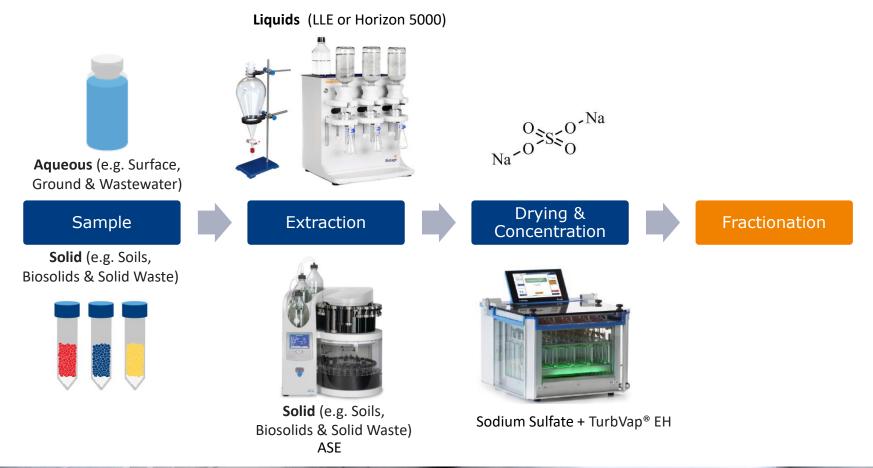


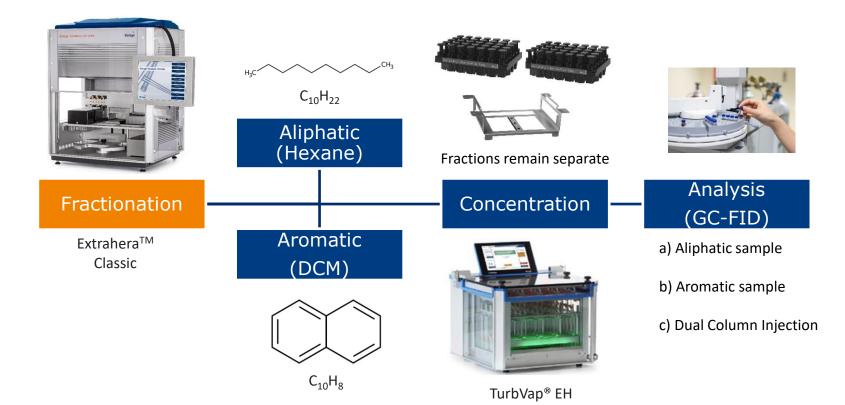
Advancements in EPH Fractionation: Overcoming Challenges and Enhancing Efficiency

Christopher B. Mitchell 05 July 2024

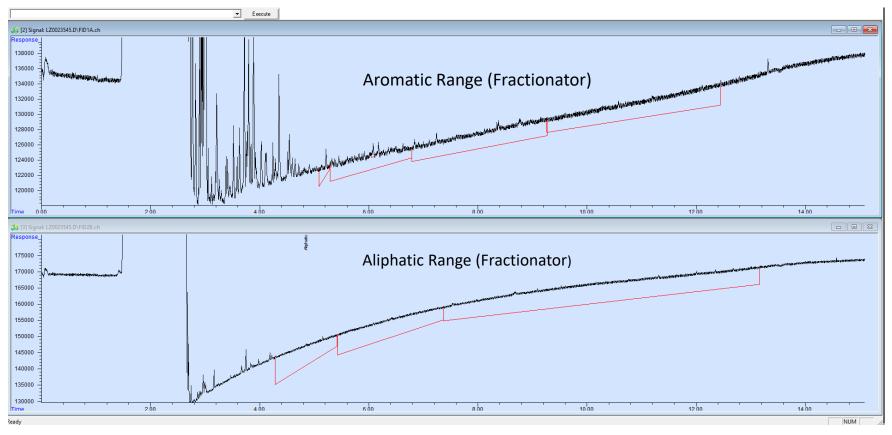
© Biotage


What is EPH and Why does it matter?

