

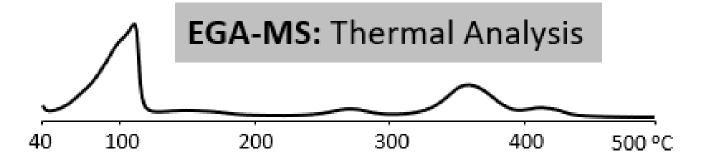
PY-GCMS Analysis of Microplastics Using Nitrogen as an Alternative Carrier Gas

August 5, 2024

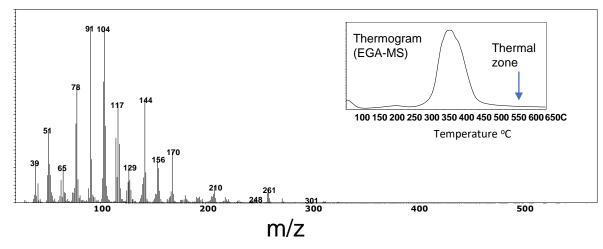
Alan Owens – GC/GCMS Product Manager

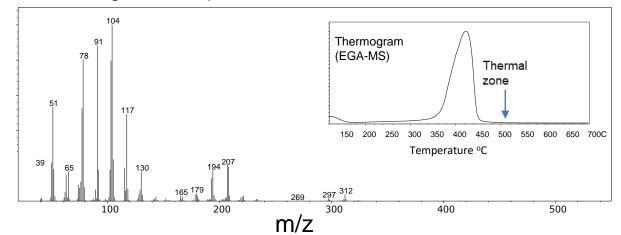
Today's Agenda

- Review of MP Workflow
 - EGA-MS
 - Single Shot
 - Challenges Faced with Mixed Microplastics
 - System configuration for Quick Workflow
- Helium Data Review
 - Quantitative Analysis of Mixed Polymer Standards
 - Alternative Carrier Gases
- Expanding into Nitrogen
 - Overview of Nitrogen Data
 - Comparison between He and N₂

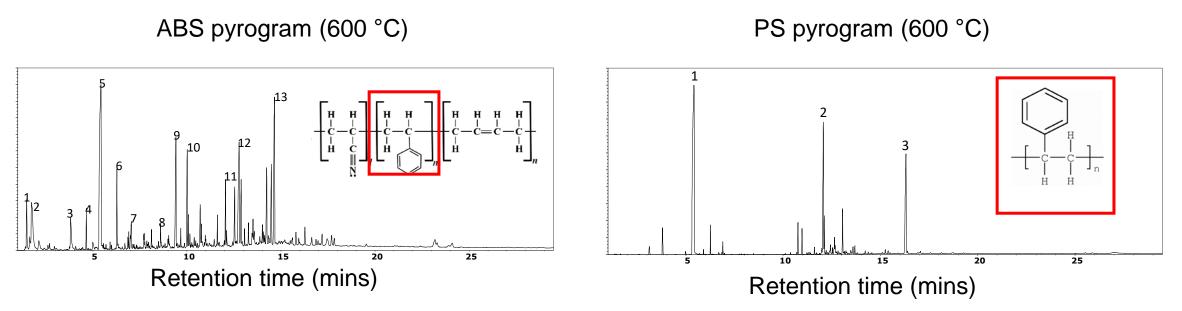

Steps in PY-GCMS Qualitative analysis of MP

Evolve Gas Analysis


- Imperative to understand the thermal zones of the polymers in question
- Initial spectral information for specific polymers
 - > Average mass spectrum can be matched against libraries
 - > Thermograms can be complex requiring additional analysis
- Major *m/z* could be prevalent for multiple polymers
- Heated from $100^{\circ}C \rightarrow 700^{\circ}C$
- 2.5 M EGA tube

