiNH_2(NH_3)_3^+$ ${}^{49}Ti(NH_2)_3NH_3^+$ ${}^{50}Cr(NH_2)_4^+$

 51 VNH(NH₂)₃⁺ 52 Cr(NH)₂(NH₂)₂⁺

Plus product ions formed from any polyatomics

Bandpass Filter vs. True Quad (Q1)

Example of Titanium Analysis with NH₃ Cell Gas

- Target product ion is ${}^{48}\text{TiNH}(\text{NH}_3)_3^+$ at m/z 114
- Unit mass true quad Q1, only mass 48 enters
- Only target product ions in mass 114 detected

With well-chosen reaction mechanism, no non-target product ions can be formed at the target analyte product ion mass*. No overlaps occur, even in different sample types.

*Note: ${}^{48}\text{Ti}(\text{NH}_3)_6^+$ at *m/z* 150 gives better LOD for Ti in the presence of Ca matrix

Abundance Sensitivity (Additional benefit of ICP-QQQ)

Analysis of Trace Co in a High Ni Matrix

	Co Natural Abundance %		Ni Natural Abundance %	Interferences
⁵⁹ Co	100	⁵⁸ Ni ⁶⁰ Ni	67.8 26.2	⁵⁸ NiH⁺ ⁵⁸ Ni + ⁶⁰ Ni⁺ Tails

Two Full-Size Quadrupole Mass Filters

	Abundance Sensitivity based on ¹³³ Cs ⁺		Mass 134
	Q1	5 x 10 ⁻⁷	1 x 10 ⁻⁷
	Q2	5 x 10 ⁻⁷	1 x 10 ⁻⁷
Theoretical	Q1 * Q2	2.5 x 10 ⁻¹³	1 x 10 ⁻¹⁴
	Guarantee	10 ⁻¹⁰	10 ⁻¹⁰

Abundance Sensitivity (Additional Benefit of ICP-QQQ)

Agilent

Abundance Sensitivity (Additional benefit of ICP-QQQ)

Boron Measurement in Organic Matrix Single Quad Abundance Sensitivity Challenges

Summary

Overcoming Matrix interference

Agilent's ORS cell on the 7850/7900 is the best way to perform He mode

- Octopole reaction cell: small \rightarrow fast gas mode switching time
- Octopole cell (compared to quadrupole cell): good ion stability → better reaction with cell gas
 → better interference removal
- True first quad Q1: unit-mass filter \rightarrow complete control of cell gas reaction
 - \rightarrow better interference removal
- Two unit-mass quads: excellent abundant sensitivity \rightarrow trace detection in heavy matrices

Agilent's 8900 ICP-QQQ is the **only way** to be sure of your results in reaction mode – address applications that SQ can't do

Yan.cheung@agilent.com

