

PFAS in Wild Fish Tissue: Development of a Simple and Robust Extraction Procedure Using Pass-Through Matrix Removal

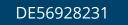
Matthew Giardina¹, Erin L. Pulster², Limian Zhao¹, Emily Parry¹

- 1. Agilent Technologies, Inc., Wilmington, DE, USA
- 2. College of Marine Sciences, University of South Florida, St. Petersburg, FL, USA

Goal of pilot study

Goal of application note

Goal of new product development


Goal of pilot study

- Quantify PFAS in sediment and fish collected in Tampa Bay, FL, USA
- Estimate dietary exposure from fish consumption
- Publish in Frontiers in Marine Science¹

Goal of application note

Goal of new product development

¹·Pulster, E. L., Rullo, K., Gilbert, S., Ash, T. M., Goetting, B., Campbell, K., Markham, S., and Murawski, S. A. (2022). Assessing per- and polyfluoroalkyl substances (PFAS) in sediments and fishes in a large, urbanized estuary and the potential human health implications. *Frontiers in Marine Science* 9, doi 10.3389/ fmars.2022.1046667.

Goal of pilot study

- Quantify PFAS in sediment and fish collected in Tampa Bay, FL, USA
- Estimate dietary exposure from fish consumption
- Publish in Frontiers in Marine Science¹

Goal of application note

- Focus on sample preparation procedure for fish tissue extraction
- Publish general procedure in an application note²

Goal of new product development

¹·Pulster, E. L., Rullo, K., Gilbert, S., Ash, T. M., Goetting, B., Campbell, K., Markham, S., and Murawski, S. A. (2022). Assessing per- and polyfluoroalkyl substances (PFAS) in sediments and fishes in a large, urbanized estuary and the potential human health implications. *Frontiers in Marine Science* 9, doi 10.3389/ fmars.2022.1046667.

² Pulster, E. L., and Giardina, M. (2022). Analysis of per- and polyfluoroalkyl substances in edible fish tissue using Agilent Captiva EMR-lipid and LC/MS/MS. Agilent Technologies, Inc., Wilmington, DE, USA. Application Note 5994-5227EN.

Goal of pilot study

- Quantify PFAS in sediment and fish collected in Tampa Bay, FL, USA
- Estimate dietary exposure from fish consumption
- Publish in Frontiers in Marine Science¹

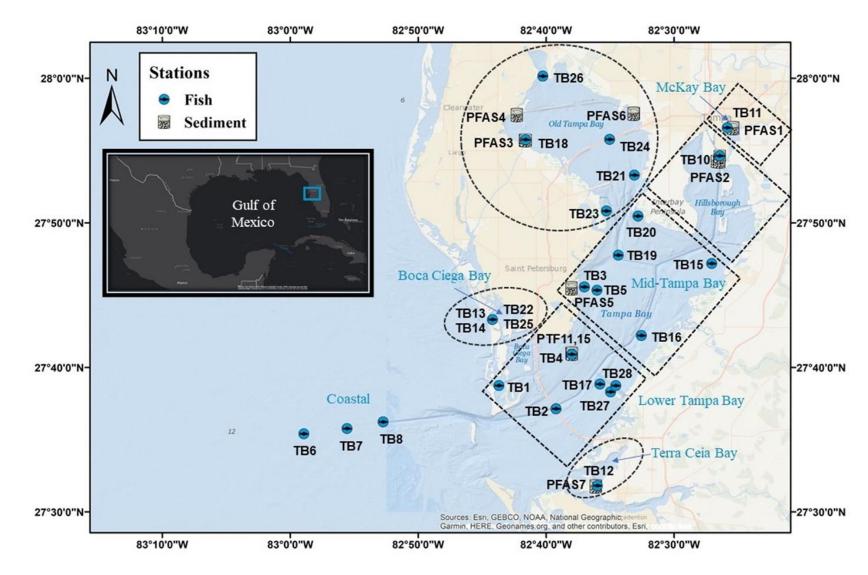
Goal of application note

- Focus on sample preparation procedure for fish tissue extraction
- Publish general procedure in an application note²

Goal of new product development

• Can better sorbent chemistries be developed for reducing complex matrix interferences for PFAS analysis?

¹ Pulster, E. L., Rullo, K., Gilbert, S., Ash, T. M., Goetting, B., Campbell, K., Markham, S., and Murawski, S. A. (2022). Assessing per- and polyfluoroalkyl substances (PFAS) in sediments and fishes in a large, urbanized estuary and the potential human health implications. *Frontiers in Marine Science* 9, doi 10.3389/ fmars.2022.1046667.


² Pulster, E. L., and Giardina, M. (2022). Analysis of per- and polyfluoroalkyl substances in edible fish tissue using Agilent Captiva EMR-lipid and LC/MS/MS. Agilent Technologies, Inc., Wilmington, DE, USA. Application Note 5994-5227EN.