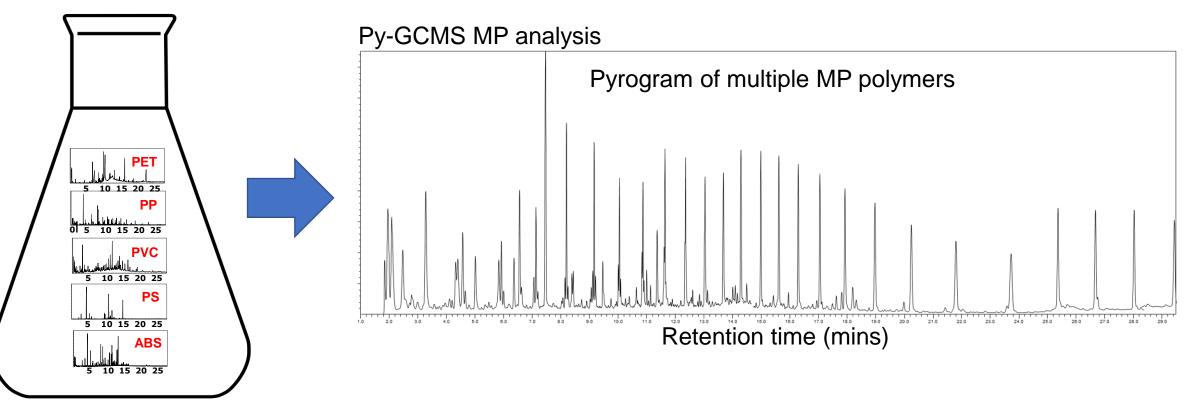

EGA of Acrylonitrile Butadiene Styrene (ABS) and Polystyrene (PS)

Compound name	Thermal zone, ℃
Acrylonitrile-butadiene-styrene (ABS)	550
Nylon 6 (N6)	550
Nylon 6,6 (N6,6)	550
Polyethylene terephthalate (PET)	600
Polypropylene (PP)	600
Polystyrene (PS)	500
Polyvinylchloride (PVC)	600


ABS average mass spectrum

PS average mass spectrum

Challenges of Single Polymer Analysis



Polymer analysis:

- Flash pyrolysis followed by mass spectrometry scan analysis of single analyte standard:
- Many polymer peaks (pyrolyzates) exist, additives may also be included.
- These pyrolyzates co-exist within other polymers and the chemical profile may look similar among many polymers.
- Not as easy to identify using standard libraries, such as NIST, recommended to use Py Handbook or specialized libraries such as F-search.

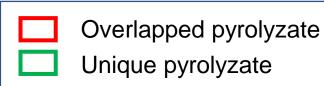
Challenges of Multiple Targeted Polymers Analysis

Sample containing multiple polymers

MP analysis is challenging because these complicated polymers could all exist in the same matrix. How do we identify and quantify individual polymers that share similar physiochemical properties??

Determination of unique pyrolyzates for identifying MPs in a multiple polymers mixture

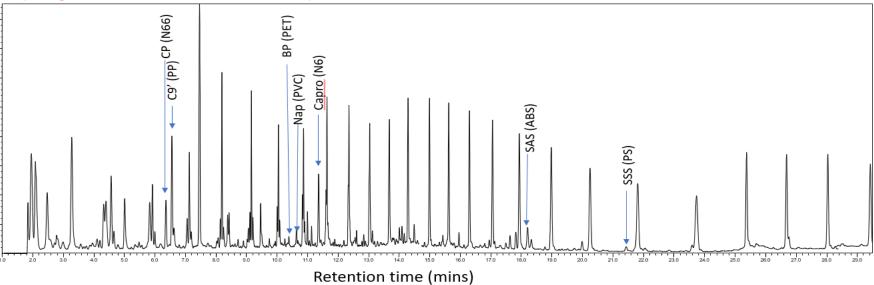
Main pyrolyzates in ABS


2-Penyl-4-phenylpent-4-enenitrile (SAS) is unique to PS and is the characteristic pyrolyzate used to identify PS

Peak #	F-Search Result
ABS	
1	1,3-Butadiene
2	Acrylonitrile
3	Toluene
4	4-Vinylcyclohexane
5	Styrene
6	Alpha-Methylstyrene
7	2-Methylenepentanedinitrile (A dimer)
8	2-Methylene-4-phenylbutanenitrile (hybrid dimer)
9	4-Phenylbutanenitrile
10	4-Phenylpent-4-enenitrile (hybrid dimer)
11	3-Butene-1,3-diyldibenzene (styrene dimer)
12	2-Methylene-4-phenylheptanedinitrile (hybrid trimer)
13	2-Phenethvl-4-phenvlpent-4-enenitrile (hvbrid trimer)

