TNI Environmental Measurement Symposium Garden Grove, California

August 5th, 2024

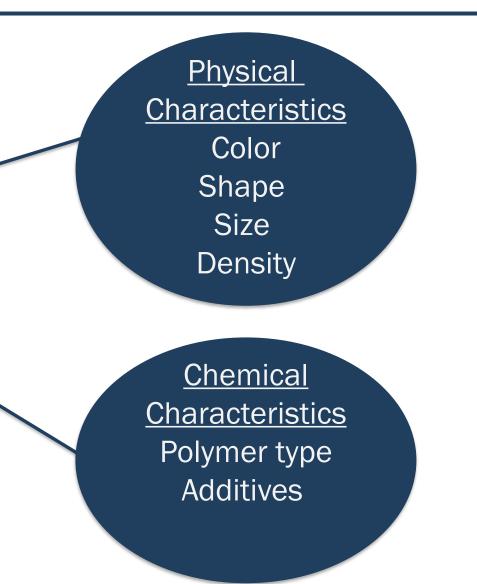
Challenges and Opportunities to Forensic Approaches in Microplastics

Kelsey Rousteau¹, Scott A. Stout¹, and Jeffery H Hardenstine¹ ¹NewFields Environmental Forensics

How many pieces of plastic do you have on you?

Photo credit: K Rousteau

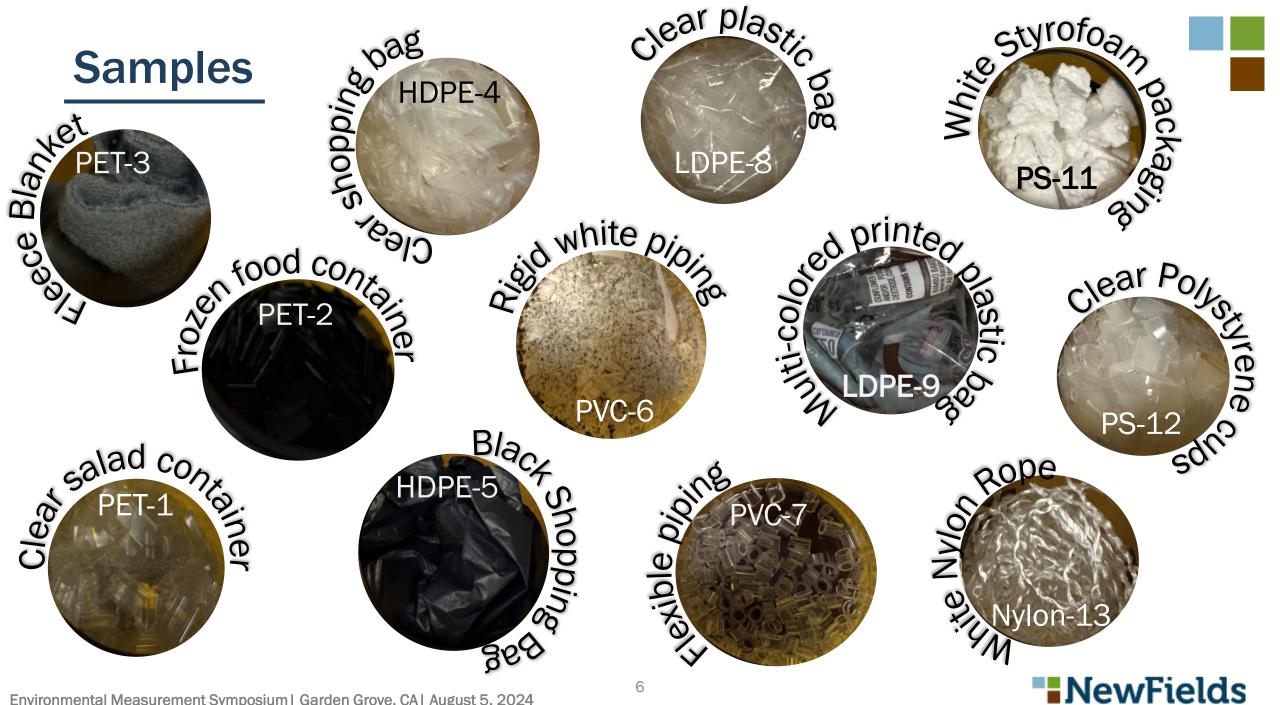
Famara Beach, Lanzarote, Canary Islands, Spain



Forensic Questions

- Age
- Original Material
- Source Location
- Who made it?

