
Microplastics in the Environment

Optimizing membrane filter selection for analytical methods used to characterize microplastics

<u>Lindsay D. Lozeau</u>, Maricar Dube, Kevin Sydlowski, Ranjani Muralidharan 05 AUGUST 2024

MilliporeSigma is the U.S. and Canada Life Science business of Merck KGaA, Darmstadt, Germany.

Science & Lab Solutions - Biology

Filtration and Sample Preparation across Environmental Workflows

Sample Collection

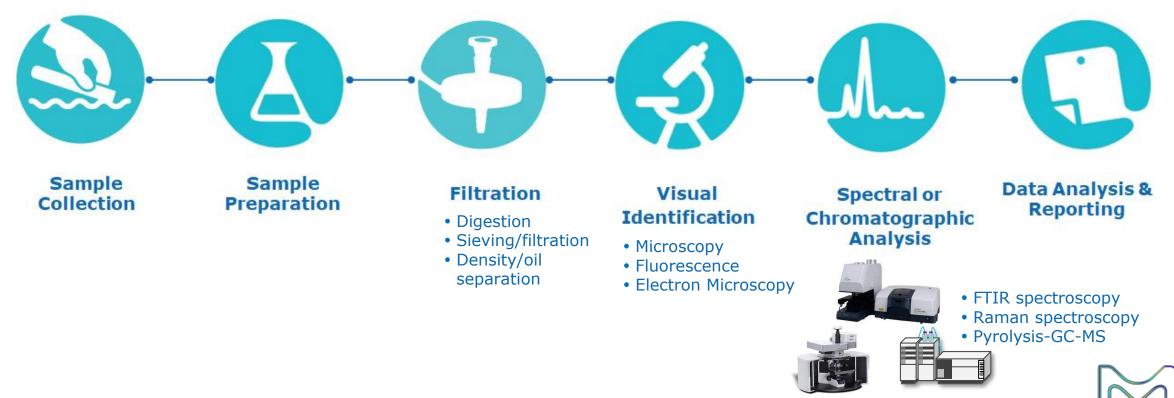
Sample Preparation

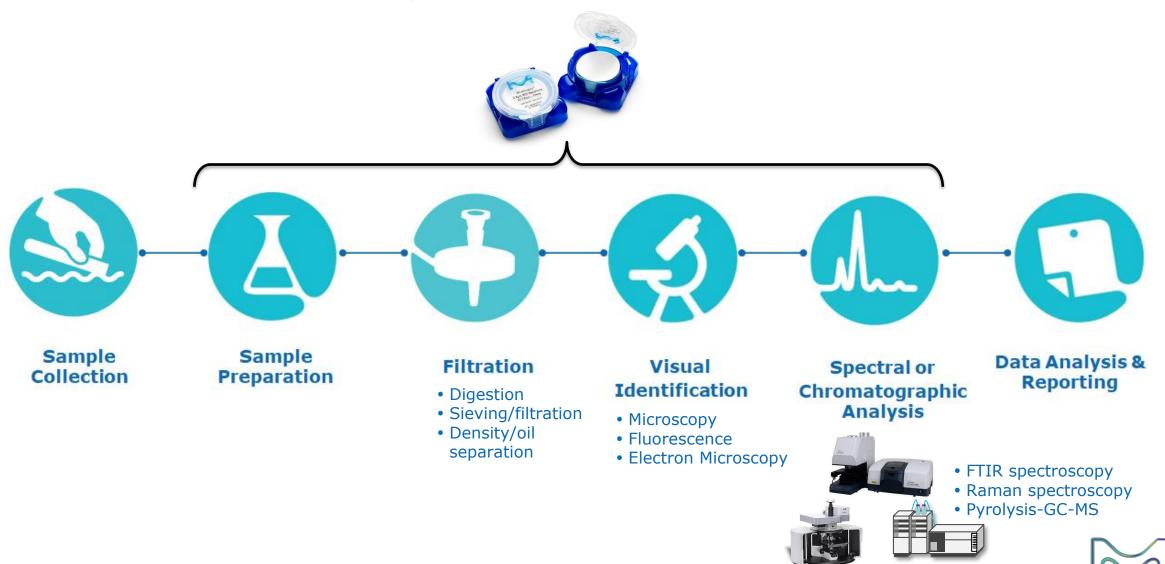
Sample Analysis

Analytical Sample Preparation

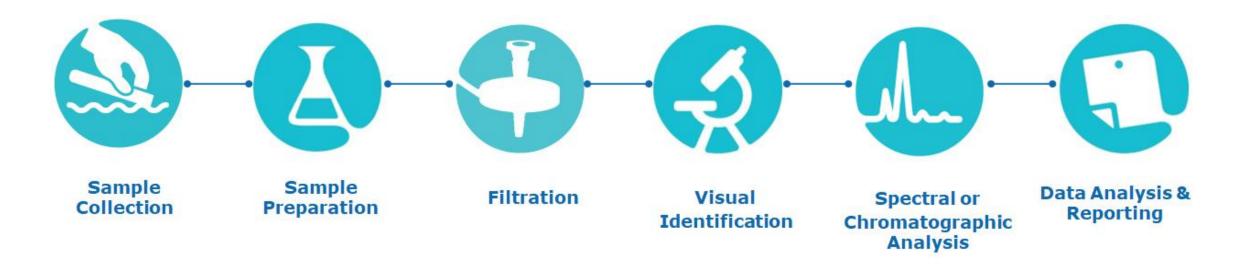
MICROPLASTICS

Analytical Methods

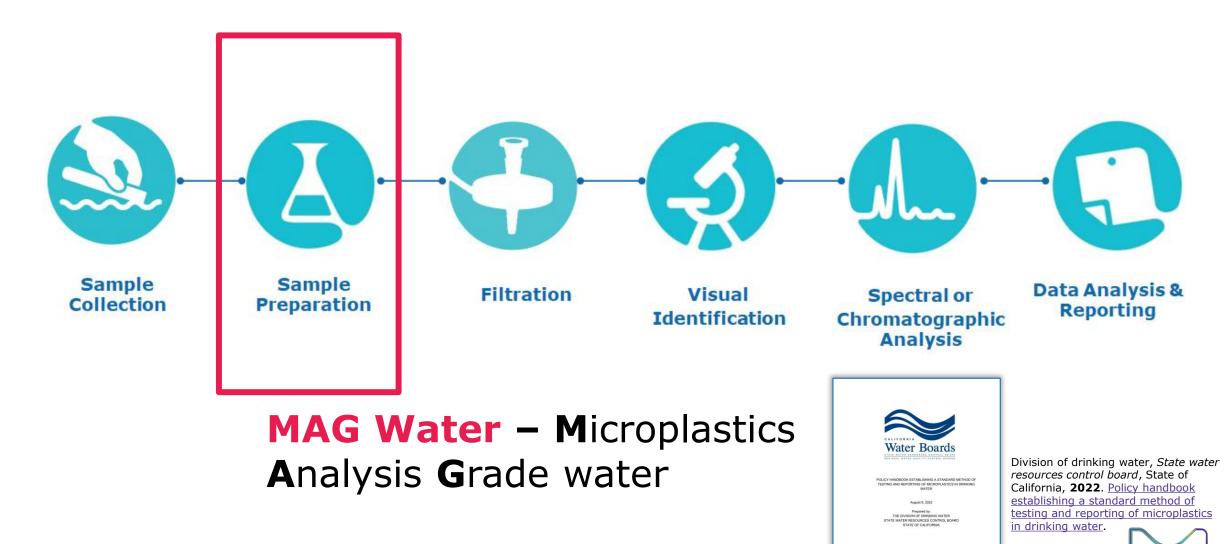

Published and In Process


Name	Date	Portion of Workflow	Matrix	Sample Prep	Analytical Method(s)	
NOAA NOS-OR&R-48	JUL 2015	Entire workflow	Seawater, sediment, bed samples	Sieve, density settle & digest	Microscopy	מטק
ASTM D8332-20	AUG 2020	Sampling	Drinking water, surface water, wastewater influent, effluent, marine waters	Sieve	Py-GC/MS, IR or Raman Spectroscopy, Microscopy	IISNe
ASTM D8333-20	AUG 2020	Sampling	Drinking water, surface water, wastewater influent, effluent, marine waters	Sieve, wet peroxide oxidation	Py-GC/MS, IR or Raman Spectroscopy, Microscopy	d Met
SWRCB	NOV 2021 AUG 2022	Entire workflow	Drinking water	Sieve, filtration, microscopy	Microscopy, IR or Raman Spectroscopy	nog
prEN ISO 16094	Draft	3 parts, sampling through analysis	Drinking water, ground water, precipitation water, surface water, water post-treatment	Sieve, filtration, microscopy	Spectroscopy, Py- GC/MS	Ŀ
ISO/CD 5667	Draft , started 2021	Sampling	Drinking water, surface water, freshwater, seawater, wastewater & effluents		Spectroscopy, Py- GC/MS	n de
prEN ISO 4484	Part 1 Final draft 2023	3 parts related to measurement	Textiles in water			Velo
ASTM DXXXX	Working group	Entire workflow	Influent, Effluent, wastewater, ambient water, drinking water, bottled water	Sieve, filtration, microscopy	Microscopy, IR Spectroscopy	pme
ASTM DXXXX	Working group	Entire workflow	Drinking water, wastewater, surface water, ground water, marine waters	Sieve, filtration, microscopy	Microscopy, Py-GC- MS	חנ
ASTM 67563	Draft	Sampling	Sewage, wastewater effluent	Sieve	N/A	