Main pyrolyzates in PS

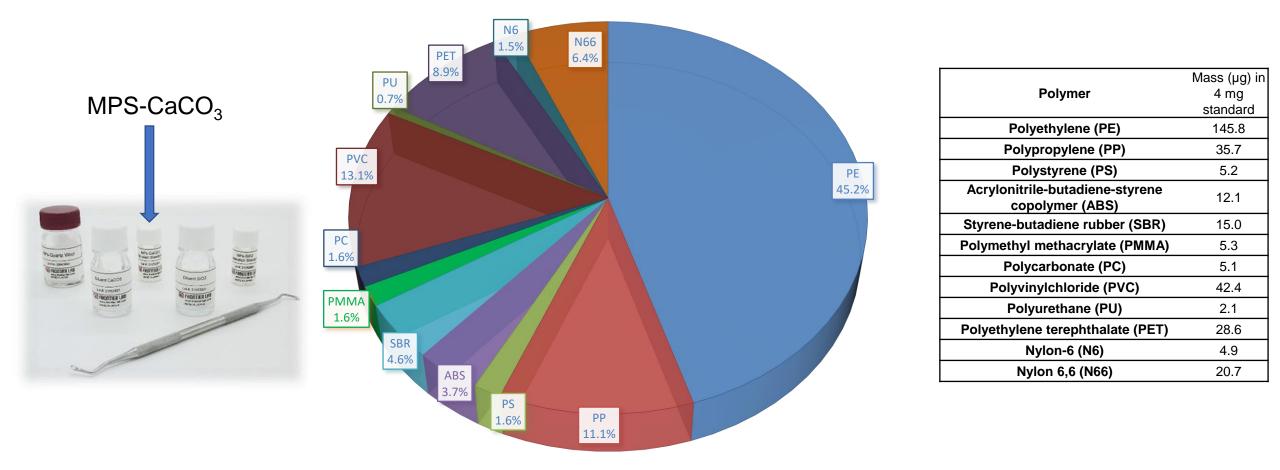
Styrene Trimer is unique to PS and is the characteristic pyrolyzate used to identify PS


Peak # PS		F-Search Result				
1		Stvrene				
2	3-B	3-Butene-1,3-diyldibenzene (styrene dimer)				
3	5-He	xene-1.3.5-trivltribenzene (stvrene trin	ner)			

Characteristic Pyrolyzates for 6 Targeted Polymers

Compound name	Characteristic pyrolyzate	Quant ion	Qual ion
Acrylonitrile-butadiene-styrene copolymer (ABS)	2-Penyl-4-phenylpent-4-enenitrile (SAS)	170	91,115,118
Nylon-6 (N6)	ε -Caprolactam (Capro)	113	30,55,85
Nylon 6,6 (N66)	Cyclopentanone (CP)	84	39,55,56
Polyethylene terephthalate (PET)	Benzophenone (BP)	182	51,77,105
Polypropylene (PP)	2,4-Diemethyl-1-heptene (C9')	126	43,55,70
Polystyrene (PS)	Styrene trimer (SSS)	91	117,207,312
Polyvinylchloride (PVC)	Naphthalene (Nap)	128	102

Pyrogram of multiple MP polymers

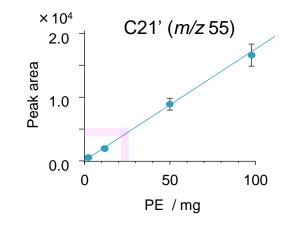

Providing a fast workflow in the measurement of MPs.

- Shimadzu and Frontier lab provide a fast workflow solution that is accurate, sensitive and precise
- Frontier MP kit includes 12 polymers mix in CaCO₃ or SiO₂
- F-Search software is seamless and processes data from Shimadzu GC-MS
- Target compounds are readily identified using retention indices and calibration curves are quickly built

Percent polymer composition and mass of each analyte in 4 mg MPS-CaCO3

Analytical software for microplastics analysis F-Search MPs 2.1

Operational process by F-Search MPs 2.1

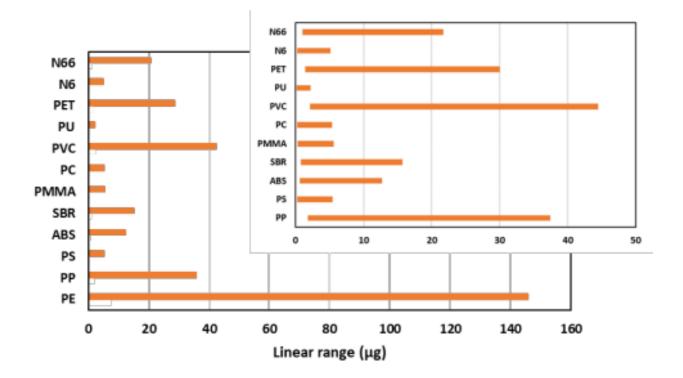

Step 1 Adjustment of retention index (RI) RI is created based on the pyrolyzates of MPCS