Sample Collection

- Fish collected from 28 locations throughout Tampa Bay
- A total of 140 individual fish were collected from 26 species
- Sediment samples collected from seven sites in duplicate and one site in triplicate (17 total)
- Sediment locations adjacent to wastewater treatment plants and airports

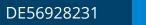
Quantitation

- LC-TQ (dMRM)
 - 25 native targets
 - 4 isotopically labeled surrogates
 - 15 isotopically labeled internal standards
- Quantitation based on ion ratios of targets to internal standards
- Five calibration levels
 - Quadratic least squares regression
 - 1 to 1000 ng/L targets and surrogates
 - Surrogate recovery used quality control

largets				
Compound	Internal Standard			
PFBA	M4-PFBA			
PF40PeA	M5-PFPeA			
PFPeA	M5-PFPeA			
PF50HxA	M2-4:2FTS			
4:2FTS	M2-4:2FTS			
3,6-OPFHpA	M5-PFHxA			
PFHxA	M5-PFHxA			
PFBS	M3-PFBS			
HFPO-DA	M3-HFPO-DA			
PFEESA	M4-PFHpA			
PFHpA	M4-PFHpA			
NaDONA	M3-HFPO-DA			
6:2FTS	M2-6:2FTS			
PFPeS	M2-6:2FTS			
PFOA	M8-PFOA			
PFHxS	M3-PFHxS			
PFNA	M9-PFNA			
8:2FTS	M2-8:2FTS			
PFHpS	M6-PFDA			
PFDA	M6-PFDA			
PFOS	M8-PFOS			
PFUnDA	M7-PFUdA			
9CI-PF3ONS	M7-PFUdA			
PFDoA	M7-PFUdA			
11CI-PF30UdS	M7-PFUdA			

Targata

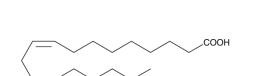
Surrogates


Compound	Internal Standard
M3-PFBA	M4-PFBA
M2-PF0A	M8-PFOA
M2-PFDA	M6-PFDA
M4-PF0S	M8-PFOS

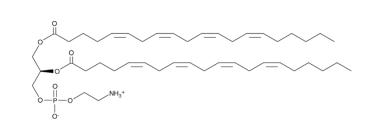
Sediment Extraction Methodology

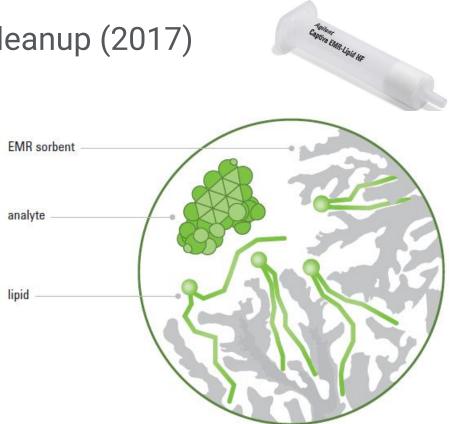
- Followed ASTM D7968-17a
- Important to use consumables which have been qualified for PFAS analysis*

*Giardina, M. (2021). Analysis of Per- and Polyfluoroalkyl Substances in Soil Extracts: A workflow approach to sample preparation method development. Agilent Technologies, Inc., Wilmington, DE, USA. Application Note 5994-2999EN.



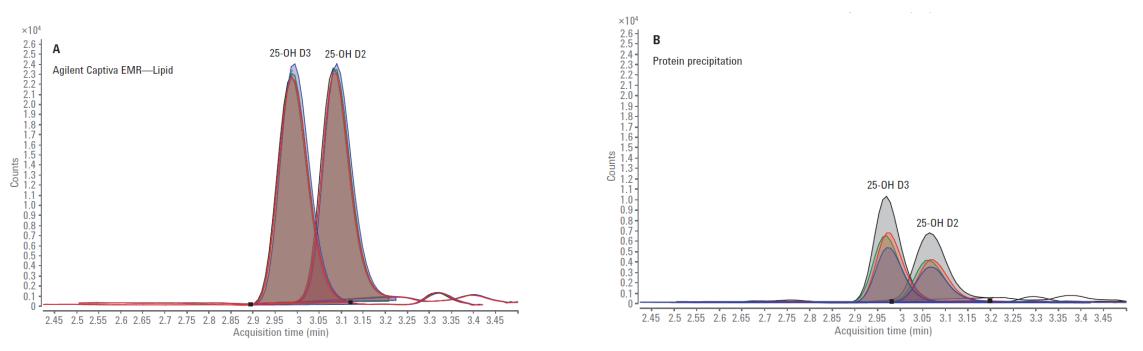
Fish Tissue Extraction Methodology


- <u>Enhanced Matrix Removal (EMR) Lipid Technology</u> introduced in 2015
- Sorbent that effectively traps lipids through size/shape selectivity and hydrophobic interactions
- Captiva EMR-Lipid pass through cleanup (2017)


