Fast Analysis of 140 Environmental Compounds by GC/MS/MS

Erinn O'Neill¹, Alexis Willey¹, and Marta Venier² ¹Agilent Technologies Inc., Wilmington, Delaware, USA ²Indiana University, Bloomington, Indiana, USA

Introduction

Pesticides, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) are persistent environmental pollutants with the potential for bioaccumulation.¹ Previously, these compound classes have been analyzed using gas chromatography with an electron capture detector (GC-ECD), but this requires full chromatographic separation of all analytes for confident chemical identification. With a triple quadrupole detector (QQU), analysis time significantly drops due to mass identification eliminating the need to chromatographically separate all components. Further, multiple reaction monitoring (MRM) mode on the QQQ provides a higher confidence in peak identification dNS/MS analysis is especially useful for PAHs and PCBs where multiple analytes may have the same m/C value.

		Pesticide	Conc. (ppb)		
Dut I	0	a-HCH	20		
PAR	Canc. (ppb)	β-HCH	20		
Accurptione	200	y-BCH	20		
Accupentyene	200	8-HCH	20		
Attances	200	g-HCH	20		
Benz[a]arthracene	200	Heptachloroepoxide	20		
Benzo[b]@acearthene	200	Aklrin	20		
Benzo(k)threarthene	200	Dicklein	20		
Benzu{gh,iperyiene	200	Endrin	20		
Benzo(a)pyrene	200	p.p'-DDT	20		
Benzo(e)pyrene	200	p.p'-DDD	20		
Chrysene	200	p.p'-DDE	20		
Coronene	200	o.p'-DDD	20		
Dibenz(a,h)anthracene	200	ap'-DDT	20		
Fluoranthene	200	g-Chlodare	20		
Fluorene	200	y-Chlosdase	20		
ndeno[1,2,3-cd]pyrene	200	Oxychkedane	20		
Naphthalene	200	trats-Norachlor	20		
Phenanthrene	200	Methoxychlor	20		
Pyrene	200	Endo-sulfan I	20		
Retenc	200	Endosulfan II	20		
Perylene-d ₁₂	200	Endosulfan sulfate	20		
Benz[a]anthracene-d12	200	Heuchkeobenene	20		
Anthracene-d ₁₀	200	Dibutylchkeendate	20		
Phenurthrene-d ₁₀	200	PCB-155 (ad)	20		
Pyreno-d ₁₀	200	PCB-65 (std)	20		

PC I	B Conc. (ppn)	PCB	Conc. (ppn)	PUB	Conc. (ppo)	PU.D	Conc. (pp
4+1	0 20	45	5	92+84	10	163+138	10
7+1	9 20	52	5	89	5	126	5
6	10	49	5	101	5	166	5
8+	5 20	-47	5	99	5	128	5
14	20	48	5	trens -Nonachior	5	167	5
19	5	65	5	119	5	174	5
30	8	44	5	83	5	202+171	10
12	10	37	5	97	5	156	5
13	10	42	5	81	5	204	6
18	5	41+71	10	87	5	172	5
15+1	17 15	64	5	85	5	150	5
16	5	100	5	77	5	139	5
32	5	Octachleeustymme	5	110	5	169	5
26	5	74	5	135+144	50	170+190	10
31	5	70+76	10	123+149	10	201	5
28	5	66	5	118	5	287	5
33	5	95	5	114	5	194	5
53	5	91	5	131	5	205	5
			10				

Figure 1. List of compounds present in each standard with the concentration of each analyte (in ppb). Standards contained either PAHs, pesticides, or PCBs.

Experimenta

Samples were collected from both air and precipitation using XAD-2, then fractionated into hexane and a 1:1 mix of hexane and DCM. An Agilent 8890 GC with Agilent 7000E QQQ was used for this analysis. Injections were public de in spitiless mode on an MMI inlet with a bottom-fritted liner. The final method contained 425 MRMs across 181 MRM groups. Standards were prepared in hexane for all 140 compounds.

Figure 2. Agilent 8890 GC with Agilent 7000E QQQ used for this analysis.

Figure 3. Plot of MRMs set in the acquisition method over time. As many as 30 MRMs occur simultaneously.

Results and Discussion

Standards were run to develop a dMRM method.

Standards were prepared for each of the three compound classes (pesticide, PAH, and PCB) and retention times were assigned by running in scan mode and analyzing the data in MassHunter Unknowns Analysis. The Pesticide and Environmental Pollutant (PSEP) Database assisted with identifying the elution order of the compounds. MRM transitions were developed for all compounds of interest to analyze on GC-QQQ by using a combination of the PSEP Database, Iterature, and Optimizer software. Samples were run in dynamic MEM (dMRM) mode with at least 1 quantifier ion and 1 qualifier ion transiton per analyte.

Figure 4. Total ion chromatograms of standards for a) PCBs, b) pesticides, and c) PAHs.

Figure 5. Example extracted ion chromatograms o quantifier and qualifier transitions for the pesticide δ -BHC

Sample quantification by GC/MS/MS is comparable to GC-ECD analyses.

Samples containing various mixtures of pesticides, PAHs, and PCBs were analyzed by this GC/MS/MS method, after previously being analyzed by GC-ECD. Quantification of all compounds by GC/MS/MS is comparable to historical data by GC-ECD. Using a single unified acquisition method, 24 PAHs, 24 pesticides, and 92 PCBs have been identified from environmental samples at low ppb levels. Final concentrations of the samples ranged from 3 to 675 ppb.

Table 2. List of samples that were quantified with analyte class of interest, original sample matrix, and fraction.