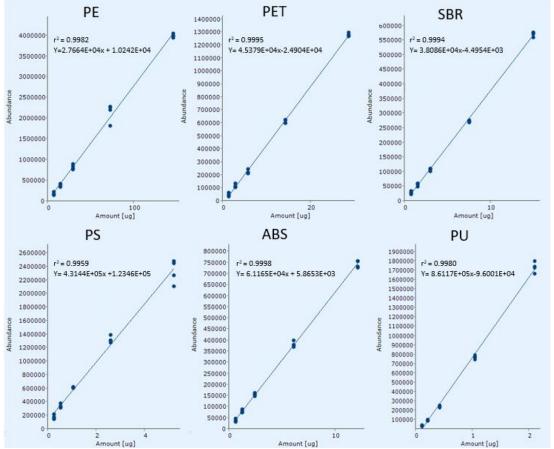
Step 2 Creating a calibration file (QFL)

Calibration file is created based on pyrograms of MPCS

Step 3 Qualitative/quantitative analysis of actual MPs analysis data

Step 4 Interpretation/review of results

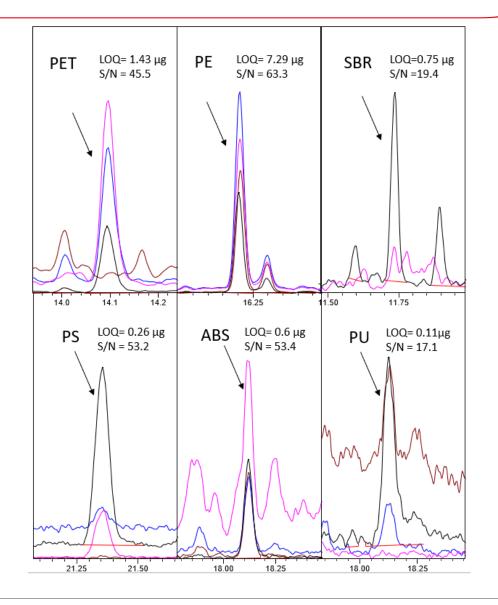



F-Search MP Quantitative calibration view

The Calibration curve is selected from <u>linear/quadratic</u> and <u>with/without forced zero intercept</u>.

Index	Leve) 	# Rep. 1/4 0.2mg	File Mix_Polyme	r_CaCO3_00	<< >>	Calibration CF Type: Li Zero: N		Chart C EIC • y = 3.2144E	Height R [*] 2 = 0.9999	
Pol PE PP PS ABS SBR PMMA PC PVC PU PET N6 N66	C S S S M H B C	1 1 1 1 1 1 84	RT [min] 16.200 6.550 21.347 18.113 11.733 5.007 11.353 10.633 18.113 14.087 11.353 6.357	Area 220917 90614 215558 47667 34207 231164 324831 290844 43484 62565 97798 365714	Avr Area 174852 71927 174361 38390 27769 187700 226715 234361 33479 46858 78373 285653	Height 119616 37722 49412 16657 19775 75661 178906 169696 12678 31930 47183 139748	Avr Height 92893 29647 41107 13740 15997 61886 123447 132435 10043 24527 37205 108336	7.29 1.79 0.26 0.60 0.75 0.27 0.26 2.12 0.11 1.43	B B B B B B B B	700000- 600000- 500000- 400000- 300000- 200000- 100000-	NG
										0	5 Amount [ug] Save Copy Table