Triglycerides

Free fatty acids

Phospholipids

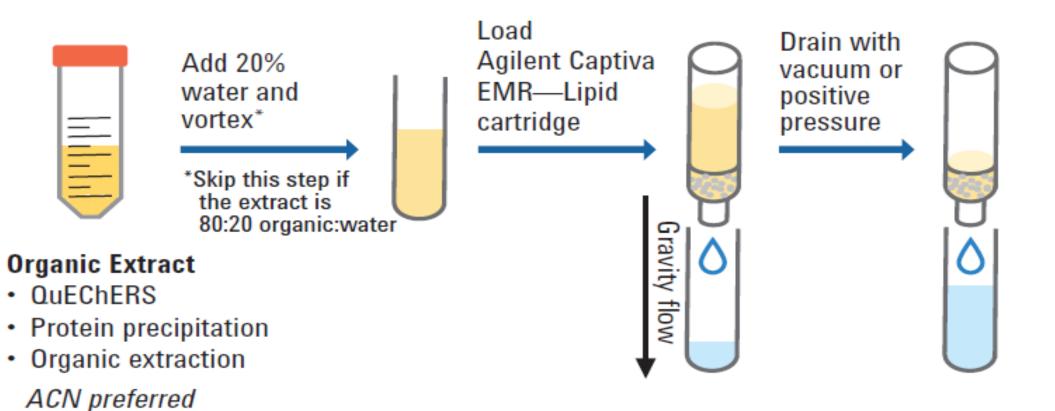


Agilent

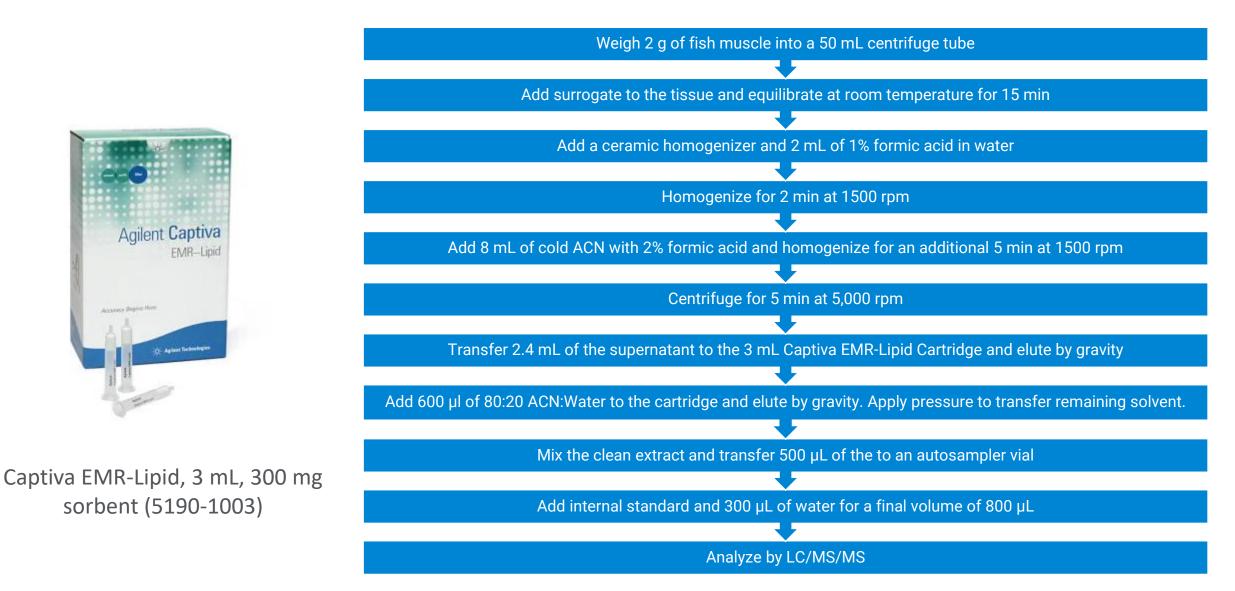
Fish Tissue Extraction Methodology

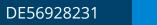
- Why is lipid removal important?
 - Reduce ion suppression, improve S/N, fewer interferences

Vitamin D metabolites (25-OH D2, 25-OH D3) in human plasma with and without lipid removal*



*Lucas, D. and Zhao, L. (2017). Vitamin D Metabolites Analysis in Biological Samples Using Agilent Captiva EMR-Lipid. Agilent Technologies, Inc., Wilmington, DE, USA. Application Note 5994-7956EN.


- Agilent


Fish Tissue Extraction Methodology

• Simple pass-through cleanup

Fish Tissue Extraction Procedure

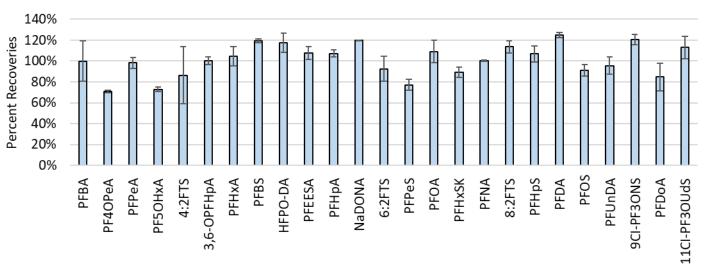
🕂 Agilent

Instrument Conditions

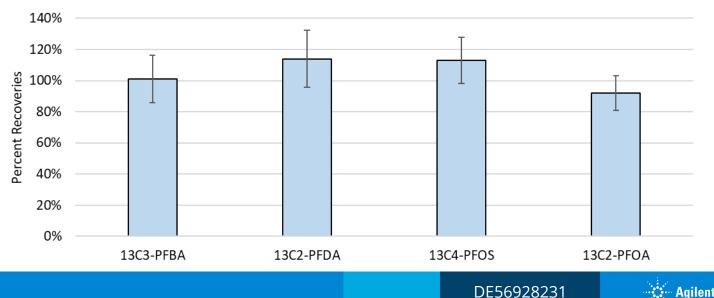
- LC configured for PFAS bypassed degasser, replaced pump seals, inline filters, PTFE tubing
- Delay column
- Large volume injected
- Keep sheath temperature
 low
- Method based on ASTM D7968-17a

