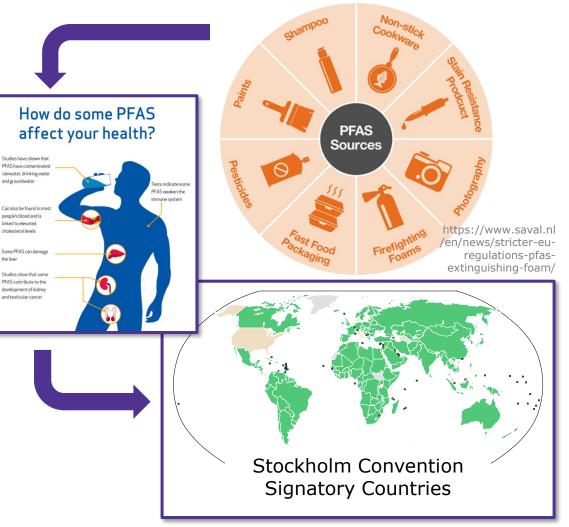
Polyfluoroalkyl substances (PFAS) in the environment

An investigation of contamination and recovery of PFAS in analytical methods that require filter membranes

Lindsay D. Lozeau, Ph.D., Senior Scientist MilliporeSigma | 400 Summit Dr. | Burlington MA, 01803

Amy Laws, Ph.D., Senior Portfolio Lead **Maricar Dube, Ph.D.**, Technical Marketing MilliporeSigma | 400 Summit Dr. | Burlington MA, 01803



MilliporeSigma is the U.S. and Canada Life Science business of Merck KGaA, Darmstadt, Germany.

PFAS (Per- and Polyfluoroalkyl Substances) Perspective on Forever Chemicals

- PFAS is a group of >4,000 very stable synthetic chemicals
 [1]
- **Impact on human health** includes cancer, liver damage, weakened immune system, high cholesterol [2]
- Report of **PFAS** found in the blood of 97% Americans [1]
- Stockholm Convention regulations for PFOS, PFOA (subset of PFAS compounds). Effective in 2020 [3]
 - Exemptions: medical devices, active negotiations for other applications
- EPA's drinking water health advisory level is 70 parts per trillion for PFAS
- EPA recommends testing wastewater for PFAS (2020)
- EPA PFAS Strategic Roadmap (2021) outlines actions for 2021-2024
- US EPA proposed levels of PFOA and PFOS to 4.0 ppt (2022)
- [1] https://www.niehs.nih.gov/health/materials/perfluoroalkyl_and_polyfluoroalkyl_substances_508.pdf
- [2] EU/REACH webinar: https://echa.europa.eu/-/restriction-of-per-and-polyfluoroalkyl-substances-pfas-under-reach]
- [3] Stockholm convention regulations: http://chm.pops.int/Countries/StatusofRatifications/Amendmentstoannexes/tabid/3486/Default.aspx

Analytical Methods for PFAS Developed at a Rapid Pace **Regulatory Landscape**

Method(s)	Update/ Revision	Matrix/Matrices	Sample Prep	Analytical Method
EPA 537.1	Jun. 2020	Drinking water	SPE	LC-MS/MS
EPA 533	Dec. 2019	Drinking water	SPE	LC-MS/MS
SW-846 Method 8327*	Jul. 2021	Non-potable groundwater, surface water, wastewater	SPE, filtration	LC-MS/MS
ASTM D7968-17a	Sep. 2017	Environmental solids	Solvent extraction, filtration	LC-MS/MS
ASTM D7979-19	Sep. 2021	Water matrix (no drinking water)	Solvent extraction, filtration	LC-MS/MS
ISO 25101	Mar. 2019	Drinking water, non-potable water	SPE, solvent elution	LC-MS/MS
ISO 21675	Oct. 2019	Drinking, natural and wastewater	SPE, filtration as needed	LC-MS/MS
FDA C-010.02	Dec. 2021	Foods	QuEChERS, SPE, filtration	LC-MS/MS
OTM-45	Jan. 2021	Air Emissions (stationary sources)	Sampling train: filtration , impingers	LC-MS/MS
EPA Draft 1633	Feb. 2022	Aqueous, soil, biosolids, sediment, tissue	SPE, filtration	LC-MS/MS
EPA Draft 1621*	Apr. 2022	Aqueous matrices	TSS, GAC column cleanup	CIC
		,	*screening method only	

- Almost exclusively LC-MS/MS based methods
- SPE & filtration are common sample preparation
- Increased focus on high-particulate matrices

*screening method only

Abbreviations: SPE = solid phase extraction; TSS = total suspended solids determination; GAC = granular activated carbon; CIC = combustion ion chromatography Selected methods; does not include all drinking water and international methods

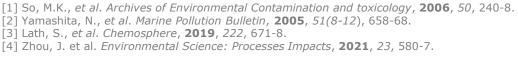
Analytical Methods for PFAS Developed at a Rapid Pace Regulatory Landscape – Filtration only

Method(s)	Sample Prep	Matrix/Matrices	Filter(s) Required by Method
SW-846 Method 8327*	SPE, filtration	Non-potable groundwater, surface water, wastewater	0.2µm polypropylene syringe filter (hydrophilic)
ASTM D7968-17a	Solvent extraction, filtration	Environmental solids	0.2µm polypropylene syringe filter (hydrophilic)
ASTM D7979-19	Solvent extraction, filtration	Water matrix (no drinking water)	0.2µm polypropylene syringe filter (hydrophilic)
ISO 21675	SPE, filtration as needed	Drinking, natural and wastewater	1µm GFF syringe filter (rapid) 1-10µm nylon or GFF (if >2g/L suspended matter)
FDA C-010.02	QuEChERS, SPE, filtration	Foods	0.2µm nylon syringe filter
OTM-45	Sampling train: filtration, impingers	Air Emissions (stationary sources)	GFF or QFF (no pore size listed) membrane filter
EPA Draft 1633	SPE, filtration	Aqueous, soil, biosolids, sediment, tissue	0.2µm nylon syringe filter

- Polypropylene, nylon and glass fiber (GFF) are the most common materials
- Filters should not have detectable levels of PFAS compounds above reporting limit (RL) of method

*screening method only

Abbreviations: SPE = solid phase extraction; TSS = total suspended solids determination; GAC = granular activated carbon; CIC = combustion ion chromatography; philic = hydrophilic; GFF = glass fiber filter; QFF = quartz fiber filter Selected methods; does not include all drinking water and international methods

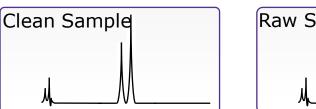


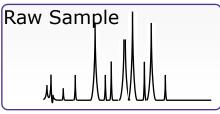
Developing Analytical Methods for PFAS Major concerns about consumables in sample prep

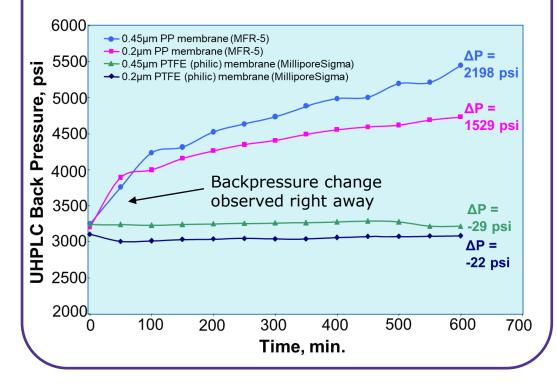
1: Contamination

2: Adsorption

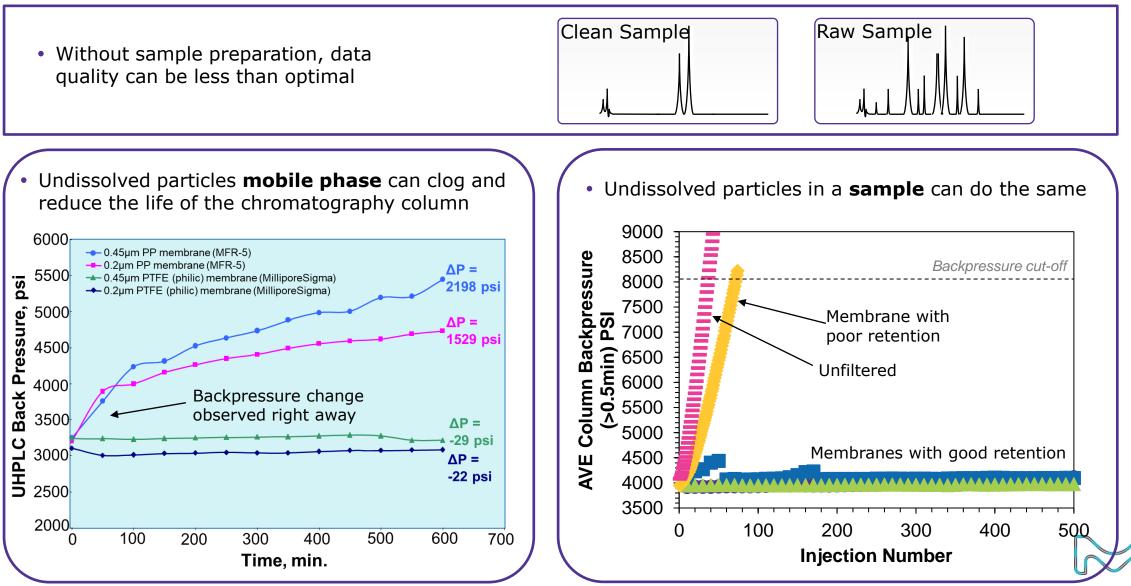
- Filter may be manufactured in a place with PFAS
 - Trace amounts observed in nylon, for example [1,2]
- Filter is fluorinated / contains fluorinated compounds
 - Generally, want to avoid PVDF, PTFE, but they are common
- Solvents and/or containers may be contaminated
- Filters have different levels of non-specific binding and polarity
 - In nylon, flushing filters can help desorb PFAS analytes [3]
- Tubes, filters, containers all demonstrate time-dependent sorption of various PFAS compounds, leading to recovery losses [3]
 - Glass fiber & quartz fiber sorption debated [4]