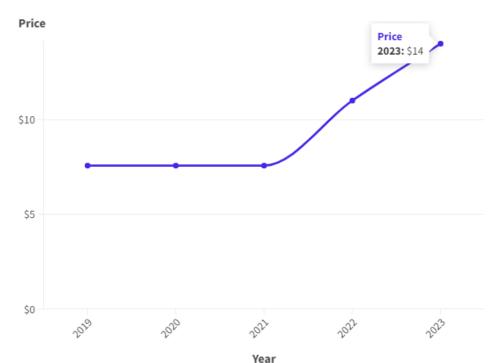
Helium Data Review



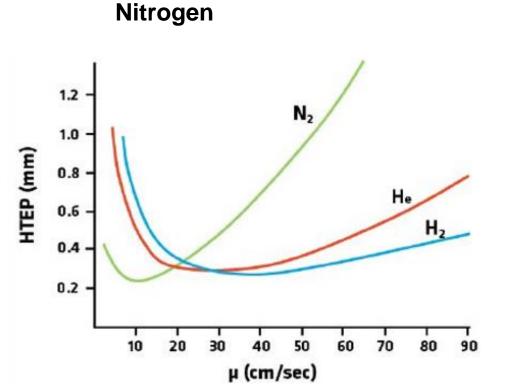
Lower Limit of Quantification (LLOQ)

- Limit of quantitation for representative polymers in this study.
- Based on polymer concentration in MP-CaCO₃ standard, 2 mg standard weight is required to obtain Pseudo LLOQ for each compound.

Polymer	Recover	ry % (n=7)	Retention Time	LLOQ (µg)	% Drift
	3 mg	0.2 mg	(min)	LLOQ (µg)	(at 0.8 mg)
PE	99.0	99.9	16.2	7.3	-16.9
PP	99.6	111.2	6.6	1.8	-11.4
PS	92.2	66.4	21.3	0.3	-9.3
ABS	92.9	107.3	18.1	0.6	-18.1
SBR	96.0	121.8	11.7	0.8	-8.7
PMMA	102.8	103.6	5.0	0.3	-6.5
PC	97.2	123.0	11.4	0.3	-10.8
PVC	97.5	114.1	10.6	2.1	-9.6
PU	94.9	145.1	18.1	0.1	-19.8
PET	95.0	126.7	14.1	1.4	-18.2
N6	100.1	112.0	11.4	0.3	-11.0
N66	100.8	121.5	6.4	1.0	-7.2



