Developments in QCL-Based Spectroscopy for Rapid Identification of Microplastics

Darren Robey, Wesam Alwan, Ph.D, Louis Tisinger, Ph.D.

Agilent Technologies

Agilent 8700 LDIR Chemical Imaging System

Routine, robust, automated microplastics analysis by non-experts

The Agilent 8700 Laser Direct Infrared (LDIR) chemical imaging system

- A sophisticated new approach to chemical imaging and spectral analysis.
 - With the 8700 LDIR, you can analyze more samples, in greater detail, in less time
 - Uses Quantum Cascade Laser (QCL) technology & rapidly scanning optics to provide fast, clear, high-quality images and spectral data.
 - Intuitive Agilent Clarity software provides rapid and detailed imaging of large sample areas with minimal instrument interaction.
 - Provides compositional analysis of microplastics, tablets, laminates, materials
 - Survey large sample areas and then explore smaller areas of interest in more detail without changing any optics.
 - No requirement for liquid nitrogen reduces operating costs and simplifies maintenance.

Traditional FTIR-based systems: More Manual Tasks

Laser Direct Infrared (LDIR) Spectroscopy

All light reaches the particle

- Bright, coherent light source
- Focus all laser power onto a particle
- New instrument architecture
- Proprietary Agilent quantum cascade laser (QCL) technology
- Rapidly tunable across the mid-infrared fingerprint region for spectroscopy

Analyzing Microplastics using Agilent 8700 LDIR

Modes of Action

Proprietary Agilent quantum cascade laser (QCL) technology

- Bright, coherent light source. More power, directional: Focus all laser power onto a particle
- Rapidly tunable across the mid-infrared for spectroscopy.
 Scan Mode
- Single wavelength, scan the sample quickly
- Can be done multiple times for multiple wavelengths at high speed.
- Understand the spatial distribution of known components
- Locate discrete particles

Sweep Mode

- Single Position
- Full Sweep available wavelengths
- Utilize full spectrum for library matching

Scan Mode "Discrete Frequency Sampling"

Agilent Solution: 8700 LDIR chemical imaging system

Obtain spectra by passing infrared beam thru sample reflecting off low-E slide or reflective filter (transflectance) and then back thru sample to the detector.

Data Collection

Sweep Mode

Discrete Frequency Mode

Example Particle: Particles can be sorted by type and highlighted in image, using the "Zoom" function.

Reported Results: Statistics are updated as analysis proceeds

Polyamide (PA)		
	25.8%	(54)
Acrylonitrile Butadiene		
	20.6%	(43)
✓ Natural Polyamide		
	20.1%	(42)
Polyvinyl Chloride (PVC)		
	12.4%	(26)
✓ Undefined		
_	9.6%	(20)
Polyethylene Terepthalate		
•	2.9%	(6)
Chitin		<i>(</i> -)
<u> </u>	2.4%	(5)
Polyvinyl alcohol	• ••((=)
<u>l</u>	2.4%	(5)
Acrylates Polyurethanes Varnish	4.00/	
	1.9%	(4)
Ethylene Vinyl Acetate (EVA)	1 00/	(2)
	1.0%	(2)
Polypropylene	0 54	(1)
	0.5%	- (I)

Improvements To MP Workflow

Outline

Microplastics Analysis Validation Using Aluminum-Coated Filters

- Sample introduction
- Useability and handling
- Detection of particles
- Repeatability of particle count, size, and identification data
- Particle size accuracy
- Identification of common microplastics
- Spectra quality

• Clarity 1.6 Improvements

- Speed of Analysis
- Data Archiving
- Wavenumber selection

Microplastics Analysis Validation Using Aluminum-Coated Filters

Sample preparations

Clean water: drinking water Biological Dirty water: river Dirty sediment: Clean sediment: sand water soil **Organic Matter Removal** Separation from Sediment Filtering စီး ၀ိး ၀ိး ၀ိး ၀ိး

Direct Analysis of Microplastics Using Gold-coated Filters

Improved sample representation

Aluminum-Coated Filters: Sample Introduction

Option 2

Extracted Microplastics

Option 1

Low-e slide

- Ideal for high number of particles
- Large area of analysis (25 x 75 mm)

25 mm gold-coated filter

- More sample representation
- Easy sample preparation
- Reduced contamination
- Two filters analyzed sequentially

25 mm Aluminum-coated filter

- More sample representation
- Easy sample preparation
- Reduced contamination
- Two filters analyzed sequentially

Aluminum-Coated Filters: Useability and handling

- Aluminum-coated polyester i3 TrackPor PA (25 mm, 100/0 nm coating, 0.8 µm pore size)
 - Cheaper than gold-coated filters
 - Less prone to folding than gold-coated filters.
 - Easier to position on the filter holder due to increased rigidity of the coating
- Orderable via Agilent or directly from i3 Membrane GmbH