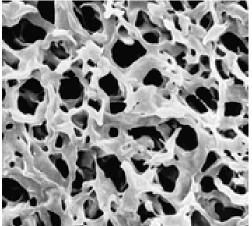

So, if filters can be "sticky", then why filter? **Importance of Sample Preparation**

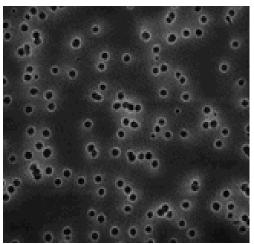

• Without sample preparation, data quality can be less than optimal


So, if filters can be "sticky", then why filter? **Importance of Sample Preparation**

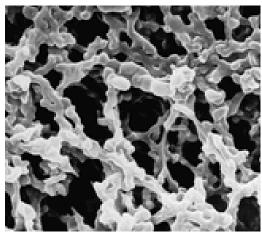
 Without sample preparation, data quality can be less than optimal



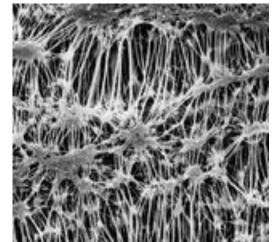

• Undissolved particles **mobile phase** can clog and reduce the life of the chromatography column



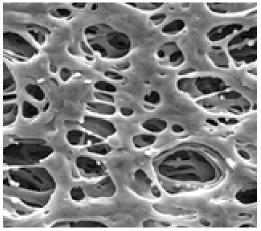
So, if filters can be "sticky", then why filter? **Importance of Sample Preparation**

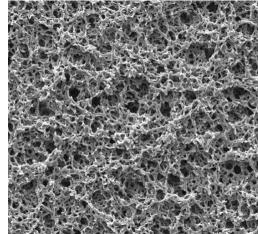


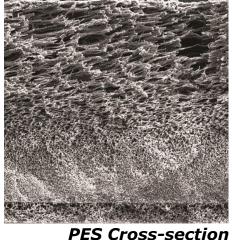
Polyvinylidine Fluoride (**PVDF**): Low binding and fast flow for protein sample prep



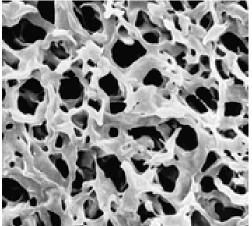
Polycarbonate (PC): preferred for microscopy and cell-based applications

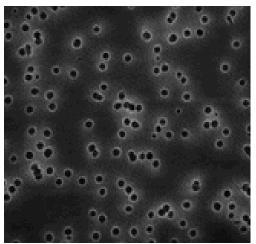

10


Mixed Cellulose Esters (MCE): Biologically inert, versatile, smooth and uniform

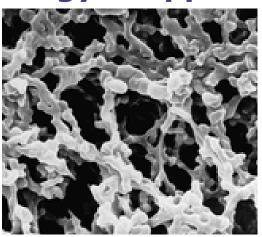

Polytetrafluoroethylene (**PTFE**): Low extractables and high chemical compatibility

PolyethersulfonePl(PES): Quick flow and high capacity,
asymmetric for high-particulate water samples

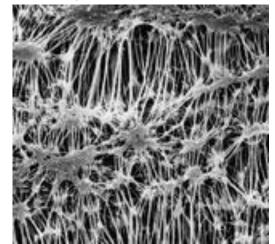

Nylon: *Broad compatibility and commonly used for HPLC*


Graduated Prefilter Glass Fiber Prefilter Membrane Filter

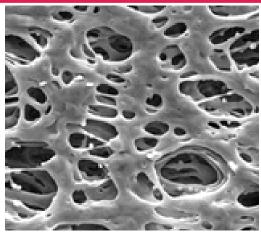
Nylon with a Glass Fiber Prefilter (HPF): One-step cleanup of large and small particulates without clogging

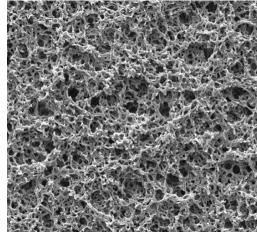


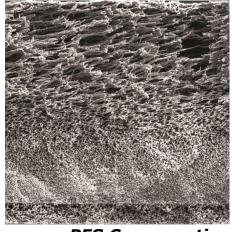
Polyvinylidine Fluoride (**PVDF**): Low binding and fast flow for protein sample prep

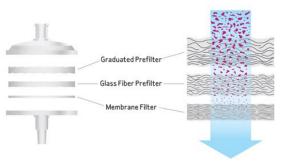


Polycarbonate (PC): preferred for microscopy and cell-based applications


11

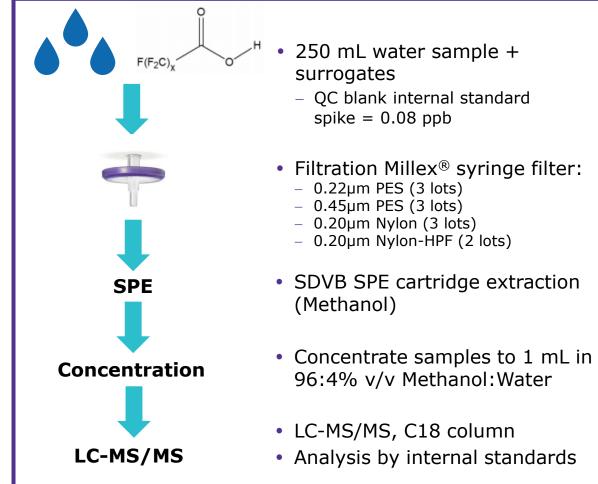

Mixed Cellulose Esters (MCE): Biologically inert, versatile, smooth and uniform


Polytetrafluoroethylene (**PTFE**): Low extractables and high chemical compatibility


PolyethersulfonePl(PES): Quick flow and high capacity,asymmetric for high-particulate water samples

Nylon: *Broad compatibility and commonly used for HPLC*

PES Cross-section



Nylon with a Glass Fiber Prefilter (HPF): One-step cleanup of large and small particulates without clogging

Are Membranes Contaminated with PFAS out-of-box? Testing Syringe Filters using EPA 537.1

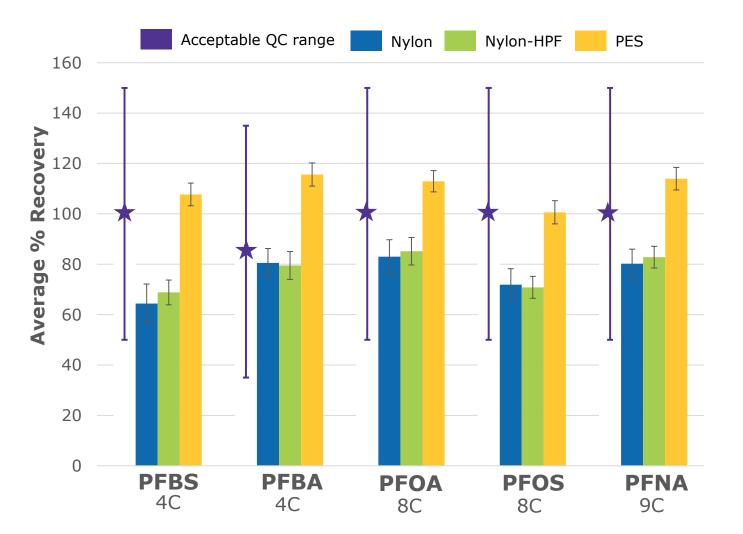
Overview of Modified EPA 537.1

LC-MS/MS Conditions

Column:	C18, 100 x 2. particles	1mm ID,	2.7 µm s	uperficially porous
Mobile phase:	[A] DI Water, ([B] Methanol (
Gradient:	Time (min)	A %	В %	Flow (mL/min)
	0-0.0	65%	35%	0.4
	0-7.0	0%	100%	0.4
	7.0-10.0	0%	100%	0.7
	10.0-11.0	0%	100%	0.7
	11.0-15.0	65%	35%	0.4
Flow rate:	See gradient ta	able		
Detection:	MS/MS, ESI(-) requested from			conditions can be
Column temp:	50.0 °C			
Injection volume:	3-5 µL autosar	npler inj	ection	
Sample :	SPE eluate con water, 96:4%		d to 1 mL	methanol:

Data collected in collaboration with:

Testing Syringe Filters using EPA 537.1 Millex® syringe filters do not have detectable levels of PFAS contaminants



			Millex [®] Syringe Filter				
Compound(s)	RL (ppb)	MDL (ppb)	0.22µm PESª	0.45µm PESª	0.20µm nylonª	0.20µm nylon- HPF⁵	
Perfluoroalkyl carboxylic acids – PFBA	0.0040	0.0020		ND – not	detected		
Perfluoroalkyl carboxylic acids – PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA, PFTeDA	0.0020	0.0010		ND – not detected			
Perfluoroalkyl sulfonic acids – PFBS, PFPeS, PFHxS, PFHpS, PFOS, PFNS, PFDS	0.0020	0.0010		ND – not	detected		
Fluorotelomer sulfonic acids – 4:2 FTS, 6:2 FTS, 8:2 FTS	0.0080	0.0020		ND – not	detected		
Perfluorooctane sulfonamides – PFOSA	0.0040	0.0020		ND – not	detected		
Perfluorooctane sulfonamidoacetic acids – N-MeFOSAA, NEt- FOSAA	0.0040	0.0020		ND – not	detected		
Per and Polyfluoroether sulfonic acids – 9CI-PF3ONS, 11CI- PF3OUdS	0.0080	0.0020		ND – not	detected		
Per and Polyfluoroether carboxylic acids – GenX	0.0040	0.0020		ND – not	detected		
Per and Polyfluoroether carboxylic acids – ADONA	0.0080	0.0020		ND – not	detected		

A] Values represent average of 3 lots tested, n=3 devices per lot; B] Values represent average of 2 lots tested, n=3 devices per lot. **ABBREVIATIONS:** RL = reporting limit, ppb; MDL = minimum detection limit, ppb; PES = polyethersulfone

Testing Syringe Filters using EPA 537.1 There are variations in recovery of C-13 labeled standards

- Filtered solvent: water
- Nylon demonstrates lower recoveries than PES
- Presence of glass fiber did not make a difference

• Similar trends reported previously for PES vs. nylon in aqueous solutions [1]

28 PFAS

analyzed

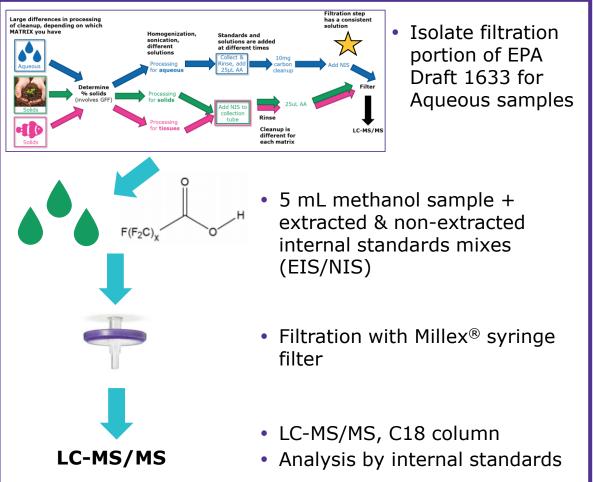
[1] Lath, S., et al. Chemosphere, 2019, 222, 671-8.

Analytical Methods for PFAS Developed at a Rapid Pace Regulatory Landscape – EPA Draft 1633

Method(s)	Sample Prep	Matrix/Matrices	Filter(s) Required by Method
SW-846 Method 8327*	SPE, filtration	Non-potable groundwater, surface water, wastewater	0.2µm polypropylene syringe filter (hydrophilic)
ASTM D7968-17a	Solvent extraction, filtration	Environmental solids	0.2µm polypropylene syringe filter (hydrophilic)
ASTM D7979-19	Solvent extraction, filtration	Water matrix (no drinking water)	0.2µm polypropylene syringe filter (hydrophilic)
ISO 21675	SPE, filtration as needed	Drinking, natural and wastewater	1µm GFF syringe filter (rapid) 1-10µm nylon or GFF (if >2g/L suspended matter)
FDA C-010.02	QuEChERS, SPE, filtration	Foods	0.2µm nylon syringe filter
OTM-45	Sampling train: filtration, impingers	Air Emissions (stationary sources)	GFF or QFF (no pore size listed) membrane filter
EPA Draft 1633	SPE, filtration	Aqueous, soil, biosolids, sediment, tissue	0.2µm nylon syringe filter

• Polypropylene, nylon and glass fiber (GFF) are the most common materials

 Filters should not have detectable levels of PFAS compounds above reporting limit (RL) of method *screening method only


Abbreviations: SPE = solid phase extraction; TSS = total suspended solids determination; GAC = granular activated carbon; CIC = combustion ion chromatography; philic = hydrophilic; GFF = glass fiber filter; QFF = quartz fiber filter Selected methods; does not include all drinking water and international methods

Are Membranes Contaminated with PFAS out-of-box? Testing Syringe Filters using EPA 537.1

Overview of Modified EPA Draft 1633

LC-MS/MS Conditions

Column:	C18, 2.7µı column	m, 100x2.1r	mm ID, sup	perficially porous
Mobile phase:	[A] Aceton	ammonium	acetate in	95:5 water:
	Time (min)	A %	B%	Flow (mL/min)
	0.20	10.0%	90.0%	0.350
	4.00	30.0%	70.0%	0.350
	7.00	55.0%	45.0%	0.350
Gradient:	9.00	75.0%	25.0%	0.350
	10.00	95.0%	5.0%	0.400
	10.30	95.0%	5.0%	0.400
	10.40	2.0%	98.0%	0.400
	11.80	2.0%	98.0%	0.400
	13.00	2.0%	98.0%	0.400
Flow rate:	See gradie	ent table		
Detection:	-			conditions can be amplefiltration
Column temp:	50.0°C			
Injection volume:	6-10µL au	tosampler ir	njection	
Sample:	5mL meth	anol sample	+ EIS/NIS	5 mixes

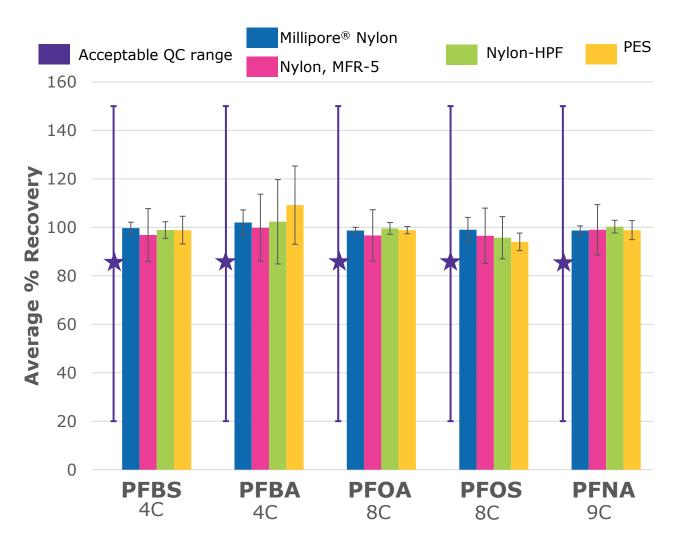
Testing Syringe Filters using EPA Draft 1633 Millex® syringe filters do not have levels of PFAS above RL

			Syringe	Filter Dev	vice	
Compound(s)	RL* (ppb)	Millipore® 0.22µm	Millipore® 0.20µm	MFR-5 0.2μm		® 0.20µm n-HPF
		PES ^P	Nylon ^P	Nylon ^P	Lot1	Lot2 ^Q
Perfluoroalkyl carboxylic acids						
PFBA	0.8 ^A	ND	ND	ND	ND	ND
PFPeA	0.4 ^B	ND	ND	ND	ND	ND
PFHxA, PFHpA, PFOA, PFNA, PFUnDA, PFDoDA, PFTrDA, PFTeDA	0.2 ^C	ND	ND	ND	ND ^R	ND
Perfluoroalkyl sulfonic acids						
PFBS, PFPeS, PFHxS, PFHpS, PFOS, PFNS, PFDS, PFDoS	0.2 ^D	ND	ND	ND	ND	ND
Fluorotelomer sulfonic acids						
4:2 FTS, 6:2 FTS, 8:2 FTS	0.8 ^E	ND	ND	ND	ND	ND
Fluorotelomer carboxylic acids						
3:3 FTCA	1 ^F	ND	ND	ND	ND	ND
5:3 FTCA, 7:3 FTCA	5 ^G	ND	ND	ND	ND	ND
Perfluorooctane sulfonamides, Perfluorooctane sulfonamid	loacetic a	cids & Perfluo	rooctane sul	fonoamido	o ethanols	
FOSA, N-MeFOSA, N-EtFOSA,	0.2 ^H	ND	ND	ND	ND	ND
N-MeFOSAA, N-EtFOSAA	0.2 ^I	ND	ND	ND	ND	ND
N-MeFOSE, N-EtFOSE	2 []]	ND	ND	ND	ND	ND
Per and Polyfluoroether carboxylic acids & Per and Polyflue	oroether	sulfonic acids				
GenX, ADONA	0.8 ^ĸ	ND	ND	ND	ND	ND
PFMPA, PFMBA, NFDHA	0.4 ^L	ND	ND	ND	ND	ND
9CI-PF3ONS, 11CI-PF3OUdS	0.8 ^M	ND	ND	ND	ND	ND
PFEESA	0.4 ^N	ND	ND	ND	ND	ND

