Seawater Nutrient Analysis by Segmented Flow Analysis

Xylem Lab Solutions

Section 1. Introduction

Seawater nutrients play a vital role in oceanic seafood chain. Quantification of these nutrients forms the foundation for understanding oceanic productivity and their analyses can be used to measure and monitor many oceanic cycles. Soluble inorganic nitrogen, phosphorous, and silicate in seawater are essential for the survival of marine organisms. A moderate amount of nutrients in seawater promotes the growth of biology and microorganisms. Inadequate amounts of nutrients restrict the growth of phytoplankton. Excessive nutrient growth is prone to cause eutrophication and lead to harmful algae blooms (HABs), and even the death of aquatic organisms. Excess nutrients in seawater can be attributed to several sources, but the crux of the nutrients in seawater comes from human activities and sources. Fertilizers run off, animal waste, and wastewater processes are the main sources of excess nutrients in seawater.

The U.S. EPA has endorsed several methods to monitor and measure nutrients in seawater. The nutrients of concern are nitrate, nitrite, ammonium, orthophosphate, and silicate. Each of these nutrients present their own challenges. Nitrogen and phosphorous naturally enter estuarine and seawater when freshwater runoffs pass over geological formations rich in nitrogen and phosphorous, or when decomposing organic matter and wildlife waste gets flushed into rivers and streams. Silicate is of interest because of its impact on global CO₂ concentrations through the combined processes of weathering of silicate minerals and transfer of CO₂ from the atmosphere to the lithosphere. Silicate production can be limited by the availability of dissolved silicate. Plankton construct their exoskeletons from silica. Ammonia nitrogen is found in low concentrations in seawater. Higher levels of ammonia in seawater can be directly and indirectly toxic to many marine organisms. Large scale agricultural, animal waste, and industrial run-offs are significantly increasing ammonia concentrations in seawater and estuaries.

Flow analysis techniques play an important role in water analysis and monitoring. Several flowbased methods have been successfully developed for the photometric determination of the above-mentioned nutrients in brackish or seawater containing up to 3.5% dissolved sodium chloride. A 3.5% sodium chloride solution (by weight) in aqueous solution is often used, approximating the concentration of salt present in seawater. For this study, a 3.6% sodium chloride solution was used as a more aggressive matrix.

This poster will focus on seawater analysis for NO₃⁻+NO₂⁻, and NH₃⁻. SFA (segmented flow analysis) is a flow-based method that has been proven reliable and consistent running the difficult matrix of seawater. It is widely used by chemical oceanographers because it provid the fastest and most precise measurements. This study will demonstrate the accuracy and consistency of the SFA technique using the latest O.I. FS3700 Automated Chemistry Analyzer to generate dependable and practical data for seawater characterization and monitoring.

The FS3700 system configuration consists of a 3180 autosampler, 24 channel peristaltic pump, analytical cartridge consisting of several mixing tees, a single air segmentation tee and, a photometric detector equipped with 10 mm flowcell. Samples and calibration curve were prepped with a low nutrient seawater solution. A 540 nm wavelength filter was installed on the photometric for NO3/NO2 and NO2 analysis.

This method is used to determine the concentration of nitrate (NO3⁻) plus nitrite (NO2⁻) or nitrite singly in estuarine and coastal waters (seawater) according to USEPA Method 353.4 (Reference 1). The Method Detection Limit (MDL) of this method is 0.25-µg/L nitrogen (0.018 µmoles/L nitrogen). Theapplicable range of the method is 1.0-5,000 μ g/L nitrogen (0.07-357 μ moles/L nitrogen). The range may be 'to analyze higher concentrations by sample dilution. Nitrate is reduced quantitatively to nitrit. by cadmium metal. Nydahl (Reference 2) provides a good discussion of nitrate reduction by cadmium metal. The nitrite formed, in addition to any nitrite originally present in the sample, is diazotized with sulfanilamide (SAN) and subsequently coupled with N-(1-naphthyl)ethylenediamine dihydrochloride (NED). The resulting highly colored azo dye is colorimetrically detected at 540 nm (Reference 2). A calibration curve allows for accurate quantitation of the detected nitrite. Nitrite singly may be measured by performing the same analysis without the cadmium reduction. Without the cadmium, nitrate is not reduced to nitrite and is not detected since only nitrite forms the azo dye.

Flow Schematic: General flow diagram of the NO3/NO2 SFA configuration.

NED Reagent SAN Reagent

Buffer

The FS3700 system configuration consists of a 3180 autosampler, 24 channel peristaltic pump, analytical cartridge consisting of several mixing tees and a single air segmentation tee, a photometric detector equipped with 10 mm flowcell. Samples and calibration curve were prepped with a low nutrient seawater solution. A 640 nm wavelength filter was installed on the photometric for NH3 analysis.

