

ASTM D8421 PFAS in water samples: a single laboratory verification

August 3, 2023

N. Iwasa¹, W. Lipps², R. Marfil-Vega², J. Nagata¹

- 1 Shimadzu Corporation, Solutions COE
- 2 Shimadzu Scientific Instruments, Inc.

What is PFAS (Per- and Polyfluoroalkyl Substances)

- Perfluoroalkyl and polyfluoroalkyl compounds and their salts.
- Depending on the carbon chain length, functional groups, and structural isomers, more than a few thousand are believed to exist.
- It is used in a wide range of products because of its useful properties such as water repellency and heat resistance.
- While PFAS have useful features, they can pollute surface water, groundwater, soil, and air in various regions around the world, and have adverse effects on human health.
- This has led to a worldwide tightening of regulations on PFAS.

Perfluorooctanoic acid (PFOA)

SHIMADZU

Measurement method of PFAS

P	Method													
(Charles)			EPA			AST	ГМ		/					
	537 537.1 533		8327 Draft 1633		Draft 1621	D8421-22	D7968-19	ISO 21675	MHLW	MOE				
Sample	Drinking water Ground/ Surface/ Wastewater		Aqueous/ Solid (soil, biosolids, sediment)/ Tissue samples	Aqueous water	Aqueous water (municipal and industrial wastewater, leachate)	Soil/ Sediment/ Sludge	Soil/ Aqueous diment/ water Sludge		Aqueous water					
Sample preparation	Solid phase Solid phase Cosolvation S extraction extraction + Direct injection		Solid phase extraction (anionic sorbent) + Clean-up	Carbon collection + CIC	Cosolvation Solvent extraction + + Direct Direct injection injection		Solid phase extraction (anionic sorbent) + Clean-up	Solid phase extraction (anionic sorbent)						
Target compounds	EPA 537-14 25 24 EPA 537.1-18		40	Adsorbable organic fluorine	44	21	30	PFOS,	PFOA					
Applicable LC-MS/MS platforms	LCMS-8045 LCMS-		-8050 LCMS- LCMS-8	LCMS-8045 -8060 3060NX	Combustion equipment and <u>HIC-ESP</u>			LCMS-8050 LCMS-8060 LCMS-8060NX						

Standard Test Method for Determination of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous Matrices by Co-solvation followed by Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS) Short-chain to long-chain PFAS are specified as the compounds to be measured. e.g.) PFPrA Perfluoropropionic acid $C_3HF_5O_2$

	Та	arget	Surrogate					
44 per-	and polyfluor	rinated alkyl subst	24 labeled isotopes					
PFTreA	PFDS	NEtFOSAA	PFPrA	13C4-PFBA	D3-NMeFOSAA	13C3-PFBS		
PFTriA	PFNS	NMeFOSAA	NFDHA	13C5-PFPeA	D5-NEtFOSAA	13C3-PFHxS		
PFDoA	PFOS	PFDoS	PFEESA	13C5-PFHxA	D3-NMeFOSA			
PFUnA	PFHpS	NMeFOSA	PFMPA	13C4-PFHpA	D5-NEtFOSA			
PFDA	PFHxS	NEtFOSA	PFMBA	13C8-PFOA	D7-NMeFOSE			
PFNA	PFPeS	NMeFOSE	3:3 FTCA	13C9-PFNA	D9-NEtFOSE			
PFOA	PFBS	NEtFOSE	5:3 FTCA	13C6-PFDA	13C3-HFPO-DA			
PFHpA	PFOSA	HFPO-DA	7:3 FTCA	13C7-PFUnA	13C2-4:2FTS			
PFHxA	8:2FTS	ADONA	FHUEA	13C2-PFDoA	13C2-6:2FTS			
PFPeA	6:2FTS	9CI-PF3ONS	FOUEA	13C2-PFTreA	13C2-8:2FTS			
PFBA	4:2FTS	11CI-PF3OUdS	HQ-115	13C8-PFOSA	13C8-PFOS			

ASTM D8421-22: Sample preparation and analysis

- Sample preparation: Co-solvated by a 1+1 ratio of sample and methanol
- Analysis: Direct injection analysis by Triple-Quadrupole LC/MS/MS

 Wide range of PFAS, from short to long chain ASTM D8421-22 measures short-chain PFAS such as C3. ODS columns, commonly used in reversed-phase chromatography, have weak column retention of compounds with short carbon chains, making it difficult to obtain good peak shapes under some conditions.

• PFAS analysis requires high sensitivity.

Dilution with water is the easiest way to improve the chromatography, but PFAS analysis requires high sensitivity.

1. Optimizing analytical conditions for sensitive analysis

- Column dimensions
- Co-injection applied
- Gradient program

2. Confirmation of Analytical Accuracy by ASTM D8421-22

Analytical column dimensions

- Reference column: Shim-pack GIST-HP C18, 2.1 mmi.d. x 50 mmL, 3 μm

 A) Smaller particle size than the original
 2.1 mmi.d. x 50 mmL, 2 μm
 B) Longer and wider inner diameter than the original
 3.0 mmi.d. x 100 mmL, 3 μm
- Standard injection: 25 µl injection

Method optimization: Analytical column

Reference column Shim-pack GIST-HP C18, 2.1 mmi.d. x 50 mmL, 3 μm

Bad peak shape

Method optimization: Analytical column

When a column with a small particle size was used, the mixing of the sample solvent and the mobile phase was suppressed, and the peak shape deteriorated due to the suppression of multichannel diffusion.