Same filtration workflow as gold-coated filters

19

Aluminum-Coated Filters: Detection of particles

- Step 1: Particle Analysis Workflow (31 Particles)
- Step 2: Manual Count Using High-Mag Image (30 Particles).
- Excellent detection. \checkmark
- High quality IR images. ✓

Shows the value of finding particles via IR imaging

Aluminum-Coated Filters: Repeatability of particle count, size, and identification data

- Particle Analysis Workflow, same area (n = 10)
- < 1% variability based on total particles, size range and polymer identification. ✓
- Excellent reliability and accuracy. ✓

Aluminum-Coated Filters: Particle size accuracy

- 50 μm NIST traceable polystyrene latex beads: 37 particles; average size of 55.10 μm (standard deviation = 3.67 μm)
- 20 μm NIST traceable polystyrene latex beads: 223 particles; average size of 22.90 μm (standard deviation = 2.30 μm)
- Accurate particle sizing with minimal variation. \checkmark

Aluminum-Coated Filters: Identification of common microplastics

- Accurate identification of major types of microplastics. ✓
- High HQI scores, which surpassed 0.8 for 93 to 100% of the particles. ✓

Polymer	Particle count	HQI >0.8	HQI >0.8 (%)
PET	345	330	96%
PC	418	392	94%
PA	506	493	97%
PE	241	241	100%
PMMA	234	227	97%
POM	107	99	93%
PTFE	550	546	99%
PU	504	491	97%
PS	228	227	100%
PVC	40	40	100%
PP	99	96	97%

Aluminum-Coated Filters: Spectra quality

• Excellent acquisition spectra and matches using MPs Starter 2.0 Library. ✓

Clarity 1.6 Improvements

Clarity 1.6 Improvements: Speed of Analysis

System	PP04	LD23
Clarity	1.6.79	1.6.79
Database Status	6.68 GB	4.0 GB
Area Scanned	20 x 20 mm	60 x 20 mm
Number of Particles	6930	14847
Time to detect particles	25 mins	1 hour
High-mag image per particle	5 sec	6 sec
Spectrum per particle	4.4 sec	7.76 sec
Time per particle (Full characterization)	10 sec	13 sec

Manual speed of analysis and consistency between instrument

Clarity 1.6 Improvements: Data Archiving

- Archiving exports samples to a location of the user's choice and then deletes them from the Clarity database
 - 1. Select one or multiple samples
 - 2. Select data archiving button
 - 3. Choose location (PC, external hard drive, network)

\triangle	Search	× Newest •	=					
 Իկ							-	
L L								
団	Speed test 1.6.82_5:23 2/15/2024 5:22:50 PM	3 pm		New Sam 2/5/2024 9:30	nple 20 5:59 AM	24/02	/05 09:36	
Ū								

Ensuring that the Clarity data drive does not fill up.

Allows users to use their own secure storage solutions.

0

Clarity 1.6 Improvements: Wavenumber Selection

Clarity 1.5 - Image used to detect and outline particles is always scanned at 1442 cm⁻¹.

Clarity 1.6 - The user can input a custom wavenumber value between 975 and 1800 cm⁻¹ for the particle detection image scan.

Improved reliability of the detection based on polymer of interest and user needs

Library Microplastics Starter 2	2.1		
Particles Identifications	Statistics	Settings	
✓ Auto Scan	Wavenu	mber	1442 (cm ⁻¹)
Collect Visible Image			
Particle Sensitivity Min	•	Max	0.1
Classification Ranges			
Particle Diameter (µm)			
Minimum 20 🖌 Auto			
Maximum 500 🗸 Auto			
Size Classification Ranges			
0 - 30			
30 - 50			
50 - 100			
100 - 200			
200 - 300			
300 - 500			

Summary

Agilent 8700 LDIR and Clarity 1.6

Alu filter with same performance as gold at a 50% lower cost

CN Overall analysis time reduced

Easier data archiving and data management

New Resources: www.Agilent.com

August 1, 2024

Other resources: www.Agilent.com

- <u>Best Practice for On-Filter Analysis of Microplastics Using the</u> <u>Agilent 8700 Laser Direct Infrared (LDIR) Chemical Imaging</u> <u>System</u>
- <u>Rapid, Large-Area, Analysis of Microplastics from Plastic Bottles</u> <u>Using Laser Direct Infrared Imaging</u>
- <u>Performance Attributes of the Agilent 8700 Laser Direct Infrared</u> (LDIR) Chemical Imaging System
- Distinguishing Between Polyamide Microplastics and Natural Polyamide
- <u>Fast, Automated Microplastics Analysis Using Laser Direct</u> <u>Chemical Imaging</u>
- Agilent 8700 LDIR Chemical Imaging System
- Agilent Clarity Software
- Microplastics Technologies FAQs
- Microplastics Analysis in Water
- <u>Agilent Cary 630 FTIR Spectrometer</u>
- Agilent MicroLab Software
- <u>ATR-FTIR Spectroscopy Overview</u>

August 1, 2024