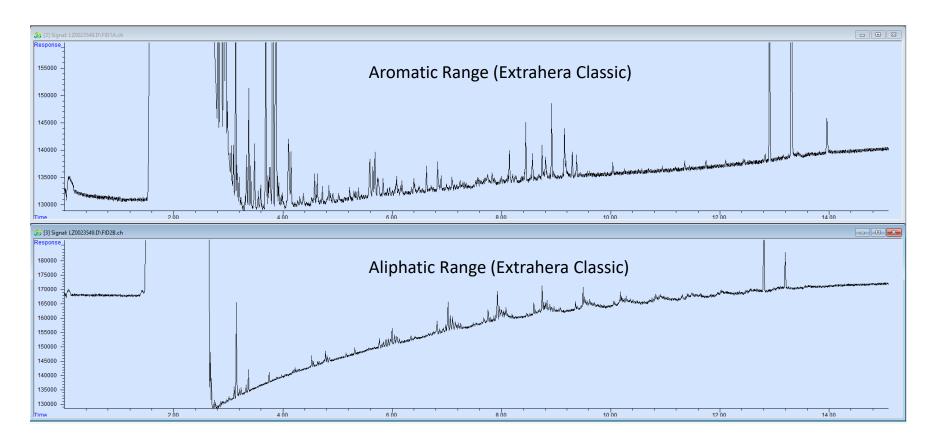
- EPH-Extractable Petroleum Hydrocarbons
- Includes analysis of both soil & water samples
- Monitors contamination levels
 - » Hydrocarbon materials
 - Fuels, lubricating oils and crude oils
 - » Underground storage tanks are possible leakage sources
- Understand toxicological impact
 - » Measure the effectiveness of soil remediation


EPH Workflow Step 1 - Extraction

EPH Workflow Step 2 - Fractionation



4



Typical Blank - Aromatic & Aliphatic

Contaminated Blank - Aromatic & Aliphatic

Workaround Solution-1. Solvent Reservoirs

Potential EPH phthalate Sources	Tested	Detected Background	Isolation Test	DF	Dilution Factor Concentration
Hexane Reservoir	Vec	51ppm (used reservoir) 145ppm (new	Rinse reservoir with Hexane squeeze bottle. Manually fill reservoir with 10mL Hexane cover with foil, let sit for 4 hour, concentrate to 1mL, analyze	10	5.1ppm (used reservoir) 14.5ppm (new reservoir)

- Reservoirs were placed in a closed container of DCM and soaked overnight to allow phthalates to leach off.
- Tests were done to isolate potential phthalate sources of contamination.
- There were ranges of 5.1-14.5 ppm of leached phthalates that would present themselves after hexane exposure
- In the solvent settings on the Extrahera hexane was identified as a volatile solvent to help minimize contact time with the reservoir.
- We tried covering the reservoirs with foil to run extraction, but the sonic sensor would cause the system to error out.

Workaro	und	Solution	-2. Pipette Tips		Biotage
Potential EPH phthalate Sources	Tested	Detected Background	Isolation Test	DF	Dilution Factor Concentration
Pipette Tips with Hexane		T0 = 3.5 ppm (No tips) T5 = 20.7 ppm (most used tips) T10 = 8.1 ppm (lesser used tips)	Fill 3 beakers with 10mL Hexane, cover beaker #1 with foil. Place 4 tips in beaker #2 and 4 tips in beaker #3 cover with foil as best as you can. After 5 min remove tips for beaker # 2. After 10 minutes remove tips from Beaker #3. Concentrate all 3 down to 1mL and analyze	10	T0 = 0.35 ppm (No tips) T5 = 2.07 ppm (most used tips) T10 = 0.81 ppm (lesser used tips)

- Sample tips were switched from wide bore to standard 1mL tips and a prerinse step with hexane was added.
- Standard 1mL sample Tips were used for solvents and wide bore tips were used to pipet samples.
- This test was done on standard sample tips since they were reusable consumables.
- Test revealed that at different time points phthalate concentrations varied with concentrations decreasing the longer the contact time.
- Solvent tips would have reduced phthalate influence do to them being reused and their contamination being "rinsed away" with repeated usage.
- Pre-rinse step (Tip Conditioning) was designed to rinse wide bore but contamination persisted.

Other Sources of Contamination

- The plastics were tested in the cartridges but only showed trace amounts of contamination ranging from 0.65-0.72ppm in relation to the other plastics sources.
- The 12x75mm borosilicate collection tubes were also tested using a hexane and DCM drydown on the TurboVap and these results yielded anywhere from 0.1 0.8ppm. Glassware was baked at 400°C for 4 hours and retested and results were consistently <0ppm. This was adopted going forward for all testing.