Analytical Methods

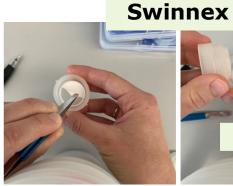

Published and In Process

Name	Date	Portion of Workflow	Matrix	Sample Prep	Analytical Method(s)	
NOAA NOS-OR&R-48	JUL 2015	Entire workflow	Seawater, sediment, bed samples	Sieve, density settle & digest	Microscopy	פטק
ASTM D8332-20	AUG 2020	Sampling	Drinking water, surface water, wastewater influent, effluent, marine waters	Sieve	Py-GC/MS, IR or Raman Spectroscopy, Microscopy	IISNe
ASTM D8333-20	AUG 2020	Sampling	Drinking water, surface water, wastewater influent, effluent, marine waters	Sieve, wet peroxide oxidation	Py-GC/MS, IR or Raman Spectroscopy, Microscopy	d Met
SWRCB	NOV 2021 AUG 2022	Entire workflow	Drinking water	Sieve, filtration, microscopy	Microscopy, IR or Raman Spectroscopy	Dog
prEN ISO 16094	Draft	3 parts, sampling through analysis	Drinking water, ground water, precipitation water, surface water, water post-treatment	Sieve, filtration, microscopy	Spectroscopy, Py- GC/MS	F
ISO/CD 5667	Draft , started 2021	Sampling	Drinking water, surface water, freshwater, seawater, wastewater & effluents		Spectroscopy, Py- GC/MS	n de
prEN ISO 4484	Part 1 Final draft 2023	3 parts related to measurement	Textiles in water			Velo
ASTM DXXX	Working group	Entire workflow	Influent, Effluent, wastewater, ambient water, drinking water, bottled water	Sieve, filtration, microscopy	Microscopy, IR Spectroscopy	pme
ASTM DXXX	Working group	Entire workflow	Drinking water, wastewater, surface water, ground water, marine waters	Sieve, filtration, microscopy	Microscopy, Py-GC- MS	
ASTM 67563	Draft	Sampling	Sewage, wastewater effluent	Sieve	N/A	



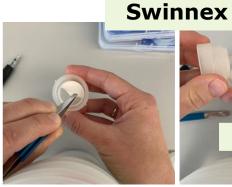
"High purity water filtered through a filter with pore-size 1 µm or smaller..."

Swinnex

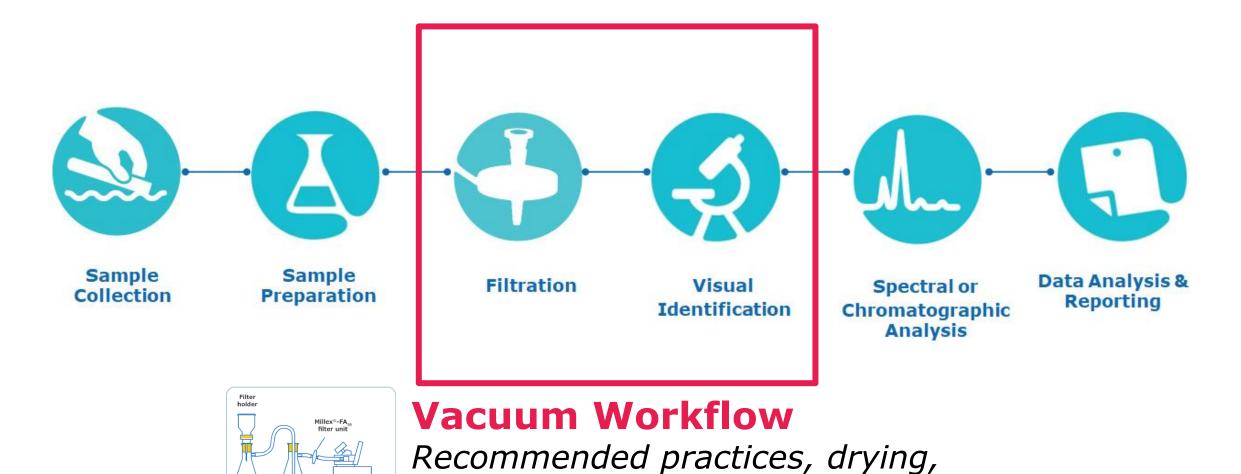

Methods: Flow labeled bead solutions of different diameters through filters assembled in Swinnex, determine retention spectrophotometrically in filtrate compared to standard curve.

"High purity water filtered through a filter with pore-size 1 µm or smaller..."

Methods: Flow labeled bead solutions of different diameters through filters assembled in Swinnex, determine retention spectrophotometrically in filtrate compared to standard curve.


Material	Retention	Cat. No.	Ave	erage % Particle Re	Recommended for making MAG	
	(μm)		5.09 µm	0.96 µm	0 .784 μm	Water? (Free of 1.0 µm particles?)
Glass fiber	0.7	APFF04700	99.9±0.02	9.99±0.014	100±0.05	Yes
	1.0	APFB04700	99.9±0.05	99.97±0.018	100±0.00	Yes
	1.2	APFC04700	99.9±0.19	99.99±0.011	99.9±0.07	No
Quartz fiber		AQFA04700	99.9±0.04	100.0±0.009	99.9±0.05	Yes
Polycarbonate	0.8	ATTP04700	99.9±0.12	99.36±0.035	62.1±4.30	Yes
	1.2	RTTP04700	100±0.05	18.05±2.735	7.70±0.97	No
	2.0	TTTP04700	99.9±0.04	5.733±1.101	3.76±0.67	No
Mixed cellulose	0.8	AABP04700	99.8±0.27	99.99±0.015	100±0.01	Yes
ester (MCE)	1.2	RAWP04700	100±0.05	100.0±0.017	100.0±0.01	No

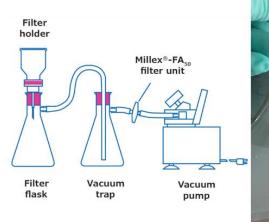
"High purity water filtered through a filter with pore-size 1 µm or smaller..."

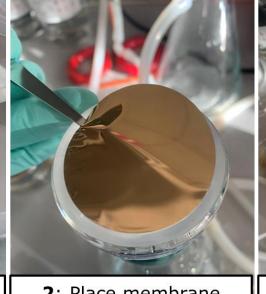


Methods: Flow labeled bead solutions of different diameters through filters assembled in Swinnex, determine retention spectrophotometrically in filtrate compared to standard curve.