Parameter	Value			Parameter	Value
LC	Agilent 1290 Infini	Agilent 1290 Infinity II LC			Agilent 6470 triple quadrupole
	Agilent ZORBAX RRHD Eclipse Plus C18, 2.1 x 100 mm, 1.8 μm		MS	LC/MS with Agilent Jet Stream ES source	
Analytical Column	(p/n 959758-902)			Source Parameters	
	Agilent 1290 Infini (p/n 5067-6189)	ty inline filter 0.3 µ	เท	Polarity	Negative
	Agilent ZORBAX Ec	lipse Plus 95Å C18	, 4.6 x 50mm,	Drying Gas	230 °C, 4 L/min
Delay Column	3.5μm	3.5µm		Sheath Gas	250 °C, 12 L/min
	(p/n 959943-9020)			Nebulizer Gas	15 psi
Column Temperature	50°C			Capillary	2,500 V
Injection Volume	20 μL	20 μL		Voltage	2,500 V
Mobile Phase		A: 20 mM ammonium acetate in 95:5 water : acetonitrile B: 10 mM ammonium acetate in 95:5 acetonitrile : water		Nozzle Voltage	0 V
Column Flow	0.30 mL/min	0.30 mL/min			
	Time (min)	% A	% В		
	0	100	0		
	6	70	30		
Gradient	9	50	50		
	16	15	85		
	17	0	100		
	20	0	100		

0

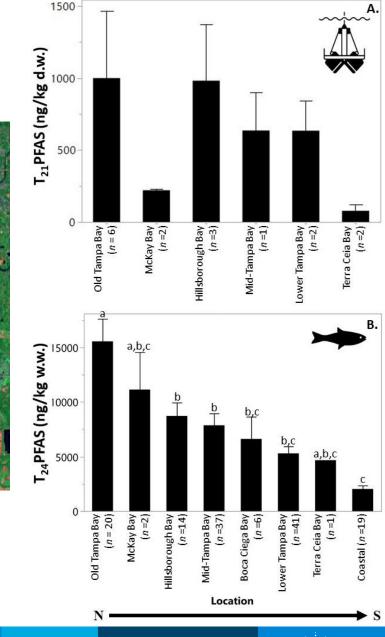

31

100



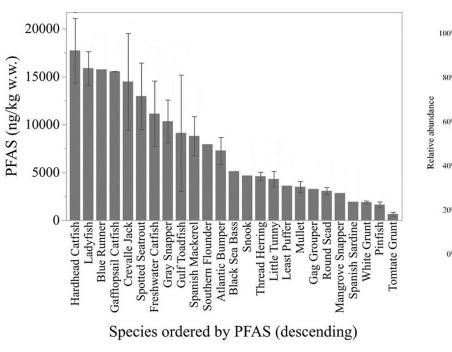
Spike Recoveries Accuracy and Precision

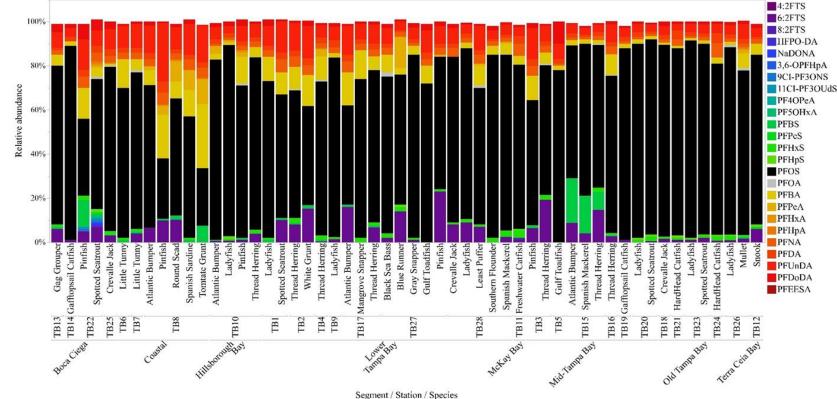
- Target spikes
- Duplicate fish tissue samples
- Spiked with 25 native targets at 100 pg/g
- Average recoveries ranged from 70 to 125% with an overall average of 102% and average range of 15%.
- Surrogate spikes
- Total of 140 fish tissue samples (26 species)
- Spiked with four isotopically labeled surrogates at 100 pg/g
- Average recoveries ranged from 92 to 114% with an overall average of 105%. RSDs ranged from 12 to 16%.


Surrogate Matrix Spikes

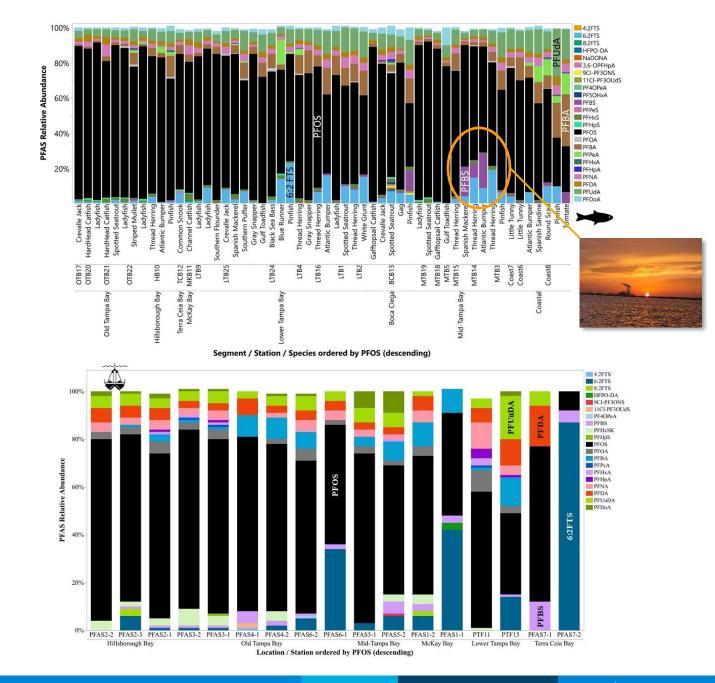
Target Matrix Spikes

- Total PFAS
- Sediment: 37 to 2,990 ng/kg (dw)
- Fish: 307 to 33,600 ng/kg (ww)
- Highest levels in Old Tampa Bay
- Levels generally decreased from north to south toward the Gulf of Mexico