Principle of Operation - Method

This method is used for the determination of ammonia in estuarine and coastal waters (seawater) according to USEPA Method 349.0 (Reference 3). The ammonia ion reacts with alkaline phenol and dichloroisocyanuric acid (DIC) to form indophenol blue in an amount that is proportional to the ammonia tration. The blue color is intensified with sodium nitroferricyanide, and the absorbance is mea at 640 nm. The Method Detection Limit (MDL) of this method is 1.0-µg/L nitrogen (0.07 µmol/L nitrogen). The applicable range of the method is 2.0-2,000 µg/L nitrogen (0.15-143 umol/L nitrogen). The range may be extended to analyze higher concentrations by sample dilution.

Flow Schematic: General flow diagram of the NH3 SFA configuration.

Ni
Ci
Sa
AI
DI
Ni

Jakob Woodside, Associate Product Manager, Xylem Lab Solutions, jakob.woodside@xylem.com Craig Storms, Sales Specialist Manager, Xylem Lab Solutions, craig.storms@xylem.com

Section 2. Experimental

Principle of Operation - Method

Nitrogen		• • • • • • • • • • • • • • • • • • •	 50°C 40 nm
Citrate			
Sample			Debubbler
Alkaline Phenol Debubbler			
DIC			
Nitroferricyanide			
	J		

Method Parameters			Calibra	tion Tak	ole
	Mode	SFA			
Analysis	Load Time	20 seconds	Enable		Target
Settings	Cycle Duration	150 seconds			Concentration
Heater Settings	Enable				
UV Lamp Settings	Not Used			SIDI	0
Detector Settings	Mode	Photometric		CTDO	1
	Polarity	Normal	v	SIDZ	
Signals/Peak Markin	ng			STD3	5
	Measure Peaks by	Height			10
	Baseline Value for Peak-marking	Supe Real (Start as Reading (default)	×	SID4	10
Peak	baseline value for Peak-marking	Sync-reak Start as baseline (default)			FO
Measurement	Apply Carryover Correction to all Samples	No		5105	50
	Minimum Peak Height	250		STDA	100
	Minimum Peak Width	50		5100	100
Smoothing	Moving Average	5 points		STD7	500
Sync Peak	Recognize Peak Start by a rise of	500 Counts		5107	000
Marking	total counts within	5 seconds	\checkmark	STD8	1000
	Sync Peak Ignore Time	60 seconds			
	Use Return to Baseline			STD9	5000
	Return-to-Baseline %	99%			
Use D1V				on Curve	Weighted Llnear
These are suggested initial settings. Adjust as necessary for optimal performance.			Fitting	Method	
			Calibra	nt Units	µg/L

Method Parameters			Calibra	tion Tab	le
	Mode	SFA			
Analysis	Load Time	20 seconds	Enable		Target
settings	Cycle Duration	150 seconds			Concentration
Heater Settings	Enable				
UV Lamp Settings	Not Used			SIDI	0
Detector Settings	Mode	Photometric		CTD 2	1
	Polarity	Normal		SIDZ	
Signals/Peak Markir	ng			STD3	5
	Measure Peaks by	Height			10
	Pacalina Value for Poak marking	Supe Pools Start as Possiling (default)	v	SID4	10
Peak	baseline value for reak-marking	Sync-reak start as baseline (default)			50
Measurement	Apply Carryover Correction to all Samples	No		5105	50
	Minimum Peak Height	250		STDA	100
	Minimum Peak Width	50		5100	100
Smoothing	Moving Average	5 points		STD7	500
Sync Peak	Recognize Peak Start by a rise of	500 Counts			
Marking	total counts within	5 seconds		STD8	1000
	Sync Peak Ignore Time	60 seconds			
	Use Return to Baseline	\checkmark		STD9	5000
	Return-to-Baseline %	99%			
	Use D1V	\checkmark	Calibrat	ion Curve	Weighted LInear
These are suggested	initial settings. Adjust as necessary for optimal p	erformance.	Fitting	Method	
			Calibra	ant Units	µg/L

Method Parameters

	Mode
Analysis Settings	Load Time
	Cycle Duration
Heater Settings	Enable
UV Lamp Settings	Not Used
Detector Settings	Mode
	Polarity

Signals/Peak Marking

	Measure Peaks		
Peak	Baseline Value f		
Measurement	Apply Carryove		
	Minimum Peak		
	Minimum Peak		
Smoothing	Moving Average		
Sync Peak	Recognize Peak		
Marking	total counts w		
	Sync Peak Ignor		
	Use Return to Ba		
	Return-to-Basel		
	Use D1V		

These are suggested initial settings. Adjust as necessary for optimal performance.