Retention	Cat. No.	Average % Particle Retention				Recommended for making MAG	
(µm)		5.09 µm	0.96 μm		0. 7 84 μm	Water? (Free of 1.0 µm particles?)	
0.7	APFF04700	99.9±0.02	99.99±0.014		100±0.05	Yes	
1.0	APFB04700	99.9±0.05	99.97±0.018		100±0.00	Yes	
1.2	APFC04700	99.9±0.19	99.99±0.011		99.9±0.07	No	
	AQFA04700	99.9±0.04	100.0±0.009		99.9±0.05	Yes	
0.8	ATTP04700	99.9±0.12	99.36±0.035		62.1±4.30	Yes	
1.2	RTTP04700	100±0.05	18.05±2.735		7.70±0.97	No	
2.0	TTTP04700	99.9±0.04	5.733±1.101		3.76±0.67	No	
0.8	AABP04700	99.8±0.27	99.99±0.015		100±0.01	Yes	
1.2	RAWP04700	100±0.05	100.0±0.017		100.0±0.01	No	
	(μm) 0.7 1.0 1.2 0.8 1.2 2.0 0.8	(μm)Cat. No.0.7APFF047001.0APFB047001.2APFC04700AQFA047000.8ATTP047001.2RTTP047002.0TTTP047000.8AABP04700	Cat. No.5.09 μm0.7APFF0470099.9±0.021.0APFB0470099.9±0.051.2APFC0470099.9±0.19AQFA0470099.9±0.040.8ATTP0470099.9±0.121.2RTTP04700100±0.052.0TTTP0470099.9±0.040.8AABP0470099.8±0.27	Cat. No. 5.09 μm 0.96 μm 0.7 APFF04700 99.9±0.02 99.99±0.014 1.0 APFB04700 99.9±0.05 99.97±0.018 1.2 APFC04700 99.9±0.19 99.99±0.011 AQFA04700 99.9±0.04 100.0±0.009 0.8 ATTP04700 99.9±0.12 99.36±0.035 1.2 RTTP04700 100±0.05 18.05±2.735 2.0 TTTP04700 99.9±0.04 5.733±1.101 0.8 AABP04700 99.8±0.27 99.99±0.015	Cat. No. 5.09 μm 0.96 μm 0.7 APFF04700 99.9±0.02 99.99±0.014 1.0 APFB04700 99.9±0.05 99.97±0.018 1.2 APFC04700 99.9±0.19 99.99±0.011 AQFA04700 99.9±0.04 100.0±0.009 0.8 ATTP04700 99.9±0.12 99.36±0.035 1.2 RTTP04700 100±0.05 18.05±2.735 2.0 TTTP04700 99.9±0.04 5.733±1.101 0.8 AABP04700 99.8±0.27 99.99±0.015	(μm) Cat. No. 5.09 μm 0.96 μm 0.784 μm 0.7 APFF04700 99.9±0.02 99.99±0.014 100±0.05 1.0 APFB04700 99.9±0.05 99.97±0.018 100±0.00 1.2 APFC04700 99.9±0.19 99.99±0.011 99.9±0.07 AQFA04700 99.9±0.04 100.0±0.009 99.9±0.05 0.8 ATTP04700 99.9±0.12 99.36±0.035 62.1±4.30 1.2 RTTP04700 100±0.05 18.05±2.735 7.70±0.97 2.0 TTTP04700 99.9±0.04 5.733±1.101 3.76±0.67 0.8 AABP04700 99.8±0.27 99.99±0.015 100±0.01	

Filtration Involved in Majority of Workflows

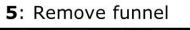


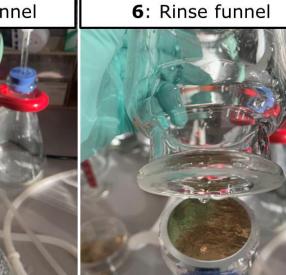

particle recovery, light microscopy



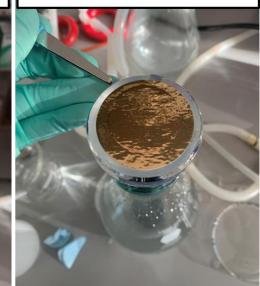
Vacuum

Establishing the Vacuum **Workflow to Isolate Microplastics**


Vacuum Setup


1: Wet membrane

2: Place membrane


3: Align and clamp

4: Filter and rinse

7: Remove membrane

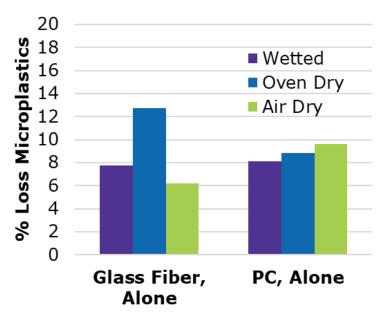
Ways to reduce particle loss →

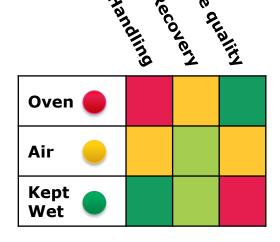
K. Sydlowski (2023)

Establishing the Vacuum Workflow

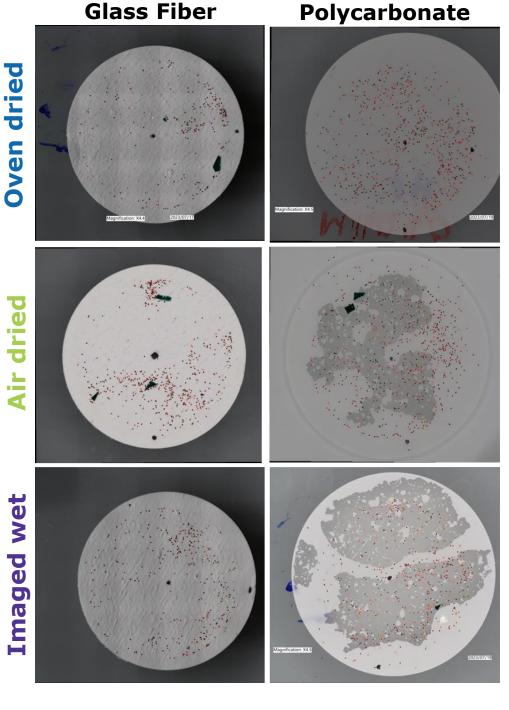
Counting particles using microscopy

Method


Step 1: Spike (glitter) Step 2: Filter/Rinse


Step 3: Drying procedures
Adomat, Y., et al. (2021), Sci. Total. Environ.