The Tiered Approach to Forensics


Photo credit: K Rousteau

- Tiered approach to build up the basics of plastics fingerprinting
- Follow similar approach used historically in developing and applying fingerprinting of other contaminants, e.g., PAHs and PCBs

Tier I: conventional analyses of known and unknown plastics Tier II: analyses of microplastics and environmental plastic samples Tier III: exploring pyrolysis/ high resolution analytical methods

NewFields

Current Focus (Tier I): What kind of forensic information can be obtained from plastics through conventional, commercially available methods?

Methods

- Cut films into strips and hard plastics into 1x1cm squares
- Microscale solvent extraction with DCM
 - Timing: 4 hours; 1 hour; 30 minutes
- Extracts filtered through sodium sulfate funnels
- Gravimetric weight measured to determine yield
- Extracts analyzed by Full Scan GC-MS
 - Prep and analysis by Pace Alpha Labs in Mansfield, MA
- Conventional FTIR analysis
 - McCrone Associates (not shown here)

1207987-03 Mat 4 12-8-007-4278 14-82-80-007-4278 15-107-1278 10-10 12571467-67 Mal 4 42-5-EXT-6276 1901878681/ 8901878681/ 8901878681/ L2371487 - 13 Mari A2 - S - EXT - 8270 W018756811 81/2524 10982-1 Mart 4 1-021-8278 WEITWART / BLANK ST BLANK 12371487-12 Mari 4 A2-5-EXT-127 WG1879481/ 0107104 122371487-10 Matta A2-1-EXT-8270 WG1876461/ 2528 01/21/24 1371467 - 82 Mat 4 9-1-EXT - 8270

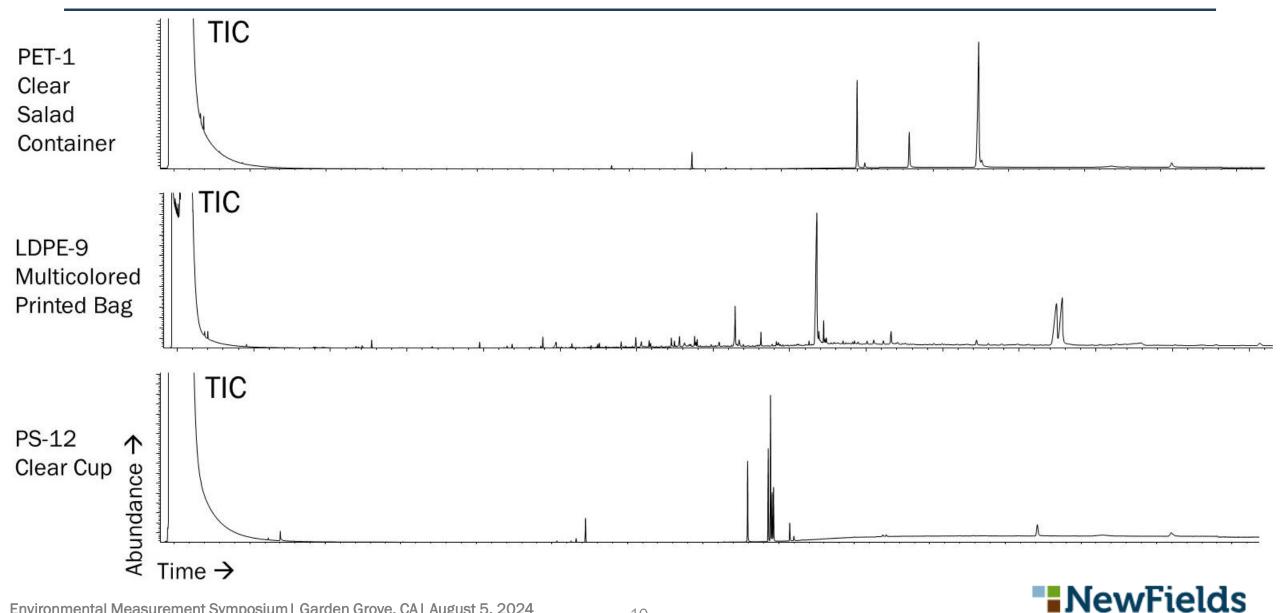
Microscale Solvent Extractions with DCM

Sample	Percent Sample Wt Extracted						
ID							
PET-1	0.39						
PET-2	0.32						
PET-3	1.42						
HDPE-4	0.42						
HDPE-5	0.32						
PVC-6	26.02						
PVC-7	9.80						
LDPE-8	0.73						
LDPE-9	1.07						
PP-10	0.30						
PS-11	55.90						
PS-12	10.16						
Nylon-13	0.53						