*Minimum detection limits, MDL (ppb), ranged depending on analyte of interest:

A] 0.4	H] 0.1
B] 0.1	I] 0.1-0.13
C] 0.05-0.081	L]]1
D]0.1-0.11	K] 0.2
E] 0.4-0.41	L] 0.1-0.12
F] 0.5	M] 0.2
G]1	N] 0.1

P] Average of 2 lots, n=3 devices per lot; Q] Fourth device tested after hits reported in first replicate device and result was ND; R] Out of n=3 devices, 1 demonstrated hits above MDL but below RL

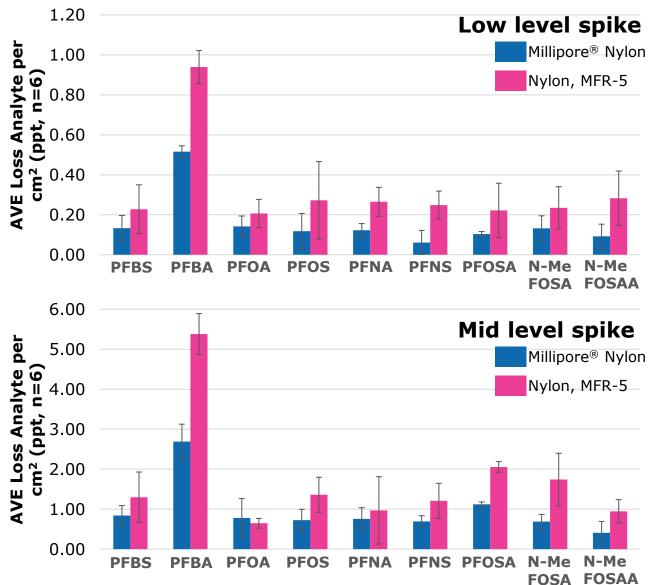

ABBREVIATIONS: RL = reporting limit, ppb; MDL = minimum detection limit, ppb; PES = polyethersulfone; HPF = High particulate filter

Testing Syringe Filters using EPA Draft 1633 Millex® syringe filters do not have levels of PFAS above RL

			Syringe	Filter Dev	ice					
Compound(s)	RL*	Millipore®	Millipore®	MFR-5	Millipore		Compound	Device1	Device2	Device3
	(ppb)	0.22µm PES ^P	0.20µm	0.2µm	-	n-HPF	PFHxA	ND	ND	0.0835
		PES	Nylon ^P	Nylon ^P	Lot1	Lot	PFHpA	ND	ND	0.0688
Perfluoroalkyl carboxylic acids							PFOA	ND	ND	0.0992
PFBA	0.8 ^A	ND	ND	ND	ND	NI	PFNA	ND	ND	0.0827
PFPeA	0.4 ^B	ND	ND	ND	ND	NI	PFDA	ND	ND	0.115
PFHxA, PFHpA, PFOA, PFNA, PFUnDA, PFDoDA, PFTrDA, PFTeDA	0.2 ^C	ND	ND	ND	ND ^R	NI	PFUnDA	ND	ND	0.107
Perfluoroalkyl sulfonic acids							PFDoDA PFTrDA	ND ND	ND ND	0.113
PFBS, PFPeS, PFHxS, PFHpS, PFOS, PFNS, PFDS, PFDoS	0.2 ^D	ND	ND	ND	ND	NI	PFTeDA	ND ND	ND	0.110
Fluorotelomer sulfonic acids										
4:2 FTS, 6:2 FTS, 8:2 FTS	0.8 ^E	ND	ND	ND	ND	ND			on limits, MD on analyte o	
Fluorotelomer carboxylic acids							A] 0.4] 0.1	
3:3 FTCA	1 ^F	ND	ND	ND	ND	ND	C] 0.0.	5-0.081 J]	0.1-0.13 1	
5:3 FTCA, 7:3 FTCA	5 ^G	ND	ND	ND	ND	ND	D] 0.1 E] 0.4-] 0.2 0.1-0.12	
Perfluorooctane sulfonamides, Perfluorooctane sulfonamide	oacetic a	cids & Perfluo	rooctane sulf	onoamido	ethanols		F] 0.5 G] 1] 0.2] 0.1	
FOSA, N-MeFOSA, N-EtFOSA,	0.2 ^H	ND	ND	ND	ND	ND			-	
N-MeFOSAA, N-EtFOSAA	0.2 ^I	ND	ND	ND	ND	ND	Fourth	device tested	n=3 devices after hits rep	orted in first
N-MeFOSE, N-EtFOSE	2 ³	ND	ND	ND	ND	ND	n=3 de	vices, 1 demo	result was ND onstrated hits	
Per and Polyfluoroether carboxylic acids & Per and Polyfluo	roether s	sulfonic acids					but belo			
GenX, ADONA	0.8 ^ĸ	ND	ND	ND	ND	ND	MDL =	minimum det	RL = reporting ection limit, p	pb; PES =
PFMPA, PFMBA, NFDHA	0.4 ^L	ND	ND	ND	ND	ND	polyeth	ersulfone; HP	F = High part	iculate filter
9CI-PF3ONS, 11CI-PF3OUdS	0.8 ^M	ND	ND	ND	ND	ND)			
PFEESA	0.4 ^N	ND	ND	ND	ND	ND)		18	

Testing Syringe Filters using EPA Draft 1633 Methanol solvent improves PFAS analyte recoveries

[1] So, M.K., et al. Archives of Environmental Contamination and toxicology, **2006**, 50, 240-8.

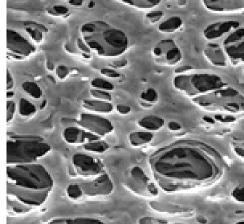

- Filtered solvent: methanol
- All filters show similar recoveries
- Presence of glass fiber did not make a difference
- Much improved recovery for Nylon and similar for PES (vs. water)

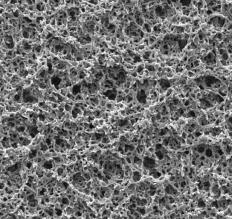
 Consistent with literature: a wash with methanol caused PFOS, PFOA and other PFAS to desorb significantly from nylon filter media [1]

Testing Syringe Filters using EPA Draft 1633 in the ppt range Millex® syringe filters do not have levels of PFAS above RL

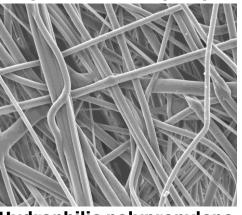
- Full workflow of EPA Draft 1633 tested, using aqueous matrix
 - Spike: Low- and Mid-level
 - Solvent filtered: Methanol
- Syringe Filters Tested:
 - Millipore® 0.20µm Nylon (33mm diameter)
 - MFR-5 0.20µm Nylon (25mm diameter)

- No PFAS compounds detected in any device above RL = no contamination
- The loss of analyte was similar per cm² of filter area for each syringe filter type = larger filtration areas do not lead to more analyte loss


Data collected in collaboration with:



40 PFAS

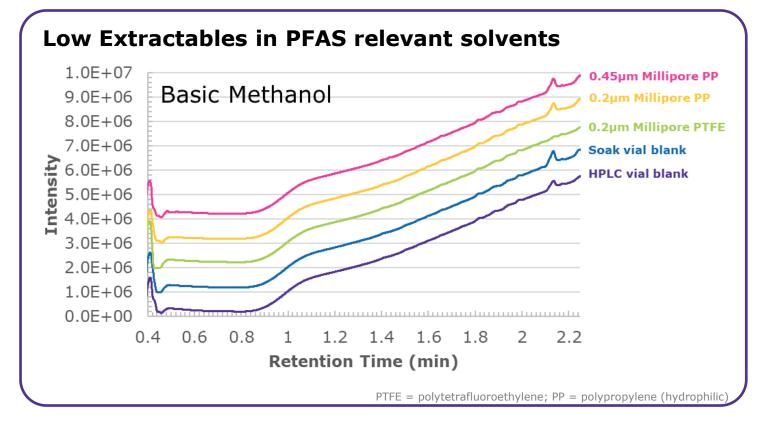

analyzed

(Mansfield, MA)