Step 4: Image/Observe

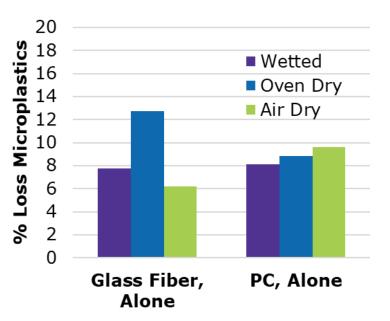

Step 5: Count

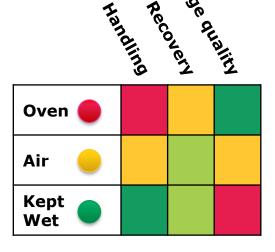
Percent Loss Particles

Establishing the Vacuum Workflow

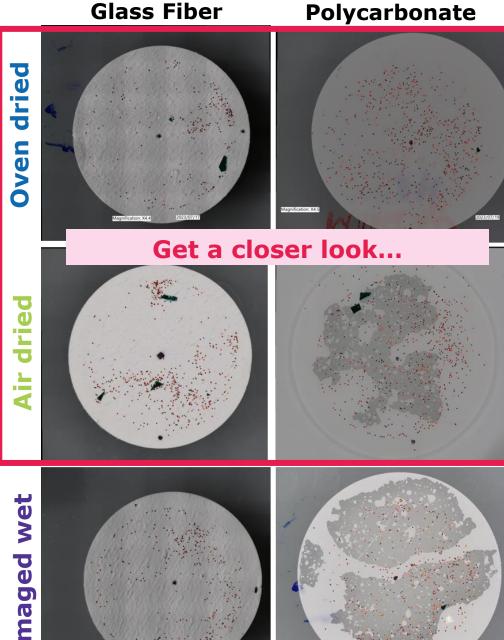
Counting particles using microscopy

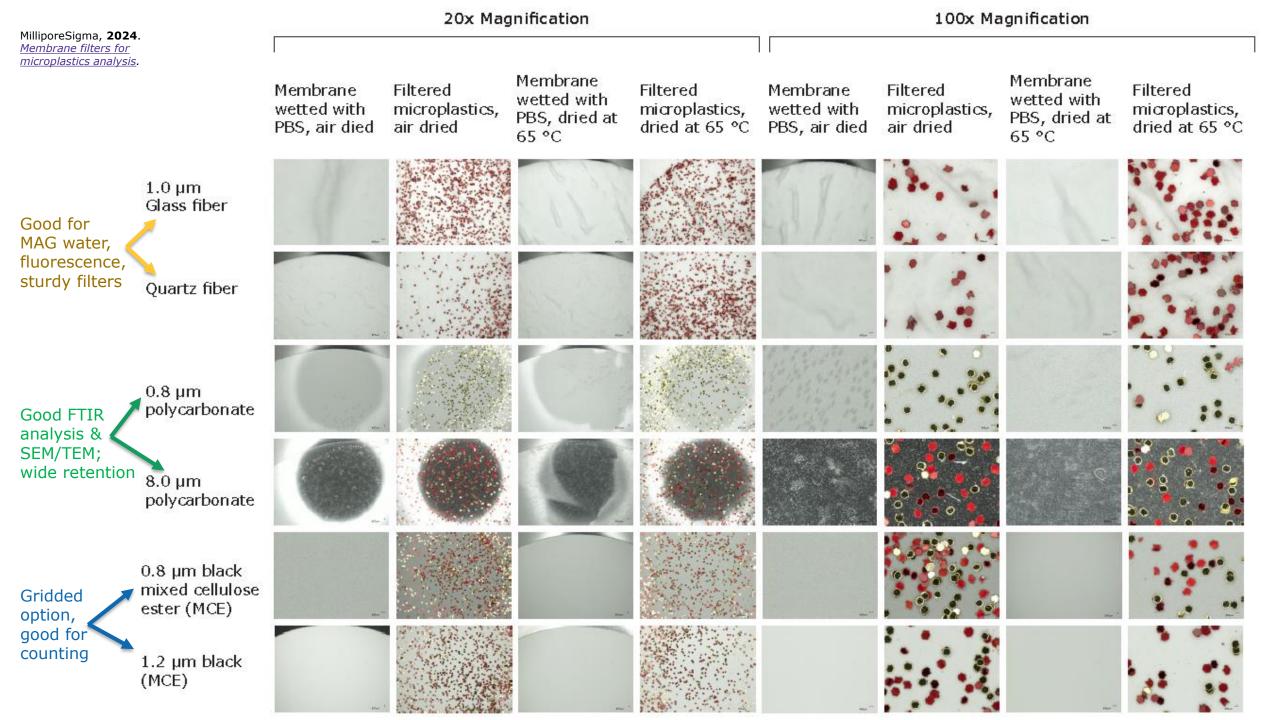
Method

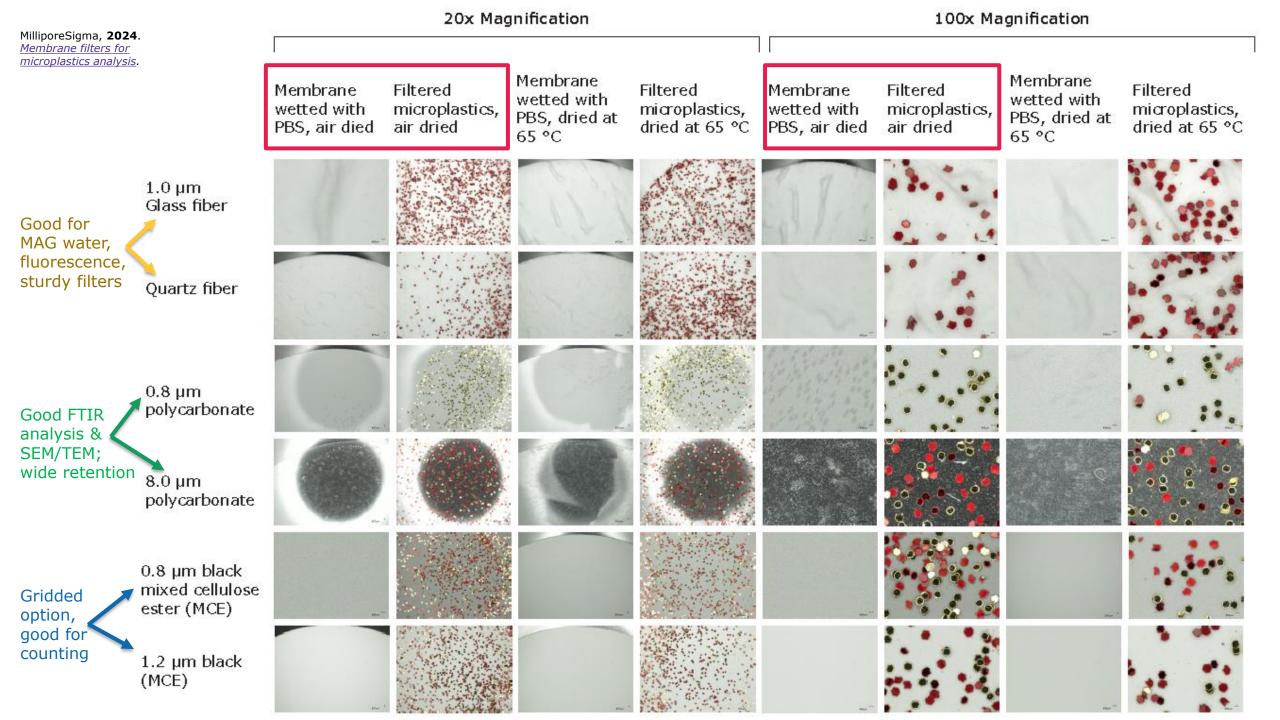

Step 1: Spike (glitter) Step 2: Filter/Rinse

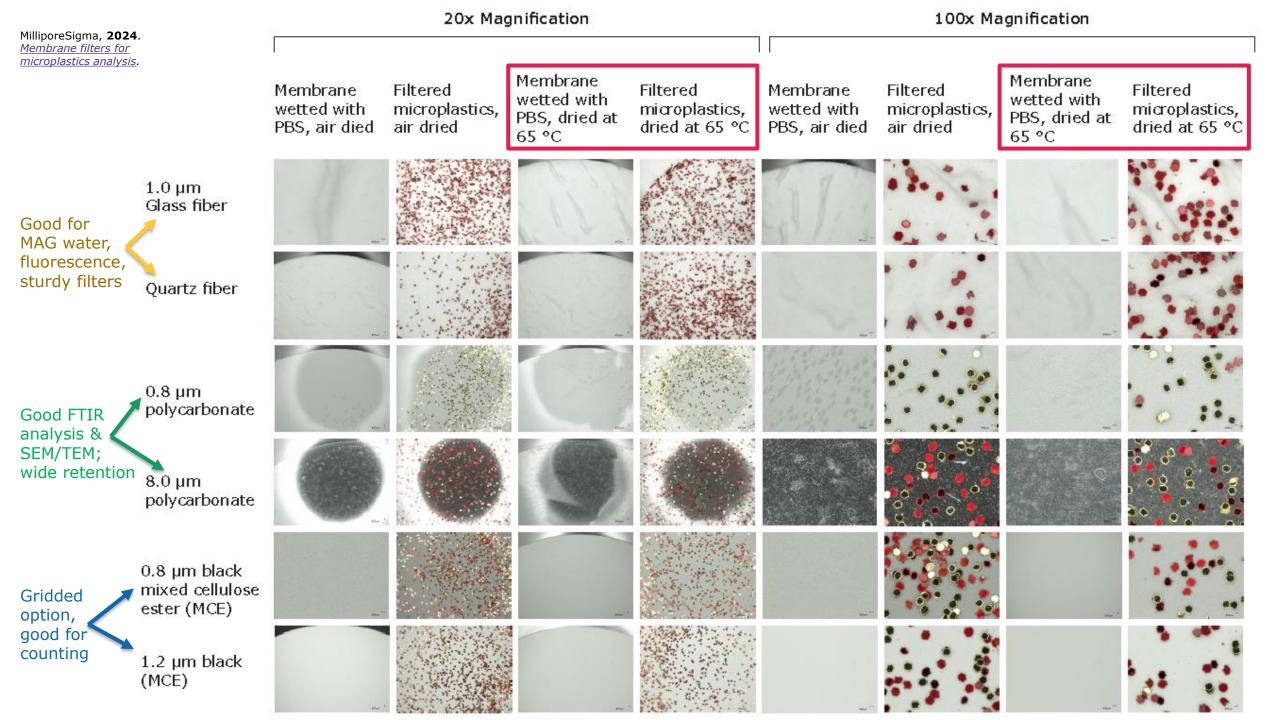

Step 3: Drying procedures
Adomat, Y., et al. (2021), Sci. Total. Environ.