Description	Background
#3: No Bake 12x75mm Glass Vials	0.1 - 0.8ppm Per Vial
#4: Bake 12x75mm Glass Vials @ 400C for 4 Hours	<0ppm

Solvents

Conditioning flow

rate was initially

and slowed down

20mL/min

to 10mL/min

Final	Extrahera	Method
-------	-----------	--------

- During the course of these visits, multiple methods were tried and introduced.
- It is worth noting that we also tried to do a DCM tip rinse vs hexane. Overall, the hexane performed better with the DCM showing an uptick in non-reported hydrocarbons.
- The final method for use was named."24_Position_1_mL _EPH_Fractionation-FINAL_20240524"

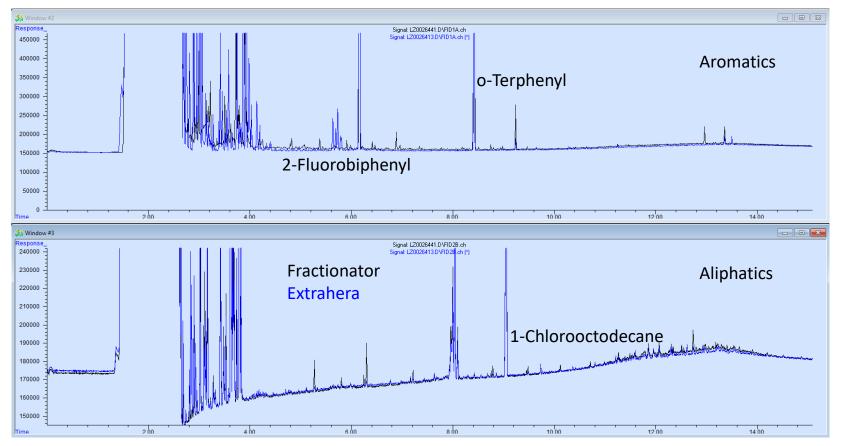
This method successfully met RECAP & MADEP aliphatic background criteria

	Solvent 1	Solvent 2	Solvent 3
Solvent name	DCM Modified2	Hexane2	Hexane Clean
Solvent description	Adjust Air Gap	Hexane	Hexane
Aspiration flow rate (mL/min)	10	10	10
Dispense flow rate (mL/min)	10	20	20
Lower air gap flow rate (mL/min)	15	20	20
Lower air gap volume (µL)	10	5	5
Upper air gap flow rate (mL/min)	120	120	120
Upper air gap volume (µL)	100	100	100
Requires tip conditioning	Yes	Yes	Yes
Conditioning, number of times	5	4	20
Conditioning flow rate (mL/min)	10	20	10
Chlorinated	Yes	No	No
Serial dispensing allowed	No	No	No
Upper air gap dispense pause (ms)	300	100	100
Aspirate post dispense	Yes	Yes	Yes
Highly volatile?	Yes	Yes	Yes

Conditioning

Number of steps	2
Pressure (bar)	0.5
Dispose solvent tips after each step	No

Biotage Workflow Steps


Original vs Modified

- **1.** Obtain dried EPH extracts and samples.
- 2. Place EPH cartridges into Extrahera.
- **3.** Load Sample (1mL wide bore) and solvent (1mL standard) into instrument.
- Load 12x75mm collection tubes into 12x75mm collection racks into Position A (Aliphatics) and Position B (Aromatics) on rotating carousel. Place flow through plate into Position D.
- **5.** Load EPH extracts and samples into Extrahera.
- 6. Select "24_Position_1_mL_EPH_Fractionation" from method list, load and run method.
- 7. Transfer samples to TurboVap EH and concentrate to 1mL with Nitrogen at 35°C.
- 8. Transfer to vials and analyze on GC-FID.