Polyethersulfone (PES)

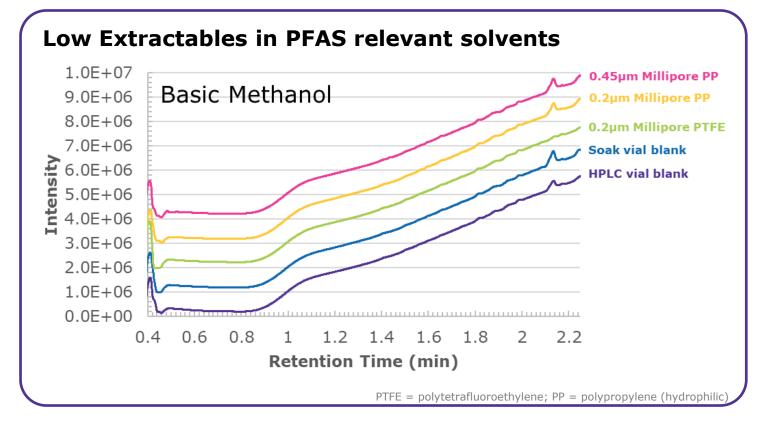
Hydrophilic polypropylene

Syringe Filter Devices: Millex®


A good option for mobile phase & sample prep because:

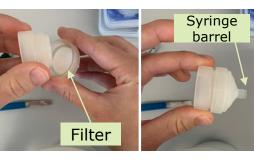
- Great chemical compatibility (comparable to hydrophilic PTFE) and low extractables
- Suitable retention of particles in both air and liquid
- High stability to heating
- Hydrophilic & hydrophobic options (most are hydrophobic)
- Suggested in some PFAS methods

Nylon


Hydrophobic polypropylene

A good option for mobile phase & sample prep because:

- Great chemical compatibility (comparable to hydrophilic PTFE) and low extractables
- Suitable retention of particles in both air and liquid
- High stability to heating
- Hydrophilic & hydrophobic options (most are hydrophobic)
- Suggested in some PFAS methods



Use Swinnex® to test polypropylene according to EPA 537.1 (water)

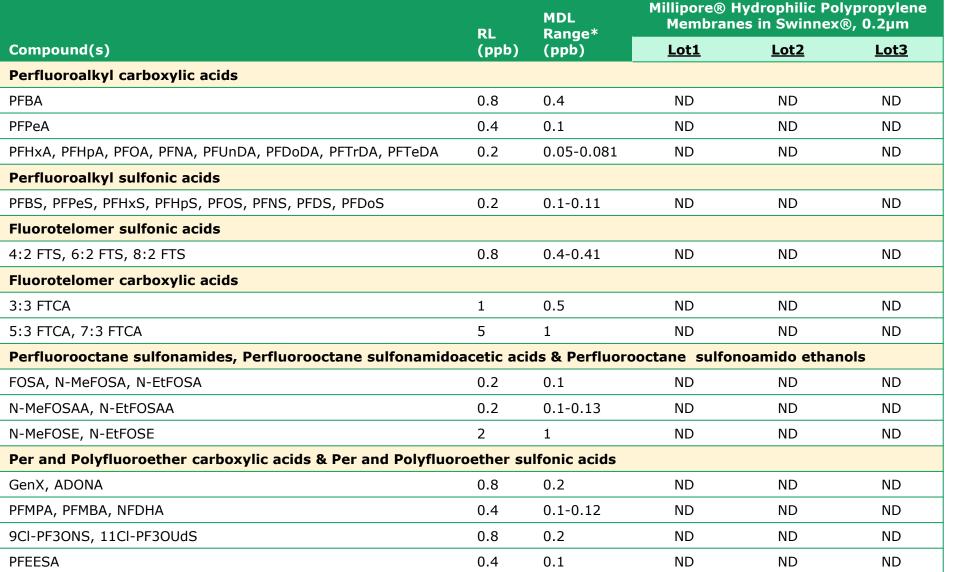
Use Swinnex® to test polypropylene according to EPA Draft 1633 (methanol)

A good option for mobile phase & sample prep because:

- Great chemical compatibility (comparable to hydrophilic PTFE) and low extractables
- Suitable retention of particles in both air and liquid
- High stability to heating
- Hydrophilic & hydrophobic options (most are hydrophobic)
- Suggested in some PFAS methods

Swinnex[®]

Testing Polypropylene Membranes using EPA 537.1 Polypropylene membrane filters (and Swinnex®) do not have detectable levels of PFAS contaminants



	RL	MDL		lipore® Pe mbranes i		
Compound(s)		(ppb)	Hydrophobic ^a		Hydro	philic ^a
			<u>0.20µm</u>	<u>0.45µm</u>	<u>0.2µm</u>	<u>0.45µm</u>
Perfluoroalkyl carboxylic acids – PFBA	0.0040	0.0020	ND	ND	ND	ND
Perfluoroalkyl carboxylic acids – PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFDA, PFUnDA	0.0020	0.0010	ND	ND	ND	ND
Perfluoroalkyl carboxylic acids – PFDoDA, PFTrDA, PFTeDA	0.0020	0.0010	ND ^b	ND ^b	ND	ND
Perfluoroalkyl sulfonic acids – PFBS, PFPeS, PFHxS, PFHpS, PFOS, PFNS, PFDS	0.0020	0.0010	ND	ND	ND	ND
Fluorotelomer sulfonic acids – 4:2 FTS, 6:2 FTS, 8:2 FTS	0.0080	0.0020	ND	ND	ND	ND
Perfluorooctane sulfonamides – PFOSA	0.0040	0.0020	ND	ND	ND	ND
Perfluorooctane sulfonamidoacetic acids – N-MeFOSAA	0.0040	0.0020	ND	ND	ND	ND
Perfluorooctane sulfonamidoacetic acids -NEt-FOSAA	0.0040	0.0020	ND ^b	ND ^b	ND	ND
Per and Polyfluoroether sulfonic acids – 9CI-PF3ONS, 11CI-PF3OUdS	0.0080	0.0020	ND	ND	ND	ND
Per and Polyfluoroether carboxylic acids – GenX	0.0040	0.0020	ND	ND	ND	ND
Per and Polyfluoroether carboxylic acids – ADONA	0.0080	0.0020	ND	ND	ND	ND

A] Values represent average of 3 devices tested over 1 lot; B] Associated internal standard outside of control limits for all three devices tested: 13C2-PFDoDA, 13C2-PFTeDA, d5-EtFOSAA. **ABBREVIATIONS:** RL = reporting limit, ppb; MDL = minimum detection limit, ppb; PP = polypropylene; philic = hydrophilic; phobic = hydrophobic

Testing Hydrophilic Polypropylene Membranes using EPA Draft 1633 Hydrophilic polypropylene membrane filters (and Swinnex®) do not have detectable levels of PFAS contaminants

40 PFAS analyzed

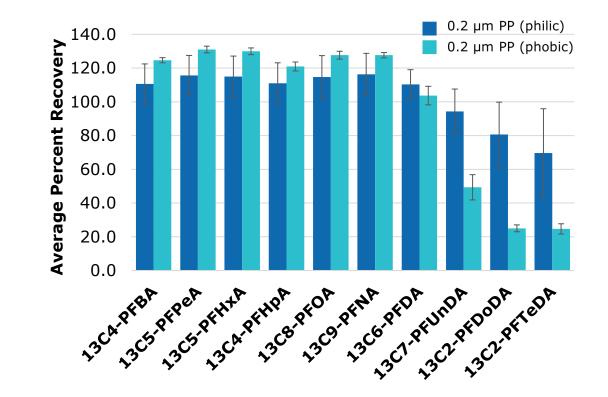
 0.2µm hydrophilic polypropylene tested only

*Minimum detection limits, MDL (ppb), ranged depending on analyte of interest. Refer to sigmaaldrich.com/pfassamplfiltration for details.

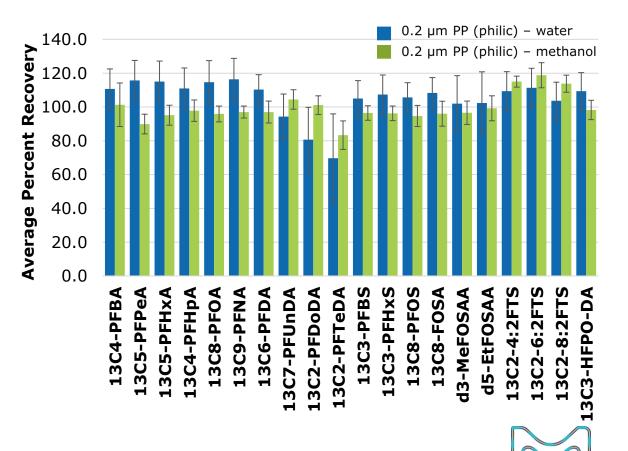
a] Extracted internal standards (EIS): 13C4-PFBA, 13C5-PFPeA, 13C5-PFHxA, 13C4-PFHpA, 13C8-PFOA; b] Values represent the average of n=3 devices for each lot. No PFAS compound detected in any device above RL or MDL.

