

Automated monitoring of organic ozone depleting substances and greenhouse gases

Markes International's ODS and GHG portfolio

Hannah Calder hcalder@markes.com

Agenda

- Background to ODS and GHGs
 - Global activities
 - Future monitoring networks
- Considerations for monitoring
- Instrument overviews
- Data comparison

MONTREAL PROTOCOL

ODS = Ozone depleting substance

A compound that contributes to stratospheric ozone depletion.

Categorized by their ozone depletion potential (ODP)

MONTREAL PROTOCOL

GHG = Greenhouse gas

Gases that trap heat in the atmosphere. Categorized by their global warming potential (GWP)

Species have $12 - 14000 \times high GWP$ than CO_2

MONTREAL PROTOCOL

"Top-down" atmospheric measurements ensure emissions are captured. Vital for countries to really reach net zero.

Where is monitoring needed? What range of concentration levels are these compounds typically present at?

Background stations

>500 ppt to <0.01 ppt

Urban areas >1 ppb to <70 ppt

Industrial areas >1 ppm to <1 ppb

Considerations for monitoring

How will the sample be collected?

Considerations for monitoring

How will the sample be collected?

Monitoring station with online sampling

- High frequency data
- Remote / urban / industrial locations possible

Requires:

- Infrastructure
 - Carrier gases, electricity generators, data transmission
- Specialist software
- <u>Reliable analytical systems</u>

Considerations for monitoring

How will the sample be collected?

Flask / canister sampling with laboratory analysis

- Low frequency data
- Background / urban / industrial locations possible with a single system

Requires:

- Infrastructure
 - Carrier gases
- Software
- <u>Reliable and flexible analytical systems</u>

Considerations for the analysis

Volatility, interferents and concentration range.

Ultra volatile target species.

Water, CO₂ and hydrocarbons all interfere with the analysis of ODS & GHGs

- Water must be removed from the sample
- CO₂ requires removal and management chromatographically
- Hydrocarbon co-elutions need to be understood by the chromatographer in case they impact quantitation

High concentrations during pollution events.

How is monitoring be carried out?

TD-GC-MS

- Preconcentration is essential for this application
- Mass spectrometry is needed for these compounds of interest

- Sampling must be canister or online for the full list of Montreal species.
 - Sorbent tubes can be used for a reduced list.

How can we monitor?

Pre-concentration and GC-MS

NuVo 200

An application specific instrument. Urban area and industrial monitoring of ODS & GHGs

How it works

NuVo 200

NuVo 200 is comprised of three parts:

- Canister autosampler, CIA-Advantage-xr
- NuVo 200 HT
- NuVo 200 LT

The two focusing traps of the NuVo work together to trap ultra-volatile species and manage CO_2

- Trapping temperatures down to -100 °C
- Cryogen-free

NuVo 200 LT Focusing trap NuVo 200 HT Focusing trap CIA Advantage-xr Canister autosampler

How it works

NuVo 200

Possible to run with multiple carrier gas types (Multi-gas)

- Helium
- Hydrogen
- Nitrogen

Water removal provided by Nafion dryer

Not compatible with Kori-xr or other -xr series
 instruments

Samples from pressurized and unpressurized sources

- Online and canister
- Laboratory and field station

NuVo 200 LT Focusing trap NuVo 200 HT Focusing trap CIA Advantage-xr Canister autosampler

Two targets and one interferent

NF₃ CF₄ CO₂

Two targets and one interferent

\mathbf{NF}_{3}

CF₄

CO_2

• Boiling point: -129 °C

 Impossible to trap on standard online / canister -xr systems

Two targets and one interferent

 NF_3

CF₄

- Boiling point: -129 °C Boiling point: -128 °C
- Impossible to trap on
 standard online / canister -xr systems
 - Maximum trapping volume 25 mL on Markes –xr systems