Helium vs. Nitrogen

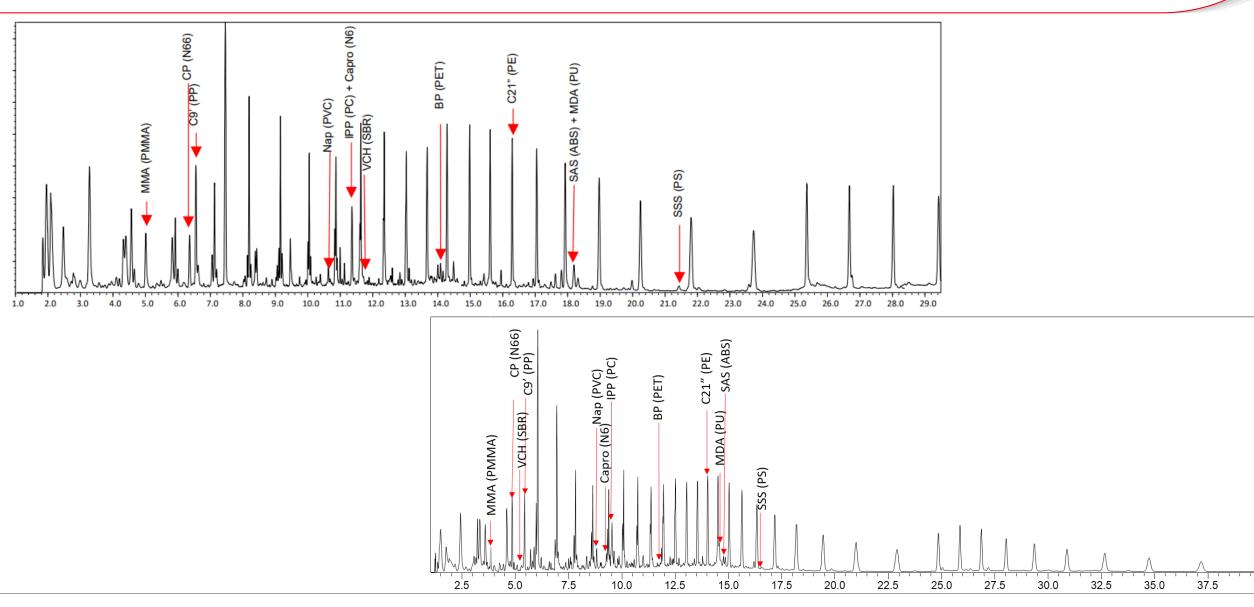

Helium

Helium price, per cubic meter

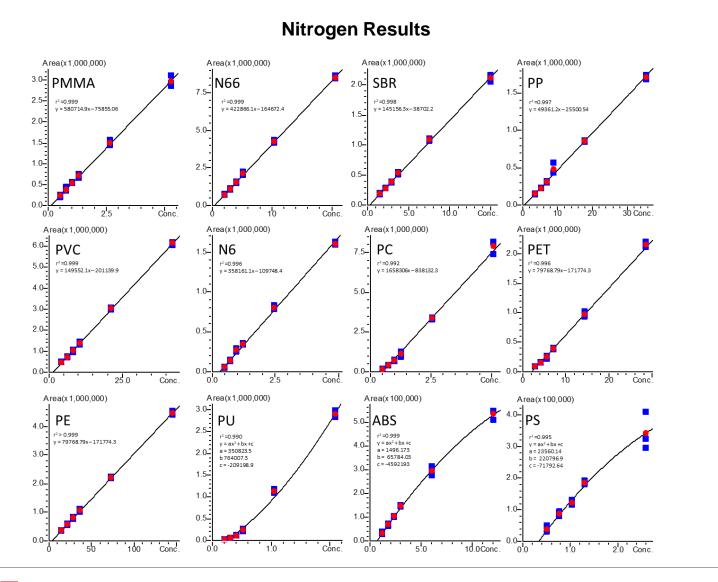
Prices listed are estimates for Grade-A helium sold by private industry.

- Cost of He continues to rise with unequal rates of production
- H2 difficult alternative for Pyrolysis

- Best Efficiency and Inert
- Can be unforgiving with unoptimized linear velocities


SHIMADZU

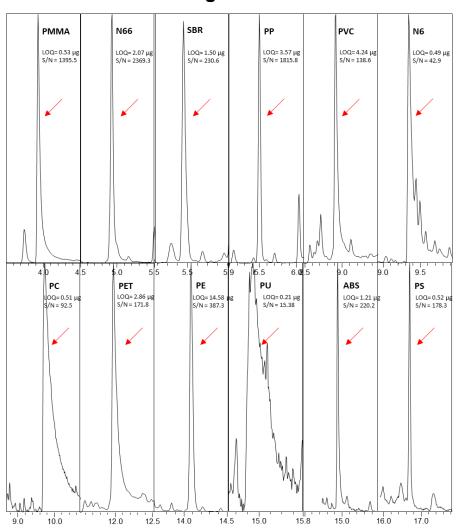
Nitrogen Configuration



Gas Chromatography	Nexis GC-2030					
Injection port mode	Split mode; 35:1 split ratio					
Injector pressure	94.1 kPA					
Carrier gas	Nitrogen					
Injection port temperature	300 °C					
Column: Frontier Lab UAMP column	Restek Mxt-5 (20 m x 0.18 mmID x 0.40 μm					
Flow control mode	Linear velocity					
Oven Temperature	40 °C (2 mins. hold), 20 °C /mins. to 280 °C (10 mins. hold), 40 °C /min to 320 °C (60 mins. Hold)					
Mass Spectrometer	QP2020 NX					
Interface Temperature	300 °C					
Ion Source Temperature	230 °C					
Detector Voltage	Relative to Tune 0 kV					
Threshold	0					
Acquisition mode	Scan/SIM					
Scan Range	m/z 29 to 350; Event time 0.2 s					
SIMions	Listed in table 2					
Pyrolyzer	EGA/PY-3030D					
Single Shot Furnace Temp	600 °C					
Interface Temp	300 °C					
Auto sampler flushing gas	Nitrogen					
Auto sampler Purge Time	10 sec					