ABBREVIATIONS: RL = reporting limit, ppb; MDL = minimum detection limit, ppb; PP = polypropylene; philic = hydrophilic; phobic = hydrophobic

25



Testing Polypropylene Membranes with EPA 537.1 and EPA Draft 1633 **Recoveries vary widely from philic to phobic, water to methanol**

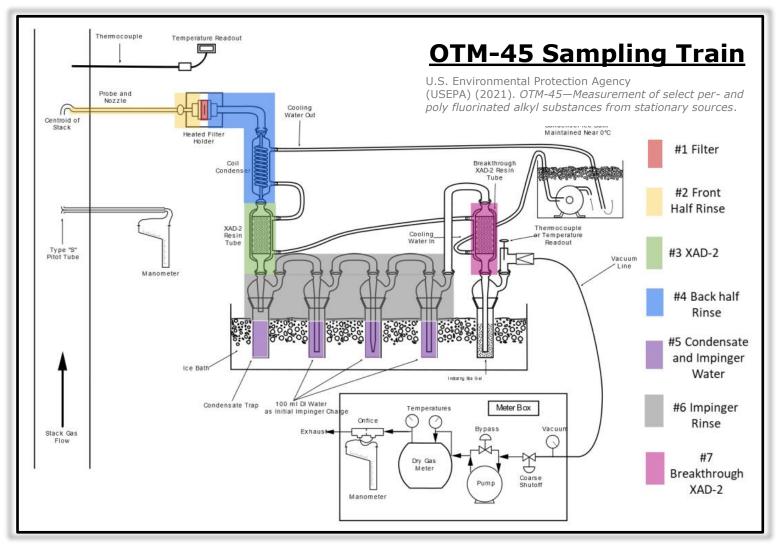


Average Recovery of C13 labeled standards in

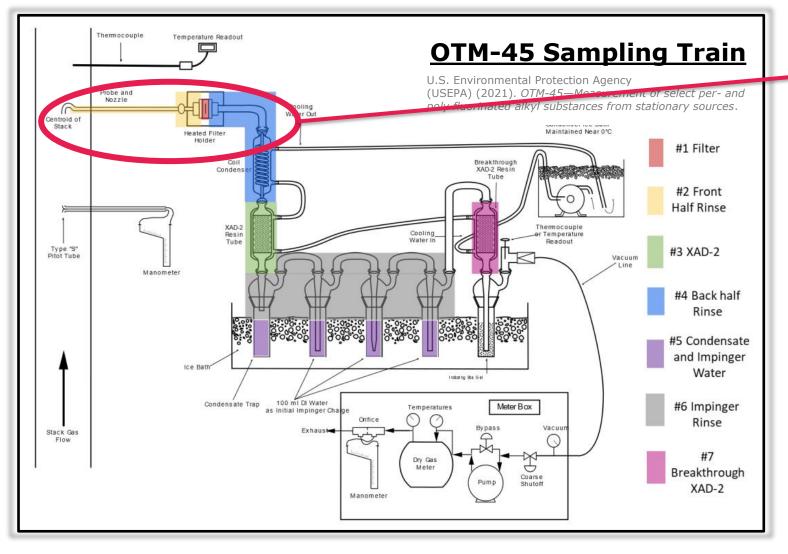
Water \rightarrow lower for hydrophobic polypropylene

Average Recovery of C13 labeled standards in water and methanol for hydrophilic polypropylene → similar overall

Analytical Methods for PFAS Developed at a Rapid Pace Regulatory Landscape – Air Testing & OTM-45


Method(s)	Sample Prep	Matrix/Matrices	Filter(s) Required by Method
SW-846 Method 8327*	SPE, filtration	Non-potable groundwater, surface water, wastewater	0.2µm polypropylene syringe filter (hydrophilic)
ASTM D7968-17a	Solvent extraction, filtration	Environmental solids	0.2µm polypropylene syringe filter (hydrophilic)
ASTM D7979-19	Solvent extraction, filtration	Water matrix (no drinking water)	0.2µm polypropylene syringe filter (hydrophilic)
ISO 21675	SPE, filtration as needed	Drinking, natural and wastewater	1µm GFF syringe filter (rapid) 1-10µm nylon or GFF (if >2g/L suspended matter)
FDA C-010.02	QuEChERS, SPE, filtration	Foods	0.2µm nylon syringe filter
OTM-45	Sampling train: filtration, impingers	Air Emissions (stationary sources)	GFF or QFF (no pore size listed) membrane filter
EPA Draft 1633	SPE, filtration	Aqueous, soil, biosolids, sediment, tissue	0.2µm nylon syringe filter

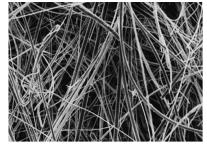
• Polypropylene, nylon and glass fiber (GFF) are the most common materials


 Filters should not have detectable levels of PFAS compounds above reporting limit (RL) of method *screening method only

Abbreviations: SPE = solid phase extraction; TSS = total suspended solids determination; GAC = granular activated carbon; CIC = combustion ion chromatography; philic = hydrophilic; GFF = glass fiber filter; QFF = quartz fiber filter; OTM = other test method Selected methods; does not include all drinking water and international methods

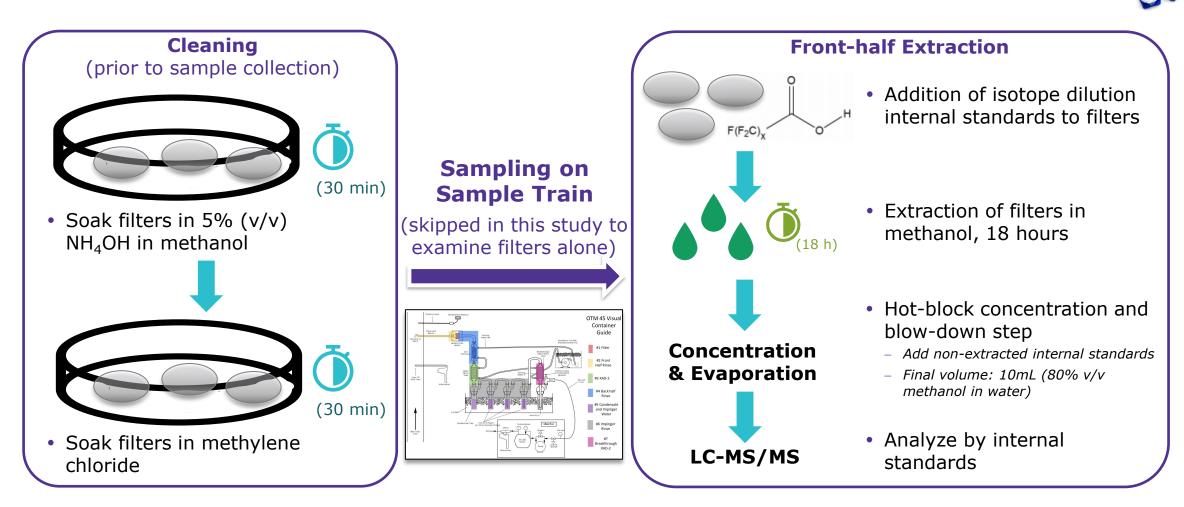
The First PFAS Method in Air, Focused on Stack Emissions Other Test Method (OTM)-45

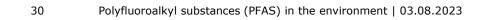
The First PFAS Method in Air, Focused on Stack Emissions Other Test Method (OTM)-45


Filter for collecting particulate phase:

- 82, 82.6, 90 mm cut disc membrane filter
- Glass fiber without binder
- At least 99.95% efficiency on 0.3-µm dioctyl phthalate smoke particles