NewFields

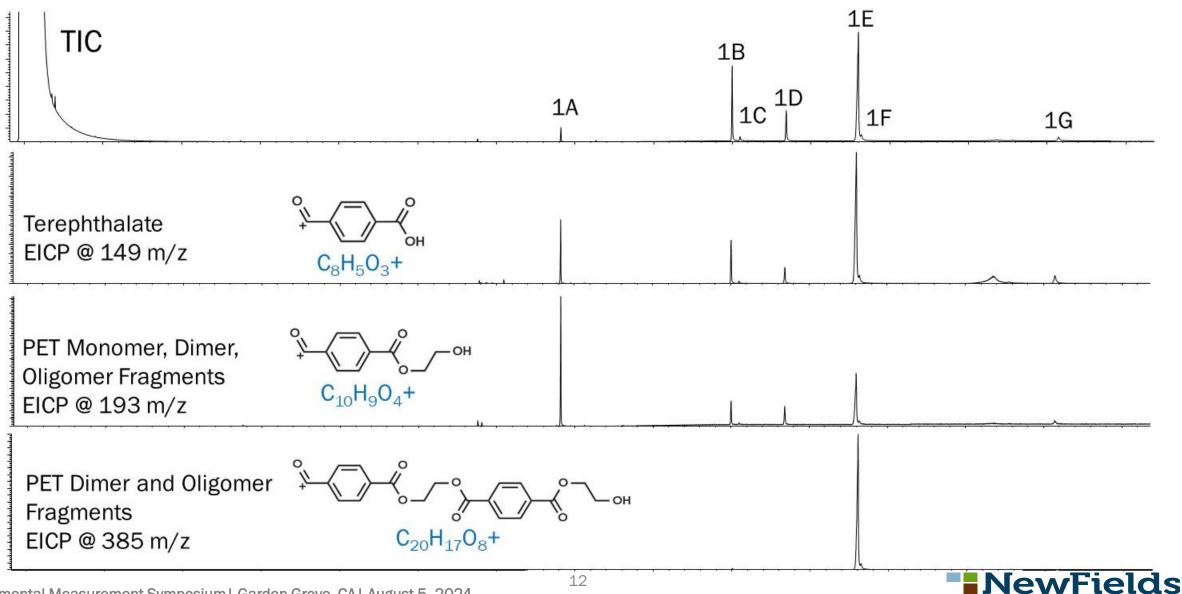
Chromatograms and Peak Identification

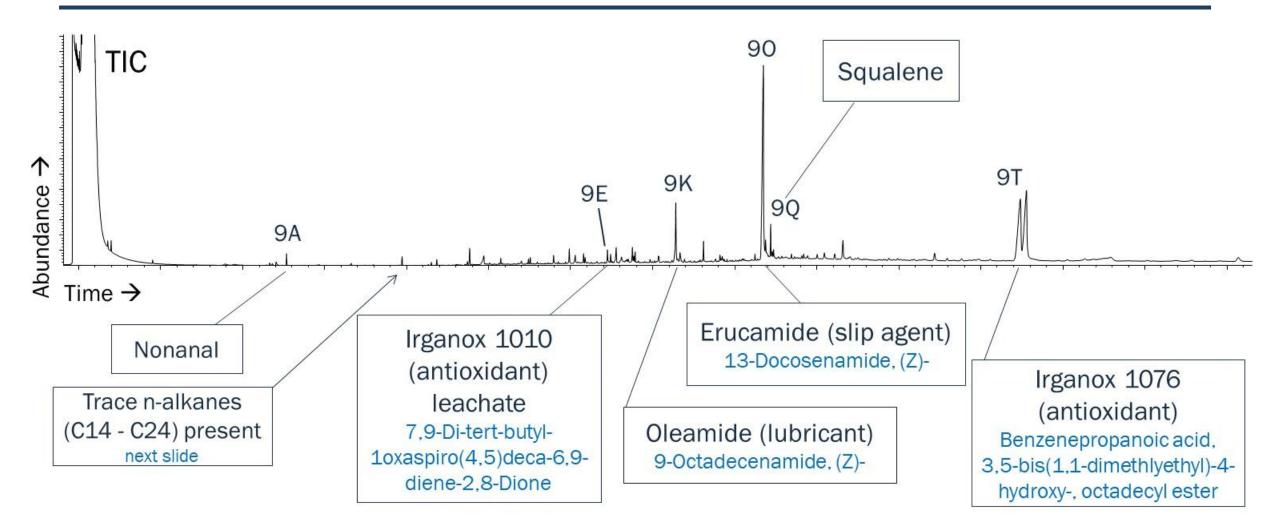
Chromatograms:

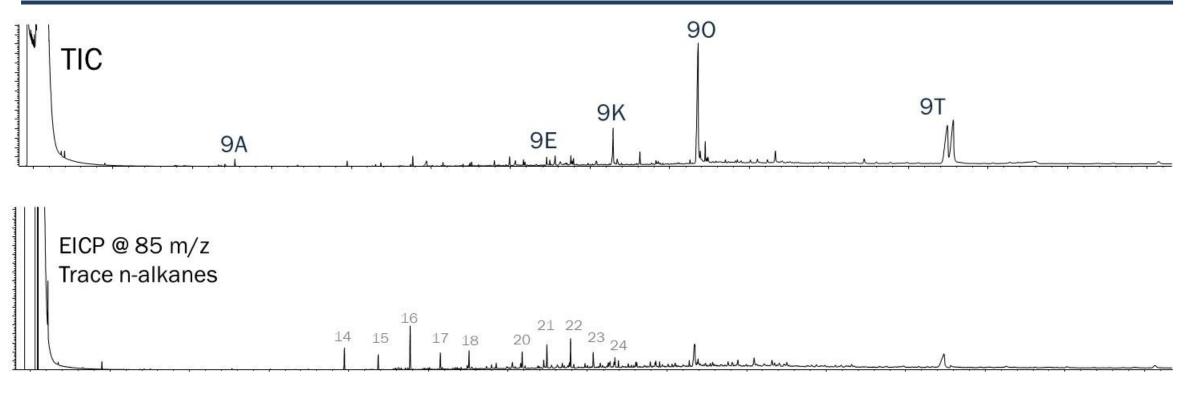

- GC resolution carbon range C5 to ~C45
- MS scan range 35 to 450 amu; 70 eV EI
- Also analyzed a North Slope Crude oil as a retention time standard and method (solvent) blank for QC

Extractable Compounds Identification:

- NIST library matches >90%
- Tentatively identification via spectral interpretation and comparison of ion fragments to available plastic extractables literature