Sample Number	Analyte Class of Interest	Original Sample Matrix	Current Solvent	IUB Concentration	IUB Batch	IUB Fraction
1	Polychiorinated biphenyls	Air/Napor Phase (XAD)	Hexane	500 ng/sd	JU22C	Hexane
	Pesticides	Air/Napor Phase (XAD)	Hexate	70 ng/gl	JU22C	Hexane:DCM
2	Pesticides	Precipitation (KAD)	Hexane	15 ng/gl	M229	Hexane:DCM
3	Polychiorinated biphenyls	Precipitation (KAD)	Hexane	35 ng/gl	3L22P	Houne
	Polychicrinated biphenyls	Matrix Spike (XAD)	House	675 ng/gl	F2M22C	House
	Pesticides	Matrix Spike (KAD)	Hexane	300 ng/gl	F2M22C	House:DCM
5	Pesticides	Air/Particle Phase (Filter)	Hexane	5 ng/al	122F	Hexane:DCM
6	Polychiorinated biphenyls	Lab Blank Vapor (KAD)	Hexane	3 ng/al	11220	Hexane
7	Pesticides	Air/Mapor Phase (XAO)	Hexane	35 ng/al	M222C	Hexane:DCM
· ·	Polychilorinated biphenyls	Air/Napor Phase (XAD)	Heate	13 ng/st	M222C	Heane

Figure 6. Total ion chromatograms for example pesticide (left) and PCB (right) samples that were quantified by GC/MS/MS.

Table 3. Quantification of pesticides in each sample (concentrations shown in ppb). Retention times and quantifier MRM transition are shown, along with absolute response.

			sample to pest		sampe z pest		Sample 40 pest		Sample /a pest		sample 5 pest	
Name	Transition	RT	Resp.	Final Conc.	Resp.	Final Conc.	Resp.	Final Conc.	Resp.	Final Conc.	Resp.	Final Con
Aldrin	254.9->220.0	9.78					1148	3.49				
BHC-alpha (berzene hexachloride)	216.9->181.0	7.47	544	0.369	1264	0.755	15782	10.75	46	0.019	2385	1.235
BHC-beta	181.0 -> 145.0	7.85	680	0.582	914	0.689	14507	12.47	934	0.488	582	0.38
BHC-delta	$181.1 \rightarrow 145.1$	8.32	2560	2.213	997	0.759	13521	11.75			6592	4.357
BHC-epsilon	180.9->144.9	8.51	18368	11.257	20611	11.128	19528	12.09	9369	3.504	25562	11.975
BHC-gamma (Lindane, gamma HCH)	181.0 -> 145.0	7.97	555	0.435	1380	0.954	12849	10.14	194	0.093	225	0.135
Chlordane-cis	271.8->236.9	11.18			2002	3.932	4334	9.62				
Chlordane-oxy	114.9->51.1	10.44			1346	1.865	7105	11.13				
Chlordane-trans	271.7->236.9	10.84	446	0.809	3545	5.674	6736	12.19	701	0.78	79	0.111
000-o,p'	235.0->165.1	11.58					64971	15.70				
000-p,p'	237.0->165.1	12.23			803	0.44	6605	4.09				
DDE-pp'	246.1->176.2	11.42			853	0.255	1929	0.65				
DDT-o,p'	235.0->165.2	12.24			894	0.32	10138	4.11				
DDT-pp'	235.0->165.2	12.82			1805	0.65	19710	8.02				
Dibutyl chlorendate	237.0->236.5	14.39	5700	17.041	3032	7.985	3634	10.82	7021	12.849	4423	10.245
Dieldrin	262.9->193.0	1151	970	3.615	4023	13.214	2959	10.99	377	0.861		
Endosulfan I (alpha isomer)	194.9 -> 160.0	11.06					1743	11.38				
Endosulfan II (beta isomer)	206.9->172.0	12.06					1695	9.87				
Endosulfan sulfate	271.9->237.0	12.81					7841	10.01				
Endrin	262.8->193.0	11.91					2188	14.00				
Heptachlor exo-epoxide	352.8->262.9	10.42			1517	4.384	3740	12.34				
Hexachlorobenzene	283.8->213.9	7.6			50	0.031	65	0.05			102	0.055
Methoxychior, p.p'-	227.0->169.1	13.81					13119	10.90			754	0.488
Nonachlor, tram-	271.8->236.9	11.18	26	0.038	2296	4,905	4372	10.56			101	0.19

Results and Discussion

Analysis time was shortened significantly by using GC/MS/MS.

The analysis time for 140 pesticides, PAHs, and PCBs has been sped up about 17X. With the original methodology, three injections were needed over multiple hours to quantity all tA0 analytes. This initial analysis by GC-ECD took 165 minutes for PCBs, a separate 165 minutes for pesticides, and another 24 minutes for PAHs. Running each sample therefore took about 6 hours to look for all analytes of interest. This new QQ0 method allows for one single injection that takes under 21 minutes. GC/MS/MS therefore creates a significant time savings and allows full calibrations to now be completed in hours instead of multiple days.

Conclusion

Transitioning methods from GC-ECD to GC/MS/MS is highly beneficial.

- By running in MRM mode, we enable the following: • Significant time-savings
- Increased confidence in hits
- Sample quantification remains the same

References

¹Zohair, A., et al. "Residues of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides in organically-farmed vegetables." *Chemosphere* 63.4 (2006): 541-553.

Acknowledgements

We would like to thank Daniel Lehman, Staci Capozzi and Karen Arnold (Indiana University, Bloomington, Indiana) for preparing standards and samples.

DE93540765