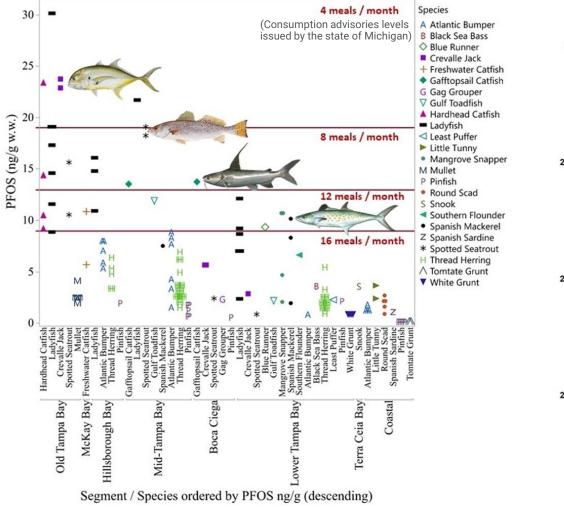



DE56928231

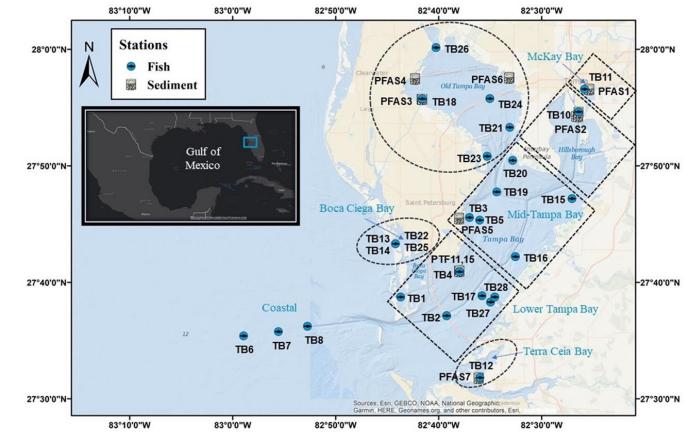
Agilent


Total PFAS Concentration in Fish

Relative Abundance of PFAS



- PFOS predominated profiles in both sediment (59 \pm 18%) and fish muscle tissue (59 \pm 16%)
- PFOS detected in 100% of the samples
 - Sediment: 9 to 2,170 ng/kg dw
 - Fish: 92 to 30,100 ng/kg ww
- Site differences

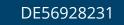


PFOS Concentration in Fish

Sampling Locations and Segments

Captiva EMR PFAS Food I & II

Captiva EMR PFAS Food I


- For fresh produce and processed plant-origin food
- Used after QuEChERS extraction
- Removes sugars, salts, organic acids, pigments and other hydrophilic & hydrophobic interferences
- Two formats provide flexible sample crude extract loading capacity

Captiva EMR PFAS Food II

- For meats and complex dry food
- Used after QuEChERS extraction
- Removes sugars, salts, organic acids, fats and lipids, pigments and other hydrophobic interferences
- One format for multiple matrices

NEW!

Captiva EMR PFAS Food I & II Certificate of Analysis (CoA)

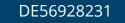
Agilent Product Name: Captiva EMR PFAS Food II, 6mL, 750mg, 30/pk

Agilent Part No.: 5610-2232

FG Lot No.: 6794012-01

Media Lot No.: 0006794012

Raw Materials Component Properties


Test	Method	Result
Tube Purity	GC-FID	Pass
Frit PFAS Cleanliness	LC-QQQ	Pass

Product Specifications/ Analysis

Test	Test description	Method	Result
PFAS Recovery	Recovery of a representative panel of PFAS compounds in	LC-000	Pass
	food matrix using passthrough cleanup.		
Matrix Removal	Matrix removal in representative food sample.	GC-FID	Pass
PFAS Cleanliness	Cartridge cleanliness for targeted PFAS background.	LC-QQQ	Pass
Flow Characteristics	Proprietary	Air Flow	Pass

NEW!

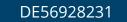
AOAC SMPR[®] 2023.003

Standard Method Performance Requirements (SMPRs[°]) for Per- and Polyfluoroalkyl Substances (PFAS) in Produce, Beverages, Dairy Products, Eggs, Seafood, Meat Products, and Feed

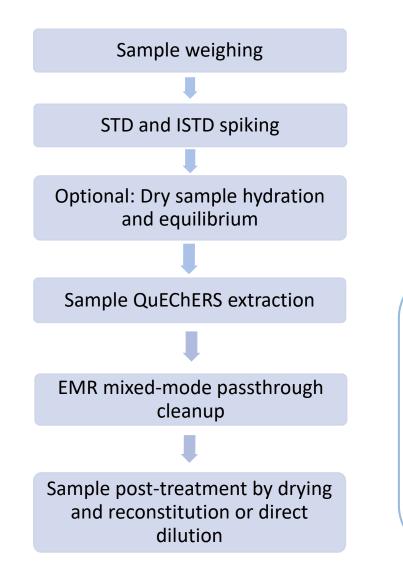
	LOQ (µg/kg) ^a			
Matrix Category	PFOS	PFOA	PFNA	PFHxS
Produce	≤ 0.01	≤ 0.01	≤ 0.01	≤ 0.01
Coffee	≤ 0.3	≤ 0.3	≤ 0.3	≤ 0.3
Milk (liquid)	≤ 0.01	≤ 0.01	≤ 0.01	≤ 0.01
Dairy powders and plant-based protein powders	≤ 0.08	≤ 0.08	≤ 0.08	≤ 0.08
Fish oil	≤ 0.5	≤ 0.5	≤ 0.5	≤ 0.5
Food for infants and young children (baby food)	≤ 0.01	≤ 0.01	≤ 0.01	≤ 0.01
Feed	≤ 0.5	≤ 0.5	≤0.5	≤ 0.5
^a The target LOQs are expressed on a w/w basis in samples as received for testing. These values may be revised in the future based on new toxicological studies and hazard assessments.				