AP 40 Glass fiber $(0.7 \mu m)$


- TSS
- TCLP
- Hot gases

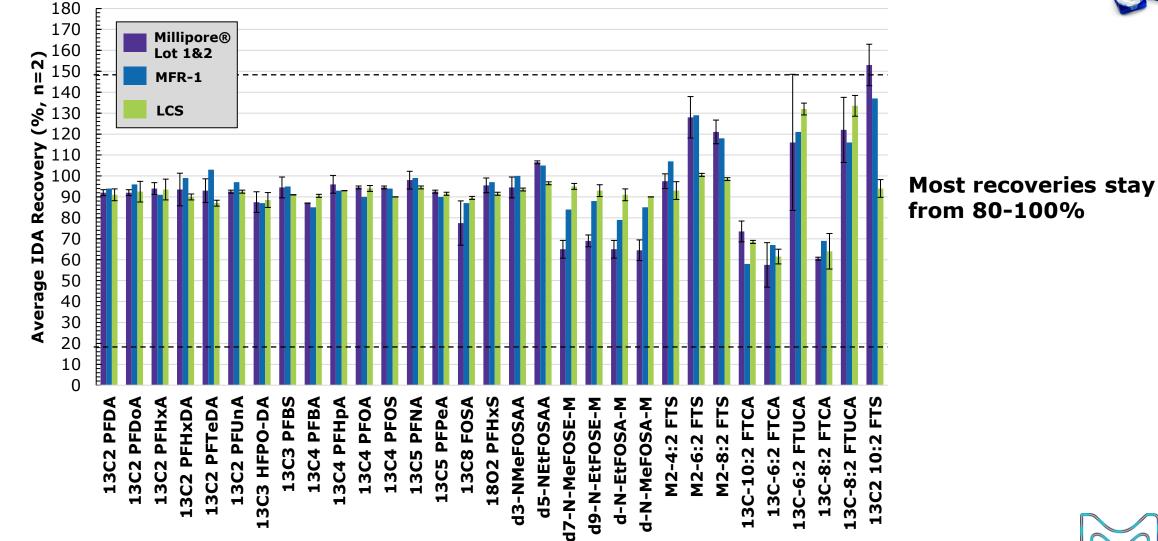

Are Membranes Contaminated with PFAS out-of-box? **Testing Glass Fiber Membrane Filter Suitability for OTM-45**

Data collected in collaboration with:

(Knoxville, TN)

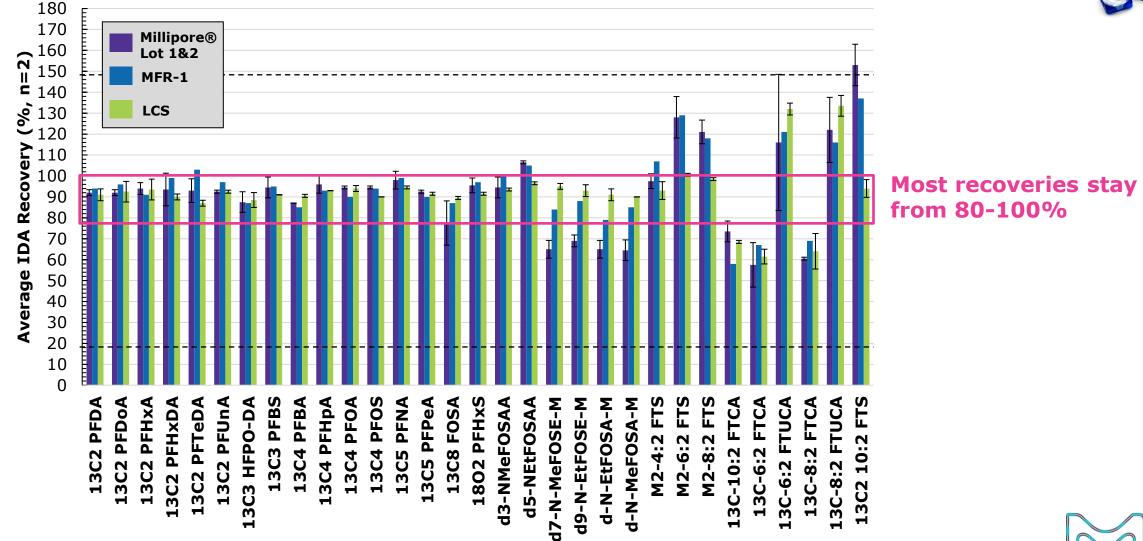
Testing Glass Fiber Membrane Filter Suitability for OTM-45 Glass fiber membrane filters demonstrate similar levels of **PFAS** after cleaning and front-half extraction