Nitrogen Results – Runtime

Nitrogen Results – Linearity Comparison

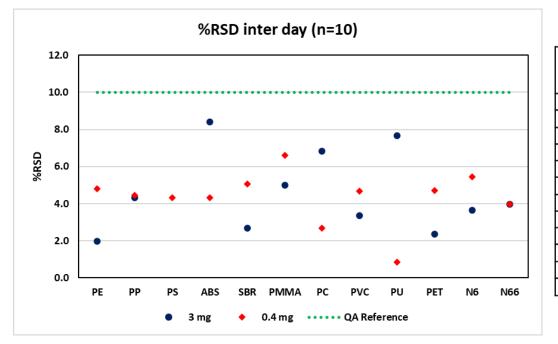


Helium Results

Polymer	Linearity (r ²)
PE	0.9982
PP	0.9997
PS	0.9959
ABS	0.9998
SBR	0.9994
PMMA	0.9988
PC	0.9999
PVC	0.9999
PU	0.9980
PET	0.9995
N6	0.9999
N66	> 0.9999

SHIMADZU

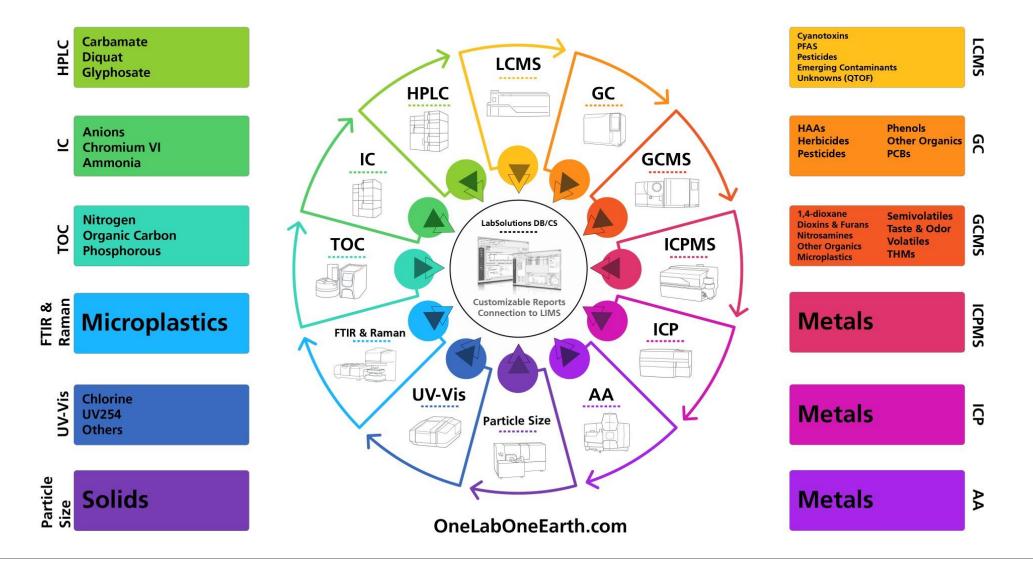
LLOQ – Sensitivity



Nitrogen Results

Helium Results

Polymer	LLOQ (µg)
PE	7.3
PP	1.8
PS	0.3
ABS	0.6
SBR	0.8
PMMA	0.3
PC	0.3
PVC	2.1
PU	0.1
PET	1.4
N6	0.3
N66	1.0


Delumer	Recovery	% (n=10)	Retention Time	LOQ (µg)	Linearity (r ²)	% Drift
Polymer	3 mg	0.4 mg	(min)			(0.8mg)
PE	109.2	112.8	14.0	14.58	0.999	23.3
PP	103.8	109.2	5.6	3.57	0.993	12.7
PS	N/A	103.7	16.8	0.52	0.997 ª	-5.5
ABS	108.1	104.9	15.0	1.21	0.999*	9.0
SBR	106.7	116.6	5.6	1.5	0.998	13.3
PMMA	105.1	115.3	4.0	0.53	0.999	22.6
PC	107.9	122.0	9.7	0.51	0.992	23.0
PVC	101.3	114.8	9.0	4.24	0.999	16.3
PU	102.1	125.0	14.8	0.21	0.990*	12.7
PET	103.1	133.8	12.0	2.86	0.996	23.3
N6	104.2	102.6	9.4	0.49	0.996	31.0
N66	104.5	111.1	5.0	2.07	0.999	19.9

Special Thanks and Conclusion!

- PY-GCMS is an effective tool for identifying and quantifying mixed polymer samples at low levels
- Nitrogen maintains sensitivity and throughput while reducing operating cost when compared to helium.

- Andy Sandy Applications Scientist of ADC
- Evelyn Wang Application Manager of ADC
- Okamura Yoshiyuki GM of Application
 Development Center
- Ruth Marfil-Vega Sr. Environmental Marketing Manager

Questions?