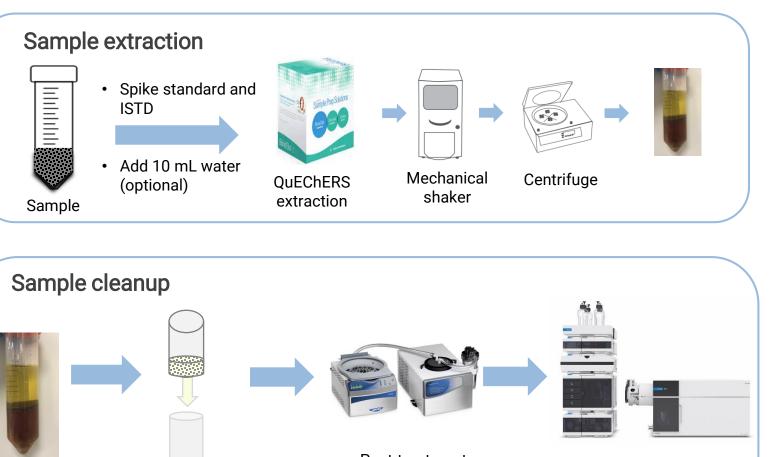
Table 5. Target limits of quantification (LOQ) for PFOS, PFOA, PFNA, and PFHxS in other matrices.

Table 7. Recovery, repeatability, and reproducibility.


Parameter	PFOS, PFOA, PFHxS, PFNA in regulated matrices (see Table 4)	PFOS, PFOA, PFHxS, PFNA in other matrices and all other analytes ^a	
Recovery, %	80-120	65-135	
Repeatability, RSD _r , %	≤ 20	≤ 25	
Reproducibility, RSD _R , %	≤ 40	≤ 40	
^a For analytes without commercially available matching isotopically labelled standards, recoveries within 40-140 %			

^a For analytes without commercially available matching isotopically labelled standards, recoveries within 40-140 and RSD_r \leq 30% could be acceptable.


Table 6. Target limits of quantification (LOQ) for other PFAS.

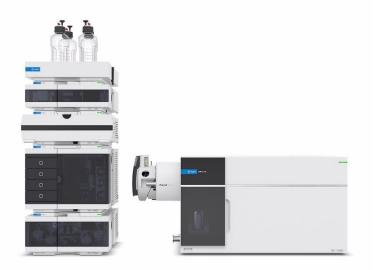

	LOQ (µg/kg) ^{a,b} 159		
	PFBA	Other PFAS	
	and		
Matrix Category	PFPeA		
Eggs	≤ 3	≤ 3	
Seafood (crustaceans and mollusks)	<u>≤</u> 3	≤ 3	
Fish meat and meat of terrestrial animals	≤ 1	≤ 1	
Edible offal of terrestrial animals	<u>≤</u> 4	≤ 4	
Produce	≤ 1	≤ 0.1	
Coffee	≤ 3	≤ 3	
Milk (liquid)	≤ 1	≤ 0.1	
Dairy powders	≤ 1	≤ 0.8	
Fish oil	<u>≤ 5</u>	≤ 5	
Food for infants and young children (baby food)	≤ 1	≤ 0.1	
Feed	≤ 5	≤ 5	
 ^a The target LOQs are expressed on a w/w basis in statesting. These values may be revised in the future bastudies and hazard assessments. ^b Target LOQs were calculated by multiplying LOQ factor of 10. The minimum LOQ for PFBA and PFD 	ased on new s from Tabl	toxicological es 4 and 5 by a	

Other PFAS = PFBS, 4:2 FTS, PFHxA, PFPeS, HFPO-DA, PFHpA, DONA, 6:2 FTS, PFHpS, 9Cl-PF3ONS, 8:2 FTS, PFDA, PFNS, PFDS, PFunDA, PFOSA, 11Cl-PF3OUdS, PFUnDS, PFDoDA, 10:2 FTS, PFDoS, PFTrDA, PFTrDS, PFTeDA