RL (ng/ sample) Iong/ sample Lot 1,° pooled Lot 1,° pooled Lot 1,° pooled Lot 1,° pooled Lot 1,° pooled Prooled		MDL** Range		Millipore® Glass fiber without Binder		MFR-1, Glass Fiber without Binder
PFHpA 1.00 0.620 2.04 1.82 1.91 PFBA 2.00 1.30 ND ND ND PFHxA 1.00 0.210 0.258 ³ 0.270 ^{3,1} ND ND PFPeA, PFOA, PFDA, PFDDA, PFDDA, PFTrDA, PFTeDA, PFHxDA, PFODA 1.00 0.0850-0.650 ND ND ND Perfluoroalkyl sulfonic acids 0.0950-0.890 ND ND ND PFOS 1.00 0.450 0.592 ³ 0.565 ^{3,1} 0.566 ^{3,1}	Compound(s)		(ng/			/
PFBA 2.00 1.30 ND ND ND PFHAA 1.00 0.210 0.258 ³ 0.270 ^{3,1} ND ND PFPeA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA, PFTeDA, PFHxDA, PFODA 1.00 0.0850-0.650 ND ND ND Perfluoroalkyl sulfonic acids 0.0950-0.890 ND ND ND ND PFDS PFDS 1.00 0.450 0.592 ³ 0.565 ^{3,1} 0.566 ^{3,1}	Perfluoroalkyl carboxylic acids					-
PFHxA 1.00 0.210 0.258 ³ 0.270 ^{3,1} ND PFPeA, PFOA, PFDA, PFDA, PFDoDA, PFTrDA, PFTeDA, PFHxDA, PFODA 1.00 0.0850-0.650 ND ND ND Perfluoroalkyl sulfonic acids 0.0950-0.890 ND ND ND ND PFBS, PFPeS, PFHxS, PFHpS, PFNS, PFDS, PFDoS 1.00 0.0950-0.890 ND ND ND ND PFOS 1.00 0.450 0.592 ³ 0.565 ^{3,1} 0.566 ³	PFHpA	1.00	0.620	2.04	1.82	1.91 🔶
PFPeA, PFOA, PFNA, PFDA, PFDA, PFTDA, PFTDA, PFTDA, PFTAA, PFOA 1.00 0.0850-0.650 ND ND ND Perfluoroalkyl sulfonic acids U 0.0950-0.890 ND ND ND ND PFBS, PFPeS, PFHxS, PFHpS, PFDS, PFDoS 1.00 0.0950-0.890 ND ND ND ND PFOS 1.00 0.450 0.592 ³ 0.565 ^{3,1} 0.566 ^{3,1}	PFBA	2.00	1.30	ND	ND	ND
Perfluoroalkyl sulfonic acids ND ND ND PFBS, PFPeS, PFHxS, PFHpS, PFDS, PFDoS 1.00 0.0950-0.890 ND ND ND PFOS 1.00 0.450 0.592 ³ 0.565 ^{3,1} 0.566 ^{3,1} Perfluorooctane sulfonamides, Perfluorooctane Sulfonamidoacetic acids, Perfluorooctane sulfonamido ethanols PFOSA, N-MeFOSA, N-MeFOSAA, N-EtFOSA 1.00 0.0880-0.160 ND ND ND N-MeFOSE 5.00 4.90 ND ND ND Fluorotelomer sulfonic acids 5.00 4.70 ND ND ND 6:2 FTS 5.00 4.70 ND ND ND GenX 5.00 4.70 ND ND ND ADONA, 9CI-PF3ONS, 11CI-PF3OUdS, 6:2 FTUCA, 7:3 FTCA*, 10:2 FTCA, 8:2 5.00 4.70 ND ND	PFHxA	1.00	0.210	0.258 ³	0.270 ^{J,I}	ND 🔶
PFBS, PFPeS, PFNS, PFDS, PFDS, PFDoS 1.00 0.0950-0.890 ND ND ND PFOS 1.00 0.450 0.592 ³ 0.565 ^{3,1} 0.566 ^{3,1} Perfluorooctane sulfonamides, Perfluorooctane Sulfonamidoacetic acids, Perfluorooctane sulfonamido verfluorooctane sulfonamides, Perfluorooctane Sulfonamidoacetic acids, Perfluorooctane sulfonamido ND ND ND ND PFOSA, N-EtFOSA, N-MeFOSA, N-MeFOSAA, N-EtFOSAA, N-EtFOSE 1.00 0.0880-0.160 ND ND ND ND N-MeFOSE 5.00 4.90 ND ADONA, 9CI-PF3ONS, 11CI-PF3OUS,	PFPeA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA, PFTeDA, PFHxDA, PFODA	1.00	0.0850-0.650	ND	ND	ND
PFOS 1.00 0.450 0.592 ³ 0.565 ^{3,1} 0.566 ^{3,1} Perfluorooctane sulfonamides, Perfluorooctane Sulfonamidoacetic acids, Perfluorooctane sulfonamido ethanols PFOSA, N-EtFOSA, N-MeFOSAA, N-EtFOSAA, N-EtFOSE 1.00 0.0880-0.160 ND ND ND N-MeFOSE 5.00 4.90 ND ND ND ND Fluorotelomer sulfonic acids 5.00 4.90 ND ND ND 4:2 FTS, 8:2 FTS, 10:2 FTS 1.00 0.0910-0.320 ND ND ND 6:2 FTS 5.00 4.70 ND ND ND Per and Polyfluoroether carboxylic acids, Per and Polyfluoroether sulfonic acids, Fluorotelomer carboxylic acids, Per anotelomer carboxylic acids, Fluorotelomer carboxylic acids, Per anot	Perfluoroalkyl sulfonic acids					
Perfluorooctane sulfonamides, Perfluorooctane Sulfonamidoacetic acids, Perfluorooctane sulfonamido Perfluorooctane sulfonamido Perfluorooctane sulfonamido Perfluorooctane sulfonamido Perfluorooctane sulfonamido Perfluorooctane sulfonamido ND	PFBS, PFPeS, PFHxS, PFHpS, PFNS, PFDS, PFDoS	1.00	0.0950-0.890	ND	ND	ND
PFOSA, N-EtFOSA, N-MeFOSAA, N-EtFOSAA, N-EtFOSE 1.00 0.0880-0.160 ND ND ND N-MeFOSE 5.00 4.90 ND ND ND ND Fluorotelomer sulfonic acids 5.00 4.90 ND ND ND 4:2 FTS, 8:2 FTS, 10:2 FTS 1.00 0.0910-0.320 ND ND ND 6:2 FTS 5.00 4.70 ND ND ND ND Per and Polyfluoroether carboxylic acids, Per and Polyfluoroether sulfonic acids, Fluorotelomer carboxylic acids, Per and Polyfluoroether sulfonic acids, Fluorotelomer carboxylic acids, Per and Polyfluoroether sulfonic acids, Fluorotelomer carboxylic acids, ND ND ND GenX 5.00 4.70 ND ND ND ADONA, 9CI-PF3ONS, 11CI-PF3OUdS, 6:2 FTUCA, 7:3 FTCA*, 10:2 FTCA, 8:2 V V V V	PFOS	1.00	0.450	0.592 ³	0.565 ^{J,I}	0.566 ^{յ,լ}
N-MeFOSE 5.00 4.90 ND ND ND Fluorotelomer sulfonic acids 1.00 0.0910-0.320 ND ND ND 4:2 FTS, 8:2 FTS, 10:2 FTS 1.00 0.0910-0.320 ND ND ND ND 6:2 FTS 5.00 4.70 ND ND ND ND ND Per and Polyfluoroether carboxylic acids, Per and Polyfluoroether sulfonic acids, Fluorotelomer carboxylic acids, Per analytege 5.00 4.70 ND ND ND GenX 5.00 4.70 ND ND ND ND ND ADONA, 9CI-PF3ONS, 11CI-PF3OUdS, 6:2 FTUCA, 7:3 FTCA*, 10:2 FTCA, 8:2 5.00 4.70 ND ND ND	Perfluorooctane sulfonamides, Perfluorooctane Sulfonamidoacetic acids,	Perfluorooc	tane sulfonamid	lo ethanols		
Fluorotelomer sulfonic acids Fluorotelomer sulfonic acids Mode 4:2 FTS, 8:2 FTS, 10:2 FTS 1.00 0.0910-0.320 ND ND ND 6:2 FTS 5.00 4.70 ND ND ND ND Per and Polyfluoroether carboxylic acids, Per and Polyfluoroether sulforetacids, Fluoretacids, Per and Polyfluoroether sulforetacids, Fluoretacids, Per and Polyfluoroether sulforetacids, Fluoretacids, Per analytes GenX 5.00 4.70 ND ND ND ADONA, 9CI-PF3ONS, 11CI-PF3OUdS, 6:2 FTUCA, 7:3 FTCA*, 10:2 FTCA, 8:2 V V V V	PFOSA, N-EtFOSA, N-MeFOSA, N-MeFOSAA, N-EtFOSAA, N-EtFOSE	1.00	0.0880-0.160	ND	ND	ND
4:2 FTS, 8:2 FTS, 10:2 FTS 1.00 0.0910-0.320 ND ND ND 6:2 FTS 5.00 4.70 ND ND ND ND Per and Polyfluoroether carboxylic acids, Per and Polyfluoroether sulfonic acids, Fluoroether carboxylic acids, Per and Polyfluoroether sulfonic acids, Fluore carboxylic acids, Per analyte acids, Per and Polyfluoroether sulfonic acids, Fluore carboxylic acids, Per analyte	N-MeFOSE	5.00	4.90	ND	ND	ND
6:2 FTSNDNDNDPer and Polyfluoroether carboxylic acids, Per and Polyfluoroether sulfonic acids, Fluorotelomer carboxylic acids, Next-Generation PFAS analytesGenX5.004.70NDNDADONA, 9CI-PF3ONS, 11CI-PF3OUdS, 6:2 FTUCA, 7:3 FTCA*, 10:2 FTCA, 8:2VVV	Fluorotelomer sulfonic acids					
Per and Polyfluoroether carboxylic acids, Per and Polyfluoroether sulfonic acids, Fluorotelomer carboxylic acids, Next-Generation PFAS analytes GenX 5.00 4.70 ND ND ADONA, 9CI-PF3ONS, 11CI-PF3OUdS, 6:2 FTUCA, 7:3 FTCA*, 10:2 FTCA, 8:2 5.00 4.70 ND ND	4:2 FTS, 8:2 FTS, 10:2 FTS	1.00	0.0910-0.320	ND	ND	ND
GenX 5.00 4.70 ND ND ADONA, 9CI-PF3ONS, 11CI-PF3OUdS, 6:2 FTUCA, 7:3 FTCA*, 10:2 FTCA, 8:2	6:2 FTS	5.00	4.70	ND	ND	ND
ADONA, 9CI-PF3ONS, 11CI-PF3OUdS, 6:2 FTUCA, 7:3 FTCA*, 10:2 FTCA, 8:2	Per and Polyfluoroether carboxylic acids, Per and Polyfluoroether sulfonio	c acids, Fluo	orotelomer carbo	oxylic acids	, Next-Gener	ation PFAS analytes
	GenX	5.00	4.70	ND	ND	ND
PFECHS, NFDHA	FTCA, PFEESA, 8:2 FTUCA, PFMPA, PFMBA, 5:3 FTCA*, 6:2 FTCA, 3:3 FTCA,	1.00	0.0980-480	ND	ND	ND


31

ABBREVIATIONS: RL = reporting limit; MDL = minimum detection limit; ND = not detected; LCS = laboratory control sample; LSCD = laboratory control sample duplicate

Testing Glass Fiber Membrane Filter Suitability for OTM-45 Average recovery of standards fall within acceptable QC range



Testing Glass Fiber Membrane Filter Suitability for OTM-45 Average recovery of standards fall within acceptable QC range

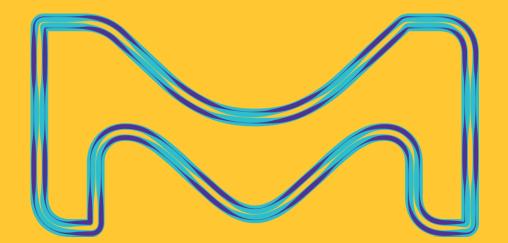
Investigation of Contamination and Recovery of PFAS in Filter Membranes Summary & Conclusions

- Filtration is important for high data quality, however, consumables must not interfere with sensitive PFAS analysis
- We tested different syringe filters and membrane filters in several PFAS methods
 - Nylon, nylon with a glass fiber prefilter, polyethersulfone (PES), hydrophilic polypropylene, hydrophobic polypropylene, glass fiber without binder
 - **Analyzed extractables** to determine baseline contamination
 - Analyzed internal standard and analyte recoveries to determine adsorption
- The syringe filters and membrane filters tested were found to be suitable for sample filtration/preparation in:
 - Water (via EPA 537.1)
 - Methanol (via EPA Draft 1633)
 - Cleanup/Front-half extraction for stack sampling (via OTM-45)

Some key takeaways:

- PES and philic polypropylene show similar recoveries in water & methanol, while nylon does not
- Rinsing nylon with methanol desorbs certain PFAS
- Larger filtration areas do not lead to loss of analyte (33mm vs. 25mm)
- Polypropylene is a suitable alternative to PTFE for sample prep in many cases

Lindsay D. Lozeau, Ph.D.


EMD Millipore Corporation | 600 Summit Drive Burlington, MA 01803 | USA Email: <u>lindsay.lozeau@milliporesigma.com</u>

Amy Laws, Ph.D.

EMD Millipore Corporation | 600 Summit Drive Burlington, MA 01803 | USA Email: amy.laws@milliporesigma.com

Maricar Dube, Ph.D.

EMD Millipore Corporation | 600 Summit Drive Burlington, MA 01803 | USA Email: Maricar.dube@milliporesigma.com

The vibrant M, Millex®, Millipore®, Swinnex® are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates. All other trademarks are the property of their respective owners. Detailed information on trademarks is available via publicly accessible resources.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.