- 1. Prime solvent lines and clean reservoirs
- 2. Place precleaned solvent reservoirs into Extrahera
- **3.** Obtain dried EPH extracts and samples. (baked)
- **4.** Place EPH cartridges into Extrahera.
- **5.** Load Sample (1mL standard) and solvent (1mL standard) into instrument.
- Load baked 12x75mm collection tubes into 12x75mm collection racks into Position A (Aliphatics) and Position B (Aromatics) on rotating carousel. Place flow through plate into Position D.
- 7. Load EPH extracts and samples into Extrahera.
- Select "24_Position_1_mL_EPH_Fractionation-FINAL_20240524" from method list, load and run method. Updated method to include tip rinsing & eliminated use of wide bore tips.
- 9. Transfer samples to TurboVap EH and concentrate to 1mL with Nitrogen at 35°C.
- **10**. Transfer to vials and analyze on GC-FID.

Fractionator & Biotage Overlay - Aromatic & Aliphatic

Background Range Summary of Final Method compared to Fractionator

Data File #	Sample ID	Date Acquired	MADEP C9-C18 Aliphatics	MADEP C19-C36 Aliphatics	RECAP C16-C35 Aliphatics	Notes
LZ0030155.D	SB	5/22/2024	3.698	N.D.	1.021	Hexane tip rinse changed from 20mL/min to 10mL/min
LZ0030157.D	SB	5/22/2024	4.035	N.D.	1.118	Hexane tip rinse changed from 20mL/min to 10mL/min
LZ0030159.D	SB	5/22/2024	3.299	N.D.	1.192	Hexane tip rinse changed from 20mL/min to 10mL/min
LZ0030161.D	SB	5/22/2024	3.646	N.D.	0.930	Hexane tip rinse changed from 20mL/min to 10mL/min
LZ0029514.D	SBA	5/3/2024	3.092	N.D.		Fractionator A System Blank
LZ0029518.D	SBB	5/3/2024	3.212	N.D.		Fractionator B System Blank

• Overall, the final Biotage method meets background aliphatic range criteria:

• RECAP (<1.8ppm C16-C35 Aliphatics)

• MADEP (<5ppm C9-C18 Aliphatics)

Background Individual Hydrocarbon Summary of Final Method compared to Fractionator

Data File #	Sample ID	Date Acquired	C9 Aliphatic s	C10 Aliphatics	C12 Aliphatics	C14 Aliphatics	C16 Aliphatics	C18 Aliphatics	Notes
LZ0030155.D	SB	5/22/202 4	N.D.	N.D.	0.071	0.061	0.047	0.035	Hexane tip rinse changed from 20mL/min to 10mL/min
LZ0030157.D	SB	5/22/202 4	N.D.	N.D.	0.072	0.055	N.D.	N.D.	Hexane tip rinse changed from 20mL/min to 10mL/min
LZ0030159.D	SB	5/22/202 4	N.D.	N.D.	0.050	0.047	0.056	0.050	Hexane tip rinse changed from 20mL/min to 10mL/min
LZ0030161.D	SB	5/22/202 4	N.D.	N.D.	0.061	0.049	0.040	0.033	Hexane tip rinse changed from 20mL/min to 10mL/min
LZ0029514.D	SBA	5/3/2024	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	Fractionator A System Blank
LZ0029518.D	SBB	5/3/2024	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	Fractionator B System Blank

• Individual peaks are not reported and only concern is impact to reporting range for RECAP and MADEP.

Biotage Extrahera = 0.072 ppm or less

• Fractionator = N.D.

Demonstration of Criteria

- Surrogate Recovery Surrogates are showing excellent recovery. 2-Fluorobiphenyl has a mean recovery of 97.64%, o-Terphenyl is 102.00% and 1-Chlorooctadecane is 84.58%
- When reducing the tip rinse flow rate from 20mL/min to 10mL/min, I observed the following trends:
- MADEP <5ppm C9-C18 aliphatics for MADEP had a mean concentration change from 4.253 to 3.669 ppm (13.7% reduction)
- RECAP <1.80ppm C16-C35 RECAP aliphatics had a mean concentration change from 1.558 to 1.065 ppm (31.6% reduction)

Individual Aliphatic Hydrocarbon	Mean Area Counts 20mL/min Tip Rinse	Mean Area Counts 10mL/min Tip Rinse	% Difference		
C9	0	0	0		
C10	0	0	0		
C12	290610.6	136264.5	-53.1		
C14	245228.4	123744.8	-49.5		
C16	211043.6	77187	-63.4		
C18	236294.7	69788.5	-70.5		