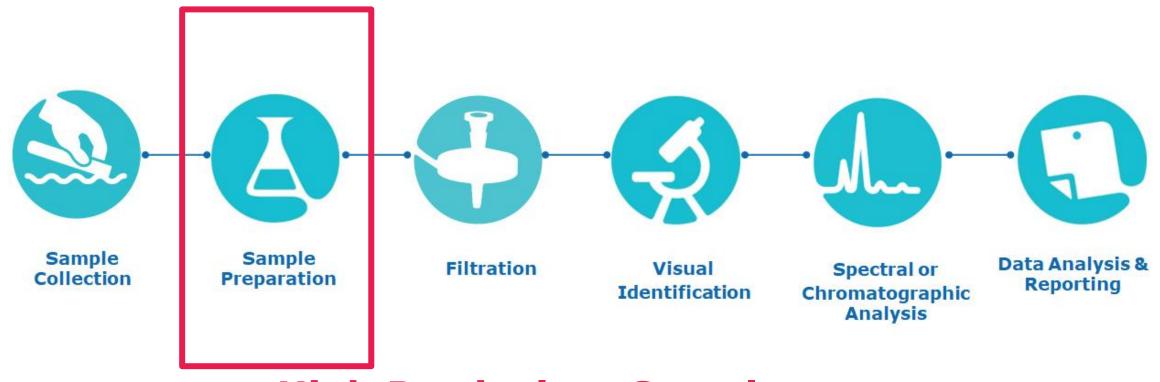
Step 4: Image/Observe


Step 5: Count

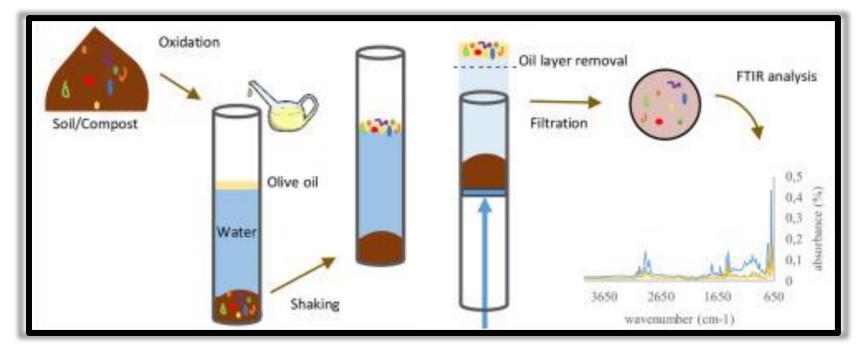

Percent Loss Particles







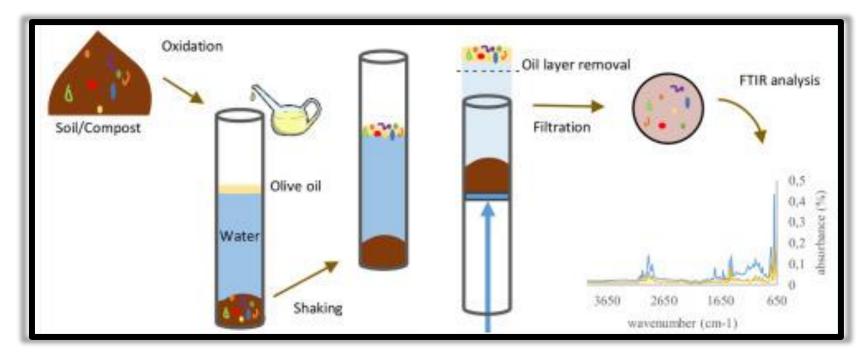
Filtration Involved in Majority of Workflows



High Particulate Samples

Separation methods, chemical digestion

Common Microplastics Extraction Methods **Salt Separation, Digestion and <u>Oil Flotation</u>**

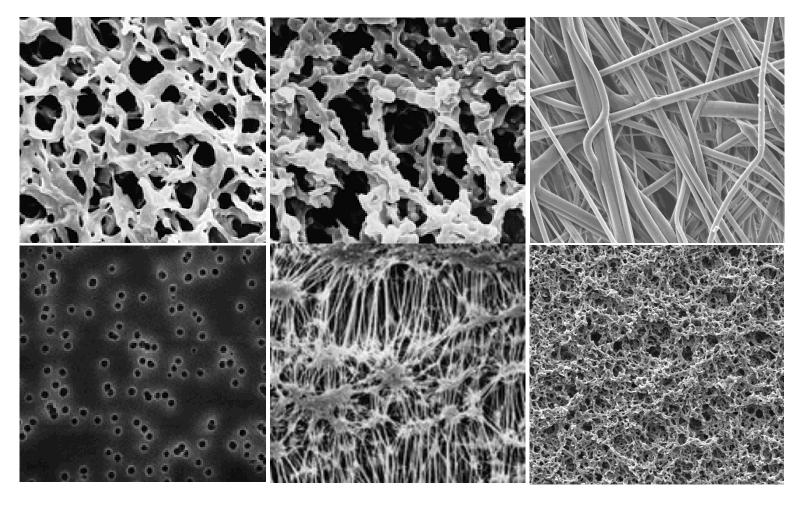


Method: Determine throughput of various microfilter types, 0.2 μ m pore size, of 160 mL, 5% (v/v) olive oil solution in hypersaline water (34 g/L NaCl) with vacuum filtration workflow.

Common Microplastics Extraction Methods **Salt Separation, Digestion and <u>Oil Flotation</u>**

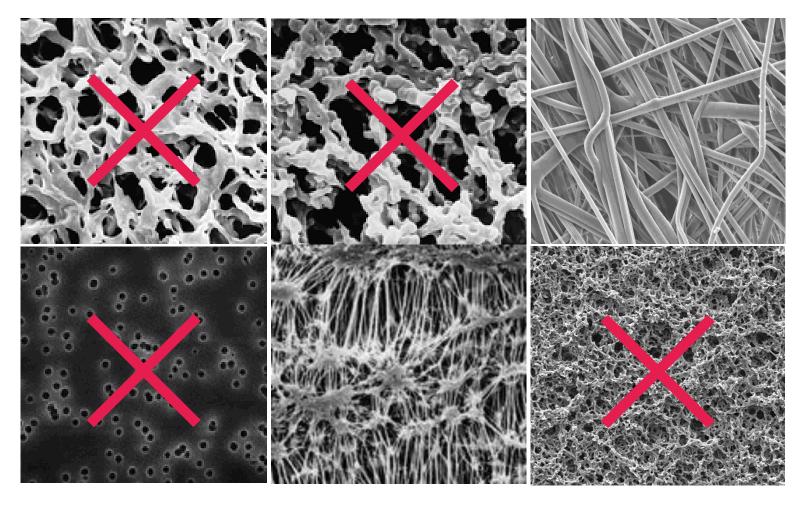
Method: Determine throughput of various microfilter types, 0.2 μ m pore size, of 160 mL, 5% (v/v) olive oil solution in hypersaline water (34 g/L NaCl) with vacuum filtration workflow.

= unfilterable category...



Filtering an unfilterable: Oil Flotation

Method: Determine throughput of various microfilter types, 0.2 µm pore size, of 160 mL, 5% (v/v) olive oil solution in hypersaline water (34 g/L NaCl) with vacuum filtration workflow.



Filtering an unfilterable: Oil Flotation

Method: Determine throughput of various microfilter types, 0.2 µm pore size, of 160 mL, 5% (v/v) olive oil solution in hypersaline water (34 g/L NaCl) with vacuum filtration workflow.

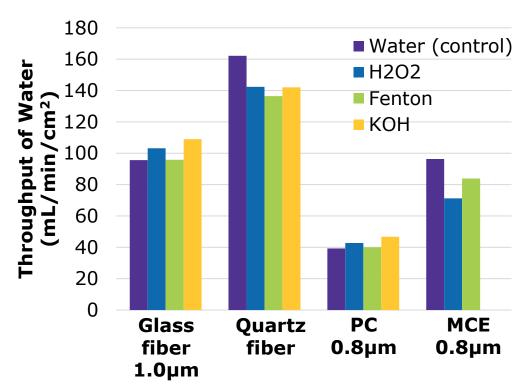
Chemical Digestion & Salt Separation

Membrane Compatibility

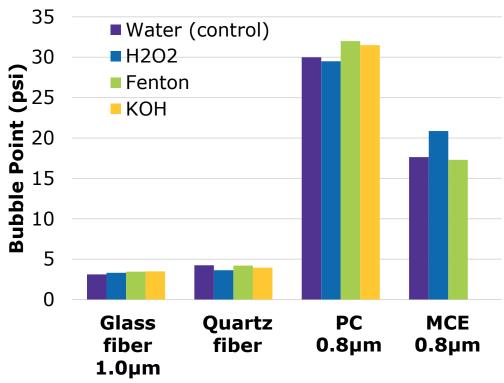
→ Salt solutions (density separation) typically omitted from compatibility charts (NaCl, NaI, ZnBr₂, etc. ⁶)

			, , , <u>,</u> , ,
Filter Type	Hydrogen peroxide (30% v/v)	Iron sulfate heptahydrate (0.05 M)	Potassium Hydroxide, Alkaline (10% v/v)
Glass Fiber	 Recommended¹ Difficult to find broad datasets 	No data	• Not recommended (3-6N) ^{1,2}
Quartz Fiber	No data	No data	No data
<u>Polycarbonate</u>	 Recommended^{1,3,4} Varying percentages (3-90%) 	No data	• Not Recommended/Poor (3-6N) ^{1,3,4}
Mixed Cellulose Ester (MCE) white	 CONFLICTING DATA^{1,3} Both recommended and not recommended 	No data	 CONFLICTING DATA¹⁻⁵ Primarily Not Recommended but some claim resistant, 3-6N
Mixed Cellulose Ester (MCE) black	No data	No data	 CONFLICTING DATA¹⁻⁵ Primarily Not Recommended but some claim resistant, 3-6N
<u>Aluminum Oxide</u>	No data	No data	No data