Captiva EMR PFAS Food I & II – Typical Extraction Method

EMR mixed-mode passthrough cleanup

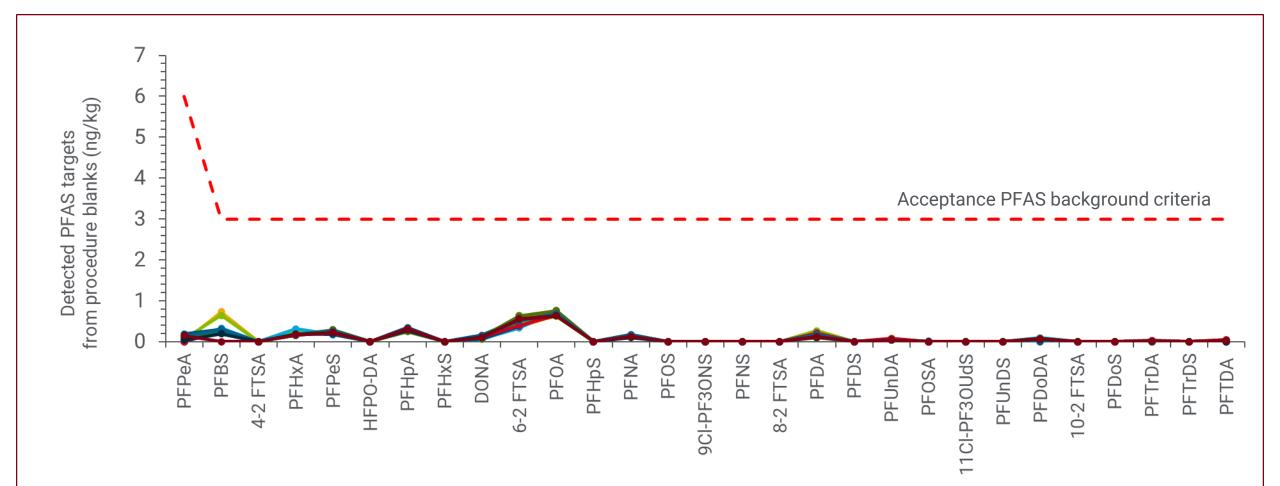
Post-treatment Dry & reconstitution or Direct dilution

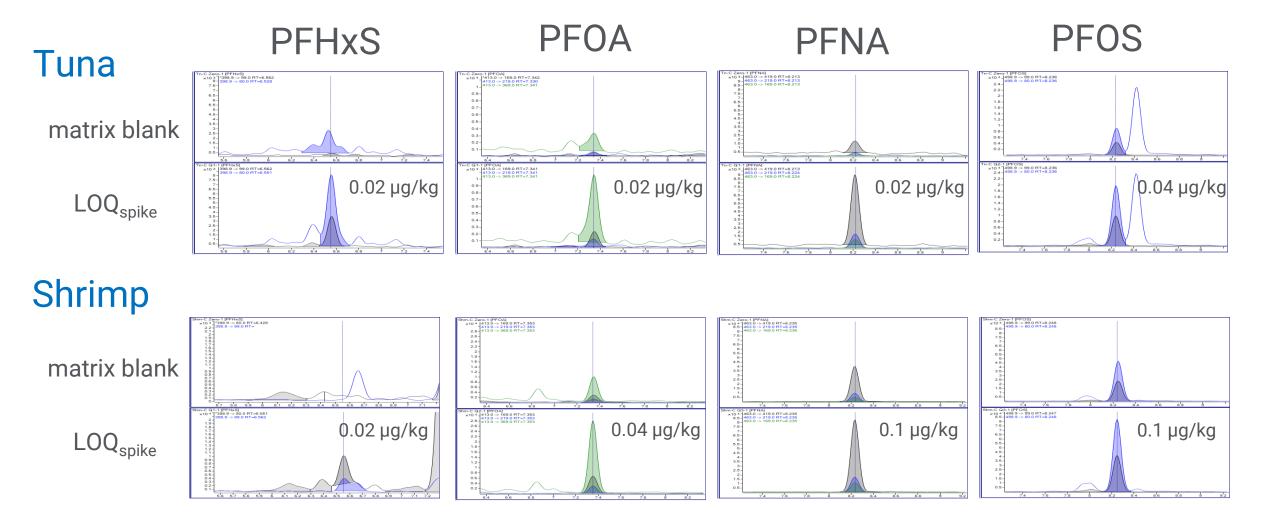

LC/MS/MS detection

Instrumental Analysis by LC-MS/MS

LC method parameters		MS QQQ Parameters		
Solvent A	5 mM ammonium acetate in water		Ion Source	ESI
Solvent B	МеОН		Acquisition	dMRM
Flow		0.4 mL/min	Polarity	Negative
Pump Program	T _{0.0}	2% B		
	T _{2.0}	2% B	Source Parameters	
	T _{2.5}	55% B	Gas Temp	230 °C
	T _{6.5}	70% B	Gas Flow	4 L/min
	T _{8.0}	80% B	Nebulizer	15 psi
	T _{14.2}	100% B	Sheath Gas Heater	250 °C
	T _{17.0}	100% B	Sheath Gas Flow	12 L\min
	T _{17.1}	20% B	Capillary	2500 V (-), 0 V (+)
Stop Time	17.1 min		Nozzle Voltage	0 V
Post Time	7 min			
Injection Volume	10 µL			
Injection program	10 μL water + 10 μL sample + 50 μL water + 10 μL air		Column and Guard	
Needle Wash	Multi-wash program		Column	Eclipse Plus C18 RRHD 1.8 μm, 2.1 x 100 mm
Needle Wash Sol'n	1. IPA; 2. ACN	; 3. H ₂ 0	PN	959758-902
Needle Height		0 mm	Guard	Eclipse Plus C18, 1.8 µm, 2.1 x 5 mm
			PN	821725-901
Column temperature		55°C	Delay	InfinityLab PFC delay column, 4.6 x 30 mm
			PN	5062-8100

Poster P28 Enhanced Sensitivity for PFAS Using a Hybrid Autosampler Approach with LC-MSMS Emily Parry, Agilent Technologies