Ca	lik	oration	Tab)

Parameter NO ₃ NO ₂ in Seawater
NO ₃ /NO ₂
Replicate 1
Replicate 2
Replicate 3
Replicate 4
Replicate 5
Replicate 6
Replicate 7
Replicate 8
Replicate 9
Replicate 10
Average
Standard Deviation
% RSD
MDL

Calibration Table

Enable		Target Concentration
	STD1	0
	STD2	2
	STD3	5
~	STD4	20
	STD5	50
~	STD6	200
	STD7	500
~	STD8	2000
Calibration Curve Fitting Method		Weighted Llnear
Calibrant Units		µg/L

MDL, Precision, and Accuracy Study - NH₃

Parameter NH ₃ in Seawater
Replicate 1
Replicate 2
Replicate 3
Replicate 4
Replicate 5
Replicate 6
Replicate 7
Replicate 8
Replicate 9
Replicate 10
Average
Standard Deviation
% RSD
MDL

SFA 30 seconds 150 seconds Photometric Normal <u>Height</u> Sync-Peak Start as Baseline (default) for Peak-marking er Correction to all Samples Width 11 points 500 Counts **c Start by a rise of** <u>5 seconds</u> 250 seconds re Time <u>Baseline</u>

MDL, Precision, and Accuracy Study – NO₃⁻/NO₂⁻

Calibrant 1.0 µg/L	Calibrant 10.0 µg/L	Calibrant 100.0 µg/L	Calibrant 1000.0 µg/L	ERA QC Standard 8.59 mg/L
1	10	200	1000	8.59
0.98	9.85	98.14	1011.79	8.54
1.07	10.61	99.64	1001.22	8.47
1.11	10.20	99.82	1014.74	8.28
0.97	10.33	100.04	971.94	8.35
0.94	10.32	100.04	1096.45	8.30
1.04	10.33	99.79	980.51	8.49
1.09	10.49	99.86	974.79	8.45
1.03	10.45	100.21	1006.79	8.45
—		100.02	989.85	8.36
-		100.55	983.30	8.26
1.04	10.32	99.81	1003.14	8.40
0.07	0.23	0.64	36.20	0.10
6.7%	2.2%	0.6%	3.6%	1.2%
0.21	_		—	

Calibrant 2.0 µg/L	Calibrant 5.0 µg/L	Calibrant 50.0 µg/L	Calibrant 500.0 µg/L	ERA QC Standard 9.03 mg/L
1.97	5.65	51.21	515.044	8.71
2.05	5.64	51.70	518.716	8.79
1.91	5.64	51.75	521.547	8.96
1.81	5.50	51.99	519.307	8.92
1.81	5.48	51.78	519.208	8.92
1.80	5.46	51.47	518.302	8.78
1.84	5.55	51.81	518.767	9.28
1.882	5.53	51.56	520.489	8.97
_		51.83	516.607	9.10
_		51.85	517.106	9.09
1.88	5.56	51.70	518.509	8.95
0.10	0.07	0.23	1.886271	0.17
5.1%	1.3%	0.4%	0.4%	1.9%
0.29	_		_	

Section 3. Conclusions

Seawater analysis differs from freshwater analysis. Some chemical reactions can be affected by the salinity of marine waters (the so-called salt effect). Typical seawater contains high amounts of calcium and magnesium, whose salts are insoluble at high pH. This represents a more complex matrix than freshwater or wastewater.

The nutrients that form the basis of life in the ocean are present at concentrations, reportedly 100 million times lower than the typical salt content. This represents a significant challenge to analysts. Measuring low levels of dissolved nutrients require careful attention to detail in cleanliness, sample handling, laboratory technique, and instrument design. The FS3700 provides the best instrument design for reliable and accurate monitoring of seawater nutrients

Section 4. References

- Nitrogen, Nitrate-Nitrite (Colorimetric, Automated, Cadmium Reduction). Methods for the Chemical Analysis of Water and Wastes; EPA/600/R-79-020; U.S. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring and Support Laboratory: Cincinnati, OH, 1984
- 2. Nydahl, F. Talanta 1976, 23, 349-357.
- . Nitrogen, Ammonia. Methods for Chemical Analysis of Water and Wastewater; EPA-600/4-79-020; U.S. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring and Support Laboratory: Cincinnati, OH, 1997; Method 349.0.