Fenton Reaction

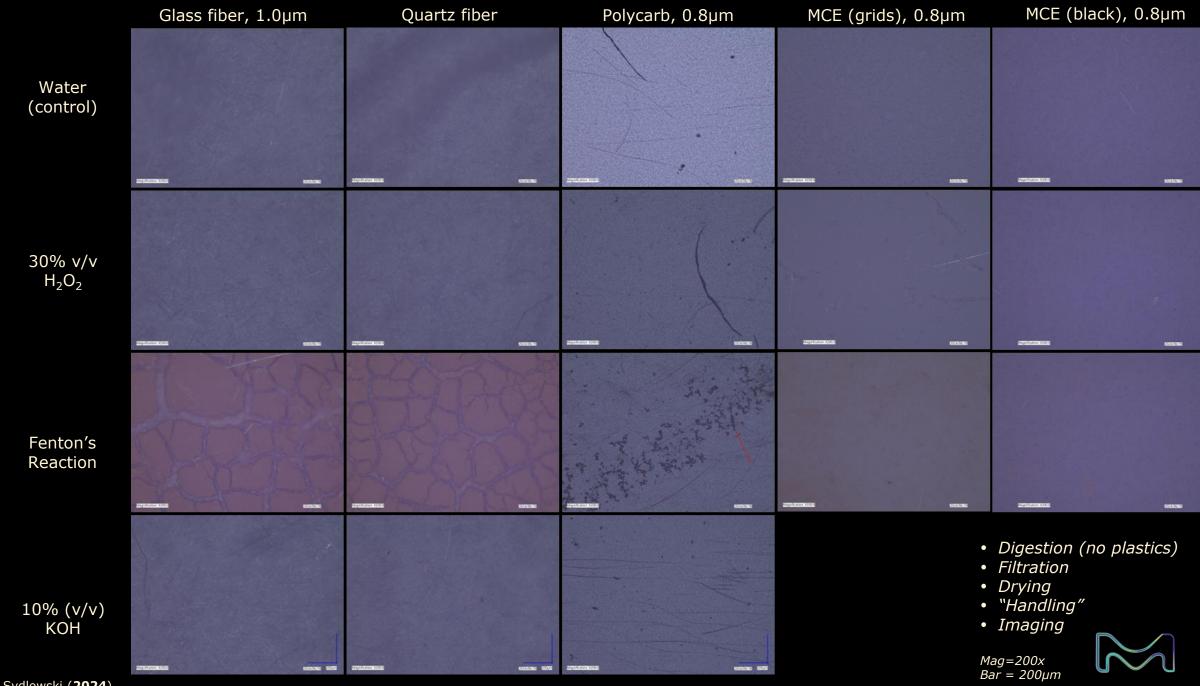

Goal: Determine which membrane is most suitable for common digestion methods and determine chemical compatibility for microplastics separation. ("Suitable": Exposure, handleability, drying, function and images)

^[1] Sterlitech. https://www.sterlitech.com/chemical-compatibility-chart. [2] Pall. https://www.pall.com/content/dam/pall/laboratory/literature-library/non-gated/chemical-compatibility-chart.pdf. [3] MilliporeSigma. https://www.emdmillipore.com/Web-CA-Site/en_CA/-/CAD/ShowDocument-Pronet?id=201510.399&usg=AOvVaw3h0KMcgRcLW-ZMsoV9AlbV. [4] Cole Parmer. https://www.coleparmer.com/chemical-resistance. [5] Membrane Solutions. https://www.membrane-solutions.com/News_81.htm. [6] Prata, J.C., et al. https://www.membrane-solutions.com/News_81.htm. [7] Prata, J.C., et al. https://www.membrane-solutions.com/News_81.htm.


Chemical Digestion

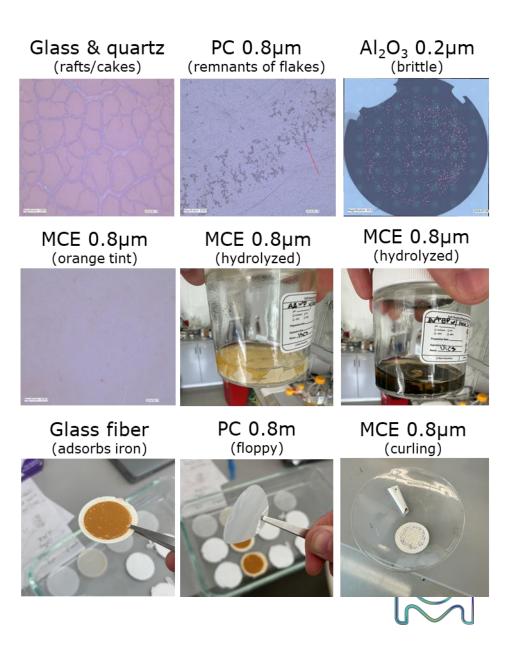
A variety of membranes are compatible filtering digestion reagents

Method: A variety of membranes were used to filter three common the digestion fluids using vacuum filtration [(1) 30% v/v H_2O_2 , (2), Fenton's reagent – 1:1 30% (v/v) H_2O_2 + 0.05 mM FeSO₄ in Milli-Q® water, and (3) alkaline – 0.05M KOH]. Filtration was observed. Then, filters were dried in an oven for 1 h at 50°C and observed. To evaluate changes in membrane functionality, throughput of water and bubble point were determined (if possible). A water-only "digestion fluid" control was used for comparison.



Flow rates indicate few change in function after exposure to digestion chemicals. *Note: Al2O3 omitted from study.*

Bubble Point indicates slight increase for PC vs. Fenton/KOH and increase for MCE with H_2O_2 . *Note: Al2O3 omitted.*

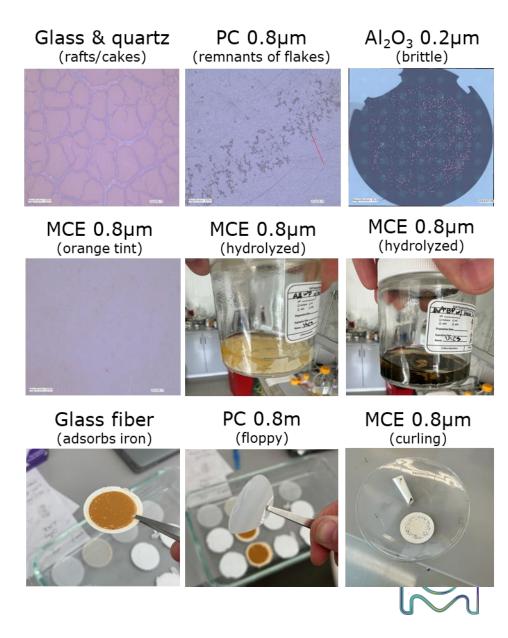


Chemical Digestion

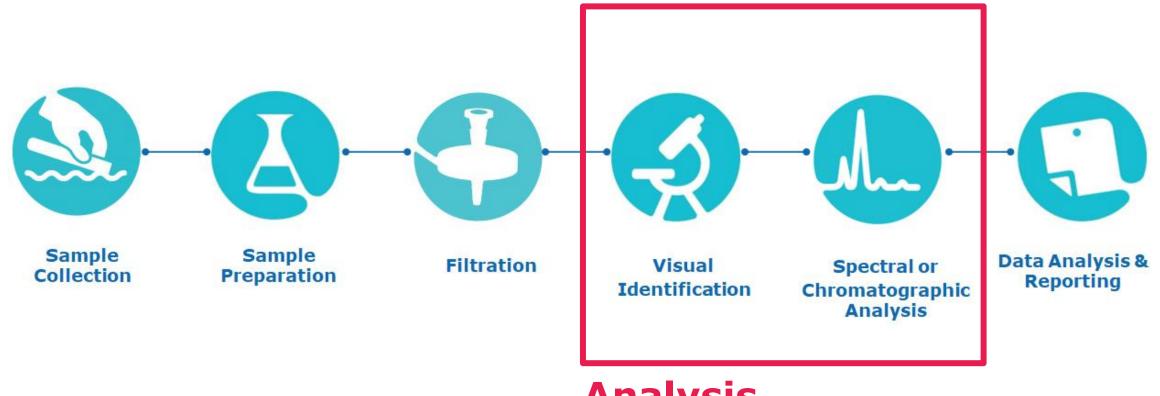
Compatibility after filtering digests

Method: After filtration, membranes were dried in an oven for 1 h at 50° C and observed, tested for handling by walking through the lab using forceps (\sim 60 ft). Filters were imaged. A water-only "digestion fluid" control was used for comparison.