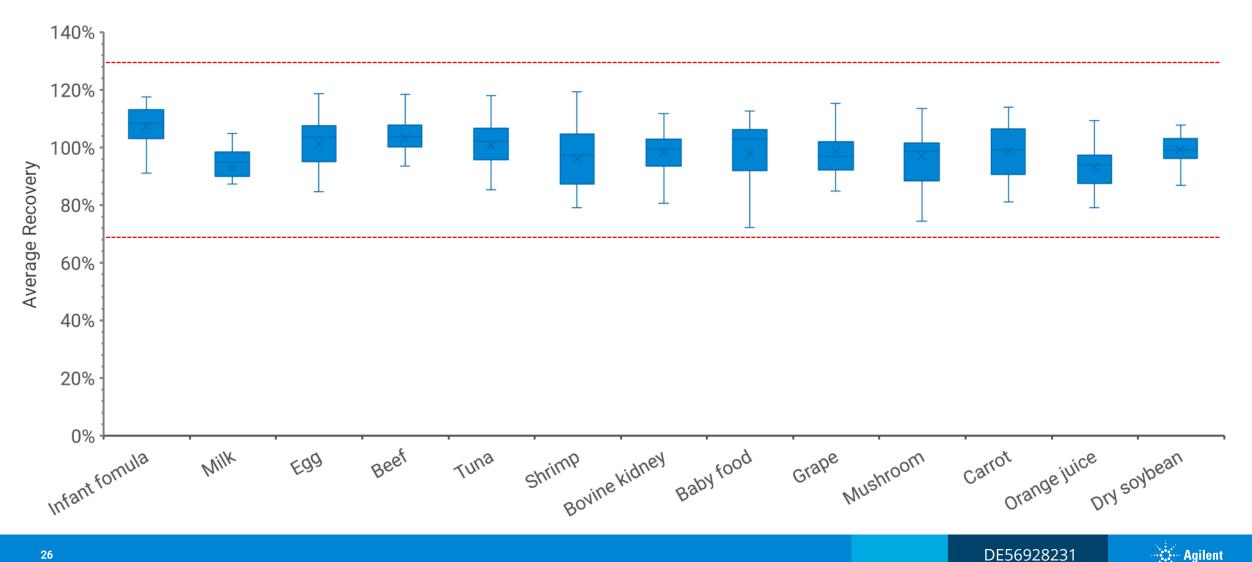

Agilent Triple quadrupole LC/MS system, 6495D mass spectrometer with PFC-free kit and delay column

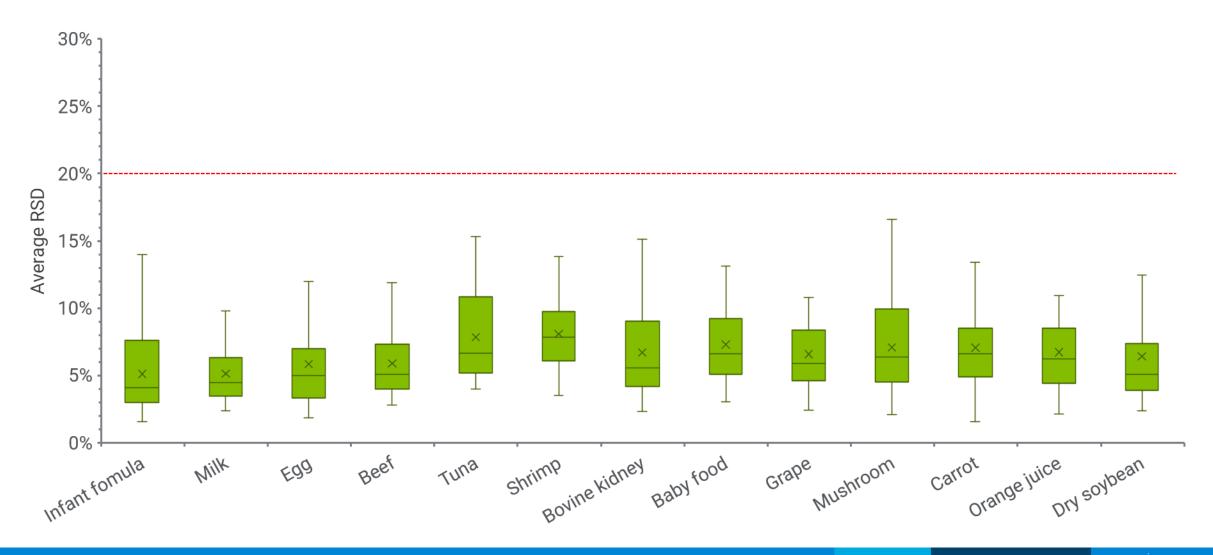

PFAS in Food – Captiva EMR PFAS Food I & II

 Method limit of quantitation of 10 ng/kg for all compounds accept PFBA (100 ng/kg) and PFPeA (20 ng/kg)

Agilent

Lower Limit of Quantitation (Validated) – Captiva EMR PFAS Food II*


*Zhao, L.; Giardina, M.; Perry, E. (2024). Determination of 30 PFAS in Beef, Tuna, and Shrimp. Agilent Technologies, Inc., Wilmington, DE, USA. Application Note 5994-7368EN.


Method Accuracy

Recovery accuracy of 30 PFAS targets at three spiking levels in 13 matrices

Method Precision

• Recovery precision of 30 PFAS targets at three spiking levels in 13 matrices

DE56928231

Conclusions and Summary

- Robust and reliable method for determination of PFAS in fish muscle using Captiva EMR-Lipid pass through cleanup
- Validated by a large-scale environmental study
- New PFAS matrix removal products developed with
 - ✓ Captiva EMR PFAS Food I (*flora*) and EMR PFAS Food II (*fauna*)
 - ✓ Rigorous QC testing PFAS background, recovery, matrix removal
 - ✓ Fully validated method for 30 PFAS in multiple food matrices
 - ✓ Simplified pass-though cleanup with high recovery
 - ✓ <u>https://www.agilent.com/en/product/sample-preparation/filtration/captiva-emr-pfas-food-cartridges</u>