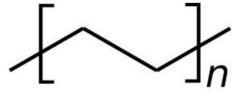

Plastics- Total Ion Chromatograms


PET-1 Clear Salad Container


PET-1 Clear Salad Container

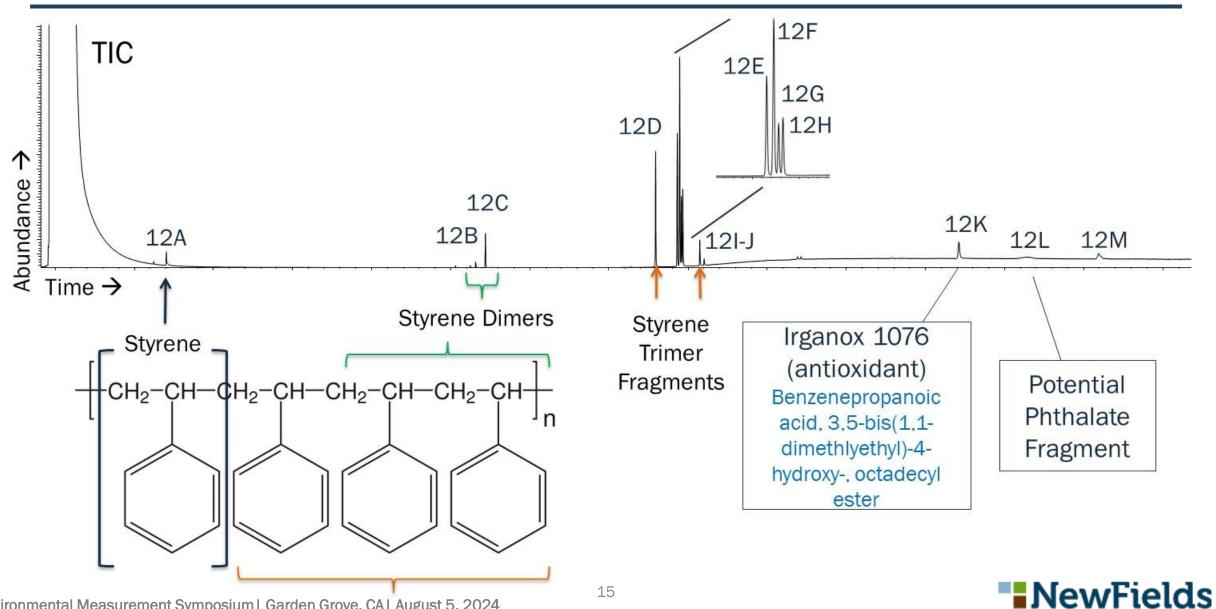
LDPE-9 Multicolored Printed Bag

LDPE-9 Multicolored Printed Bag

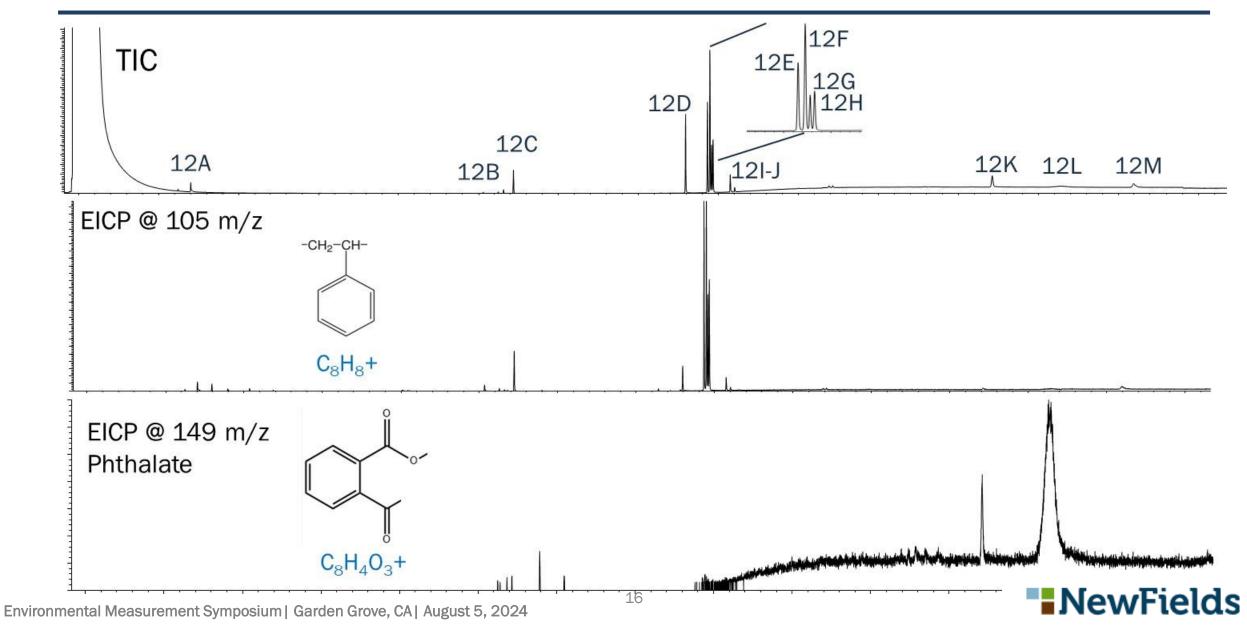


Potentially from:

Paraffin-based lubricants

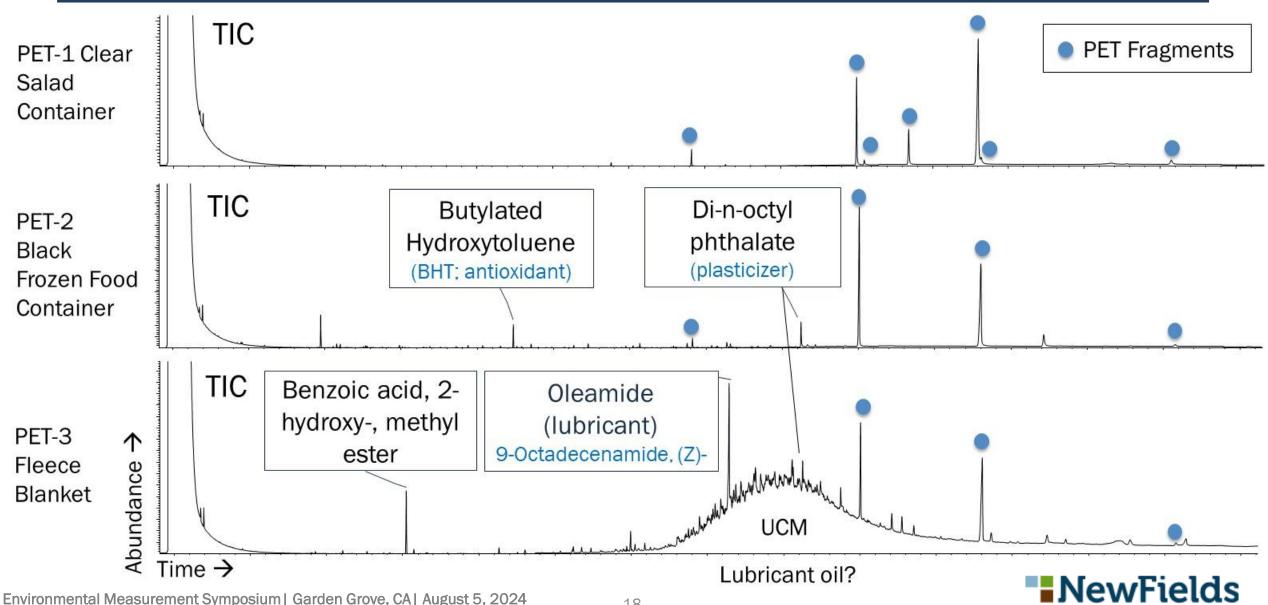

or

Polyethylene Fragments



(less likely since not even-carbon dominated and of limited carbon range)

PS-12 Clear Cup


PS-12 Clear Cup

Summary of Plastic Extractables Comparison

	PET-1 Salad Container	LDPE-9 Printed Bag	PS-12 Clear Cup			
Total Peaks Investigated	8	30	13			
Monomer/Oligomer Fragments	7	3	11			
Additives	0	21	2			
Unknown	0	6	0			
Contaminants?	1 – caffeine	0	0			
In Common?		2 Antioxidant: Irganox 1076 Plasticizer: Phthalate fragments				

Comparing Different PET Products

	PET-1 Salad Container	PET-2 Black Frozen Food Container	PET-3 Fleece Blanket					
Total Peaks Investigated	8	6	16					
Monomer/Oligomer Fragments	7	4	3					
Additives	0	2	3					
Unknown	0	0	10					
Contaminants?	1 - caffeine	0	0					
	3 – PET Oligomer Fragments							
In Common?	1 – PET Oligomer Fragment							
		1 – Potential Phthalate Plasticizer						

Potential Markers for other Plastics Analyzed

	PET -1	PET -2	PET -3	HDPE -4	HDPE -5	PVC -6	PVC -7	LDPE -8	LDPE -9	PP- 10	PS- 11	PS- 12	Nylon- 13
Tin, dichlorodimethyl-						Х	Х						
2-Ethylhexyl mercaptoacetate (EHMA)						х	Х						
Unknown Siloxanes										Х			
Squalene					Х			Х	Х				Х
Irganox 1076		Х					Х	Х	Х			Х	
9-Octadecenamide, (Z)			Х	Х	Х			Х	Х		Х		Х
Unknown plasticizers (phthalate)		Х	Х	Х	Х		Х	Х	Х	Х		Х	Х

Tier I: Analysis by DCM extractables by GC-MS

- Products (n=13) studied have unique GC/MS TICs ("fingerprints")
 - between different polymers and different products of the same polymer
- Successful ID of polymer type based on monomer/oligomer fragments

 confirmed with conventional FTIR spectroscopy
- Tentatively identify additives/ breakdown products that could be used as markers for different plastics
 - e.g., organotins and EHMA (heat stabilizers) unique to multiple found in PVC products

Tier I: (1) Develop library for extractables in plastics (identified and unidentified) and pattern recognition and (2) Explore increasing sensitivity through GC/MS-SIM analysis targeting polymer fragments and additives.

Tier II: Analyze additional plastics

- different size ranges and environmental exposure
- assessment of plastic extractables in sediment/water

Tier III: Pyrolysis or High-Resolution methods for further evaluation of plastic components

Thank you, Questions?

Check out: Environmental Forensics session, Tuesday @ 2pm for Eric Litman's talk on The Measurement of C19-C36 Aliphatic Hydrocarbons at a Sediment Superfund Site Using the MADEP Extractable Petroleum Hydrocarbon Method: Consideration for Data Quality and Usability