Filter	Resp	onse to d	rying	Handleability			
riitei	H ₂ O ₂	Fenton	кон	H_2O_2	Fenton	КОН	
GFF , 1.0 μm	Good	Caking	Good	Good	Good	Good	
Quartz fiber	Good	Caking	Good	Good	Good	Good	
PC , 0.8 μm	Good	Flaking	Good	OK	OK	OK	
MCE, 0.8 μm White/grids	Good	Flaking	Bad	Good	Good	Bad	
MCE, 0.8 μm black	Good	Flaking/ sorption	Bad	Good	Good	Bad	
Al₂O₃ , 0.2μm	OK	OK	OK	OK	OK	OK	


Chemical Digestion

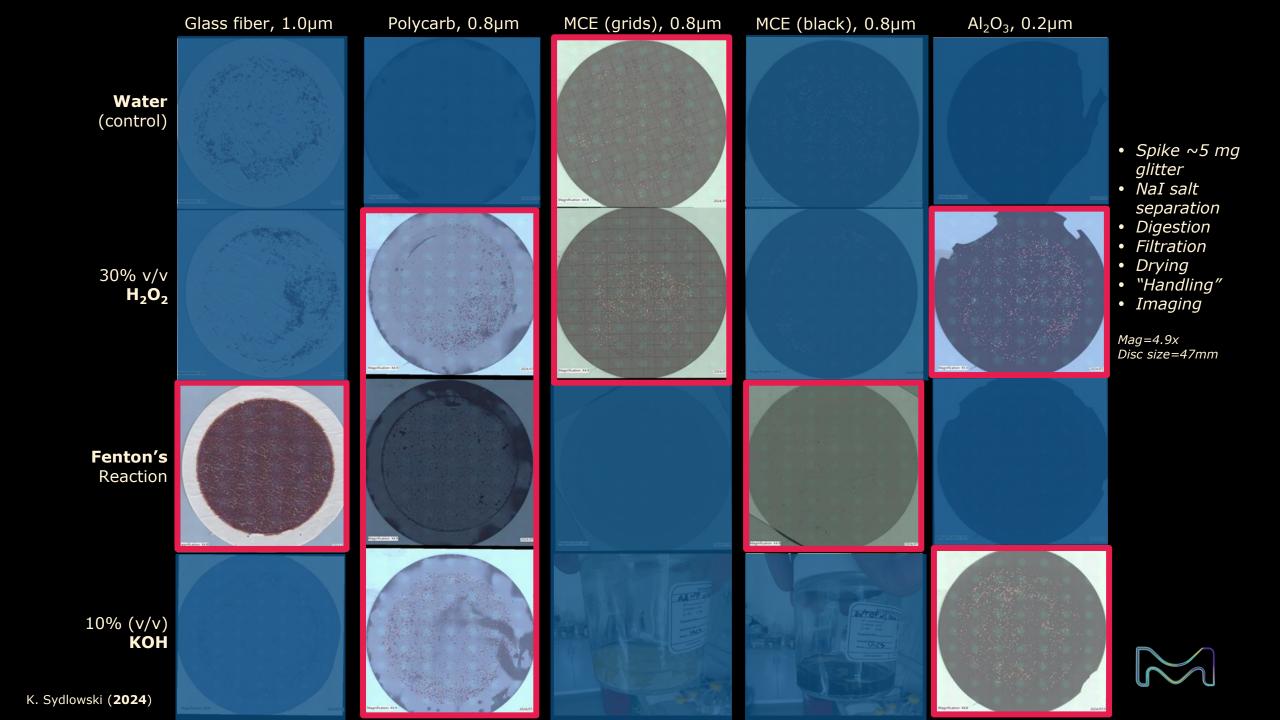
Compatibility after filtering digests


Method: After filtration, membranes were dried in an oven for 1 h at 50° C and observed, tested for handling by walking through the lab using forceps (\sim 60 ft). Filters were imaged. A water-only "digestion fluid" control was used for comparison.

Filter	Resp	onse to d	rying	Handleability			
riitei	H ₂ O ₂	Fenton	кон	H_2O_2	Fenton	КОН	
GFF , 1.0 μm	Good	Caking	Good	Good	Good	Good	
Quartz fiber	Good	Caking	Good	Good	Good	Good	
PC , 0.8 μm	Good	Flaking	Good	OK	OK	OK	
MCE, 0.8 μm White/grids	Good	Flaking	Bad	Good	Good	Bad	
MCE, 0.8 μm black	Good	Flaking/ sorption Bad		Good	Good	Bad	
Al₂O₃ , 0.2μm	OK	OK	OK	OK	OK	OK	

What does it look like with plastics present?

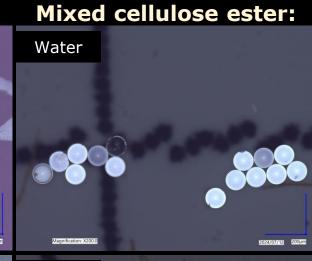

Filtration Involved in Majority of Workflows

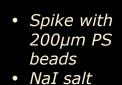


Analysis

Fluorescence, Light Microscopy, FTIR & Other

"Recommended" membranes spiked with **Polystyrene** beads

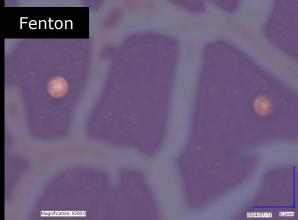

- No damage observed for any of the digestion fluids
- Clearest contrast seen for MCE and Al_2O_3
- Beads "stuck" in cakes on top of glass and quartz (seen with SEM)
- Low retention of PC
- Varied dispersal of beads seen with NaI & different digests


 H_2O_2

Polycarbonate:

 H_2O_2

- separation
- Digestion
- Filtration
- Drying
- "Handling"
- Imaging


Mag = 200x $Bar = 200 \mu m$

Chemical Digestion & Image Analysis

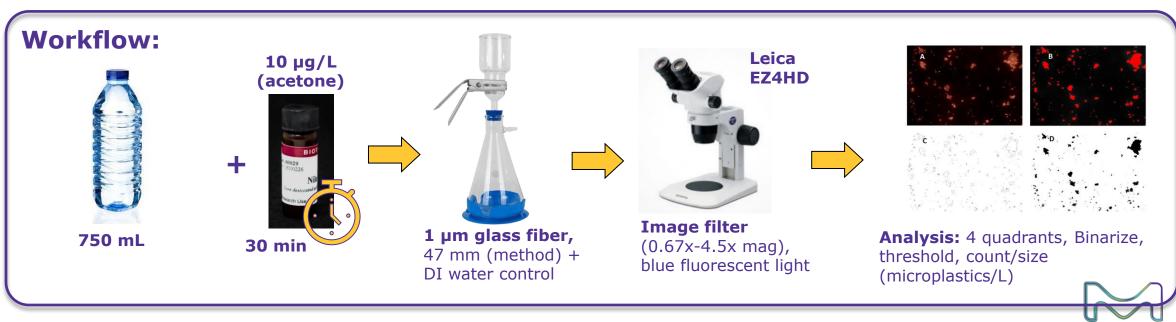
Membrane Compatibility – Image Quality, Function & Handleability

Filter Type	Water (control) + NaI separation	Hydrogen peroxide (30%v/v) + NaI separation	Fenton's Reaction + NaI Separation	Potassium Hydroxide, alkaline (10%v/v) + NaI Separation
Glass Fiber	Recommended	RecommendedPossible polymer aggregation	Recommended	Recommended
Quartz Fiber	Recommended	RecommendedPossible polymer aggregation	Recommended	Recommended
<u>Polycarbonate</u>	• Scratches	Not recommended • Flaking, low retention	Okay • Scratches	Okay • Scratches
Mixed Cellulose Ester (MCE) white	Recommended	Recommended	Not recommended • Curling/deformation	Not recommended • Complete hydrolysis
Mixed Cellulose Ester (MCE) White/grids	Recommended	Recommended	Not recommended • Curling/deformation	Not recommended • Complete hydrolysis
Mixed Cellulose Ester (MCE) black	Recommended	Okay • Possible NaI interaction	Not recommended • Curling/deformation	Not recommended • Complete hydrolysis
Aluminum Oxide	Okay (brittle)	Okay (brittle)	Okay (brittle)	Okay (brittle)

Chemical Digestion & Image Analysis

Membrane Compatibility – Image Quality, Function & Handleability

Filter Type	Water (control) + NaI separation	Hydrogen peroxide (30%v/v) + NaI separation	Fenton's Reaction + NaI Separation	Potassium Hydroxide, alkaline (10%v/v) + NaI Separation	
Glass Fiber	Recommended	RecommendedPossible polymer aggregation	Recommended	Recommended	
Quartz Fiber	Recommended	RecommendedPossible polymer aggregation	Recommended	Recommended	
<u>Polycarbonate</u>	• Scratches	Not recommended • Flaking, low retention	Okay • Scratches	Okay • Scratches	
Mixed Cellulose Ester (MCE) white	Recommended	Recommended	Carm	s: Use best ers to analyze	
Mixed Cellulose Ester (MCE) White/grids	Recommended	Recommended	Not respondence samples (constitution)	d beach sand ming soon!).	
Mixed Cellulose Ester (MCE) black	Recommended	Okay • Possible NaI interaction	Not recommended • Curling/deformation	Not recommended • Complete hydrolysis	
Aluminum Oxide	Okay (brittle)	Okay (brittle)	Okay (brittle)	Okay (brittle)	