Two targets and one interferent

 NF_3

 CF_4

- Boiling point: -129 °C
- Boiling point: -128 °C
- Impossible to trap on standard online / canister –xr systems
- Maximum trapping volume 25 mL on Markes –xr systems

 CO_2

Two targets and one interferent

NF₃

CF₄

•

٠

- Boiling point: -129 °C
- Boiling point: -128 °C

- Impossible to trap on standard online / canister –xr systems
- Maximum trapping volume 25 mL on Markes –xr systems

 CO_2

- Boiling point: -78 °C
- Significant interferent when trapping below -30 °C

Two targets and one interferent

Managing interferents. No interference from CO₂ or water at atmospheric levels

Managing interferents. No interference from CO₂ or water at atmospheric levels

Stable and high throughput. Excellent for online measurements

Reliable results

All compounds

showed good

repeatability.

5.00%

Repeatability n = 7; 600 mL, 10 ppt standard, 100% RH, 0.04% CO

n = 25 replicates average RT stability was ±0.01 minutes

Below 5% criteria.

Breakthrough, linear range and carryover

Breakthrough of over 800mL for key compounds CF_4 and NF_3

Linearity

- Two canister calibration 18 levels
 - 3 ppt 375 ppt
- All compounds:
 - R² above 0.99

Carryover less than 1% for majority of species

nge and carryover

 $R^2 = 0.999$

R =

0.999

Method detection limit: 10 ppt, 100% RH, atmospheric CO₂ level

•

Important for seeing pollution events

Urban and industrial monitoring

NuVo 200

- Confident reporting
 - Manage interferents (H₂O and CO₂) as standard
 - Highly sensitive
- Reliable
 - Excellent recovery from high concentration samples
 - Internal standard addition
- Flexible
 - Suitable for laboratory or field measurements.
 - Compatible with all major GCMS.

Medusa

Background monitoring

Medusa overview

Medusa Preconcentration System

Trapping:

- Compounds trapped at -165 °C (without cryogen)
- Dual trap design
- Linear response over wide range of sample volumes
- 2 L sample typical (sampling and analysis = 2 hours)
 Managing interferents:
- Nafion
- Temperature variation to minimise bulk gases
- CO₂ managed through chromatography and dual trapping

Medusa overview

Medusa Preconcentration System

Operated by GCWerks SW only

Calibration

- Ambient air samples alternately sampled against a standard to account for MSD response drift.
- Air \rightarrow standard \rightarrow Air \rightarrow standard
 - Sandwich calibration.

Proven performance

Markes International Medusa

- The Medusa is the only instrument routinely used to measure NF₃ in ambient air samples at background levels (2 – 4 ppt).
- Multiple instruments in use globally by the AGAGE network and NOAA
- Markes have been producing Medusa systems since 2020 in collaboration with the AGAGE network.

The importance of background site measurements

в

- Data spanning over 45 years collected for many species by various networks
- Medusa measurements since 2008
- Regional variations can be modelled
- New species added

Ultimate system for background measurements

в

- Data spanning over 45 years collected for many species by various networks
- Medusa measurements since 2008
- Regional variations can be modelled
- New species added

Comprehensive sample introduction and preconcentration for GC–MS

Designed for scientists monitoring ODS and halocarbon GHG in air, Markes' portfolio of pre-concentration instruments for GC–MS monitor key species in any environment, from ppm to sub-ppt method detection limits.

- **Flexible:** Adapting to different monitoring needs
- **Reliable:** Manage interferents
- **Convenient:** Designed for laboratories and field stations

Thank you for your attention

Any questions?

UNITY-CIA Advantage-xr

NuVo 200

Medusa

Contact Markes

enquiries@markes.com

UK: +44 (0)1443 230935

USA: +1 866-483-5684 (toll-free)

Germany: +49 (0)69 6681089-10

P.R. China: +86 21 5465 1216

www.markes.com www.markes.com.cn

@MarkesInt

https://uk.linkedin.com/company/ markes-international