Image Analysis

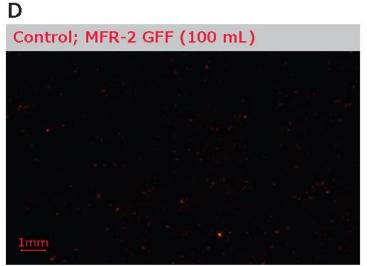
Fluorescence Microscopy Using Nile Red¹

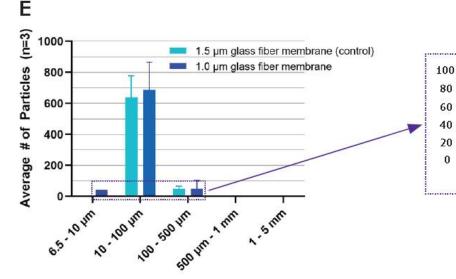
What: Detection of microplastic particles in drinking water using Nile Red fluorescent dye

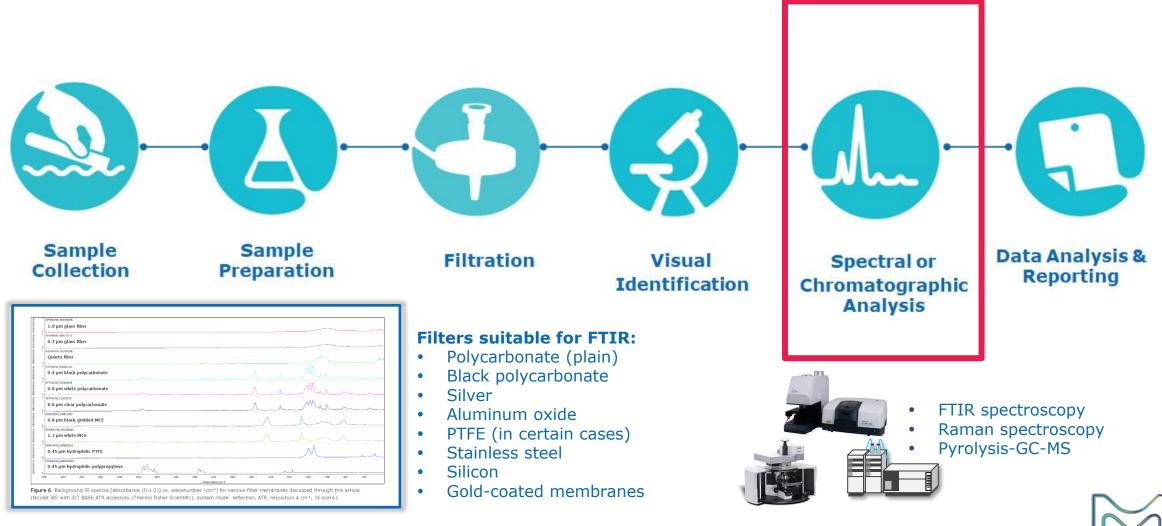
- Why:
 - Common, accurate stain
 - Selective adsorption and fluorescence for polyethylene, polypropylene, polystyrene, nylon, etc.
 - Can be semi-automated for particle counting
- Sample matrix: drinking water (other matrices limited)
- Detection limits: 6.5 μm to 5 mm
- Dye: 10 μg/mL and exposure to sample for 30 min

Image Analysis

Fluorescence Microscopy Using Nile Red¹






INSET

*recommend using flat side (vs. fibrous A side) of glass fiber

10 µm 100 µm 500 µm

Spectral and Chromatographic Characterization

Membrane Substrate Considerations

Filter Considerations for Spectroscopy (IR and Raman)

Spectral interference

- Signal masking
- Thickness
- Reflectivity
- Signal enhancement
- · Laser compatibility
 - Handleability & fragility
- · Disc size & instrument compatibility
- Filter dryness ==
- Particle size as it relates to particle retention
- Filter availability & cost =
- · If coated, coating reactivity

IR transparency vs. subtractable background?

- Possible loss of particles
- Curling & deformation can lead to artefacts and difficulties fitting in sample holders/clamps
- IR transparent generally cost more

Filter Considerations for GC/MS

- Filter diameter
 - Ability to fit in pyrolysis cup
- Subsampling and/or punching out filter sections
- · Sturdiness vs. pyrolysis method
- · Low or highly distinguished background from polymers

Spectral and Chromatographic Characterization

Membrane Substrate Considerations

Filter Considerations for Spectroscopy (IR and Raman)

Spectral interference

- Signal masking
- Thickness
- Reflectivity
- · Signal enhancement
- · Laser compatibility
 - Handleability & fragility
- · Disc size & instrument compatibility
- Filter dryness
- Particle size as it relates to particle retention
- · Filter availability & cost
- · If coated, coating reactivity

Filter Considerations for GC/MS

- Filter diameter
 - Ability to fit in pyrolysis cup
- Subsampling and/or punching out filter sections
- · Sturdiness vs. pyrolysis method
- Low or highly distinguished background from polymers.

- Small enough diameters rare = need for subsampling or folding/crumpling membrane
- Membrane should be easy to deform without losing particles
- Inorganic membranes

Microplastics in the Environment – Summary & Conclusion

Optimizing Membrane Filter Selection

MilliporeSigma, 2024. Membrane filters for microplastics analysis.

Tachnique / Annliention	Recommended Millipore® Membrane Filter(s)								
Technique/Application	Glass fiber	Quartz fiber	Polycarbonate	Mixed cellulose ester	Polypropylene	Aluminum oxide			
Production of MAG water	•	•	•	•	N.T.	N.T.			
Visual analysis	•	•	•	•	•	N.T.			
Nile Red Fluorescence	•	•				N.T.			
Drying & Handling	•	•	•	•	•				
Chem. digestion/30% H ₂ O ₂	•	•		•	N.T.	•			
Chem. digestion/Fenton Rxn	•	•	•		N.T.	•			
Chem. digestion/KOH	•	•	•		N.T.	•			
Salt Separation			•			•			
Oil flotation	•	•			•	N.T.			
Spectroscopy			•			•			
Pyrolysis-GC/MS	•	•							

Microplastics in the Environment – Summary & Conclusion

Optimizing Membrane Filter Selection

MilliporeSigma, 2024. Membrane filters for microplastics analysis.

Tachnique / Application		Re	commended M	illipore® Membrane	Filter(s)	
Technique/Application	Glass fiber	Quartz fiber	Polycarbonate	Mixed cellulose ester	Polypropylene	Aluminum oxide
Production of MAG water	•	•	•	•	N.T.	N.T.
Visual analysis	•	•	•	•	•	N.T.
Nile Red Fluorescence	•	•				N.T.
Drying & Handling	•	•	•	•	•	
Chem. digestion/30% H ₂ O ₂	•	•		•	N.T.	•
Chem. digestion/Fenton Rxn	•	•	•		N.T.	•
Chem. digestion/KOH	•	•	•		N.T.	•
Salt Separation			•			•
Oil flotation	•	•			•	N.T.
Spectroscopy Next step			•			•
Pyrolysis-GC/MS Next step	•	•				

- Microplastics methods are being developed, with focus on certain matrices and portions of workflow (sampling, etc.)
- Many technical hurdles in collecting and analyzing microplastics
 - While cut disc filter membranes are always involved in sample prep, there may not be one membrane that applies to all chosen methods
- Through this study our team expanded the "recommended membranes by method" table to include chemical digestion methods, handling, and basic salt and oil separation techniques

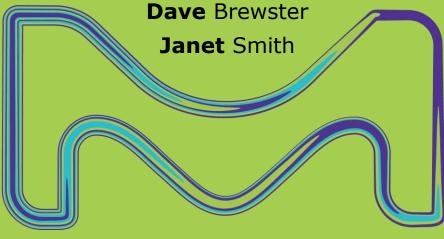
Curious2024 Future Insight™--Microplastics Hackathon, Mainz Germany (10-11 JUL 2024)

Thank you

Maricar Dube

Amy Laws

Ryan Amara


Mayra Jimenez

Kevin Sydlowski

Ranjani Muralidharan

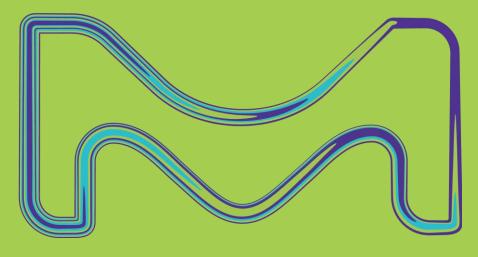
Vivek Joshi

Taylor Reynolds

Maricar Dube, Ph.D.

<u>Maricar.dube@milliporesigma.com</u> Global Technical Marketing Manager

Kevin Sydlowski


Analytical Intern – Innovation, Strategy and Portfolio Management

Ranjani Muralidharan

Global Product Manager – Membrane Filters and Analytical Hardware

Lindsay D. Lozeau, Ph.D.

Lindsay.Lozeau@milliporesigma.com
Senior Scientist, Manager
Applications & Lab Ops - Innovation,
Strategy and Portfolio Management