Method optimization: Analytical column

With longer column length and wider inner diameter, axial diffusion improves symmetry at the column exit and improves peak shape. However, peak shape of PFPrA needs a little more improvement.

Effect of co-injection

- The peak shape is improved by moving the sample solvent closer to the composition of the mobile phase.
- Standard injection: 25 µl injection
 - → Co-injection 25 µL Sample
 - +

25 µL Ultra pure water with 0.1 % Acetic acid

Method optimization: Effect of co-injection

Column: Shim-pack GIST-HP C18, 3.0 mmi.d. x 100 mmL, 3 µm

Co-injection with water facilitated column retention and improved peak shape.

Method optimization: Gradient program

- The composition of the mobile phase also affects the peak shape. In particular, the initial mobile phase composition affects the elution of short-chain PFAS.
- Also, it is desirable to separate analytical compounds and impurities from the equipment.

m/*z* 163.00>119.00(-)

<u>PFPrA ($C_3HF_5O_2$)</u>

The peak shape was improved by the difference in mobile phase composition.

Final gradient program

Analysis conditions

	Equipment	LCMS-8060NX							
	Mobile Phace	A: 2 mmol/L Ammonium Acetate in H2O/ Acetonitrile = 95/5							
		B: Acetonitrile							
	Delay Column	Shim-pack Scepter C18-120							
		2.1 mmi.d. x 100 mmL, 3 um (P/N: 227-31014-05)							
	Analytical Column	Shim-pack GIST-HP C18							
		3.0 mmi.d. x 100 mmL, 3 um (P/N: 227-30040-04)							
LC		10%(0min)⇒22%(2.3-3.0min)							
	Gradient (%B)	⇒45%(6.0min)⇒80%(13.0min)							
		⇒95%(14.0-16min)⇒10%(16.01-20.0min)							
	Column Oven Temp.	40 ℃							
	Flow rate	0.6 mL/min							
	Injection volume	25 μL							
	Multiple draw injection program	Co-injection 25 μ L Sample \rightarrow 25 μ L 0.1% Acetic acid in H2O							
	Interface	IonFocus ESI							
	Interface Temp.	170℃							
	Probe position	+3 mm							
	Neblizer gas flow	3 L/min							
МС	Heating gas flow	15 L/min							
	Interface Voltage	-0.5 kV (same value for all compounds)							
	DL Temp.	200 ℃							
	Heatblock Temp.	300 ℃							
	Drying gas flow	5 L/min							
	Focus bias	-2 kV (same value for all compounds)							

Reagents used

- PFAS mixture compatible with U.S. EPA Draft Method 1633 (Wellington Laboratories)
- 4 Compounds not measured in EPA1633 were added.
 → FHUEA, FOUEA, HQ-115, PFPrA

Final Concentrations of Calibration Standards (ng/L)

	Cal1	Cal2	Cal3	Cal4	Cal5	Cal6	Cal7	Cal8	Cal9
PFPeA, PFBA, PFPrA	25	50	100	200	300	400	500	750	1000
All Other PFAS and Surrogates (Exclude PFPeA, PFBA and PFPrA	5	10	20	40	60	80	100	150	200

The individual standard solution were prepared in 50:50 (vol: vol) methanol/water with 0.1% acetic acid

Preparation of calibration standards

	Compounds	CS1	CS2	CS3	CS4	CS5	CS6	CS7	CS8	CS9	CS10	CS11	CS12	CS13	CS14	CS15
Analyte	All analytes unless otherwise noted	1	2.5	5	10	25	40	60	80	100	150	200	250	375	500	800
	PFPeA	2	5	10	20	50	80	120	160	200	300	400	500	750	1000	1600
	PFBA, 4:2-FTS, 6:2-FTS, 8:2-FTS	4	10	20	40	100	160	240	320	400	600	800	1000	1500	2000	3200
	PFPrA, 5:3 FTCA, 7:3 FTCA	5	12.5	25	50	125	200	300	400	500	750	1000	1250	1875	2500	4000
	NMeFOSE, NEtFOSE	10	25	50	100	250	400	600	800	1000	1500	2000	2500	3750	5000	8000
Surrogate	13C9-PFNA, 13C6-PFDA, 13C7-PFUnA, 13C2-PFDoA, 13C2-PFTreA	0.25	0.625	1.25	2.5	6.25	10	15	20	25	37.5	50	62.5	93.75	125	200
	13C5-PFHxA, 13C4-PFHpA, 13C8-PFOA, 13C8-PFOSA, D3-NMeFOSA, D5-NEtFOSA, 13C8-PFOS, 13C3-PFBS, 13C3-PFHxS	0.5	1.25	2.5	5	12.5	20	30	40	50	75	100	125	187.5	250	400
	13C5-PFPeA, 13C2-4:2FTS, 13C2-6:2FTS, 13C2-8:2FTS, D3-NMeFOSAA, D5-NEtFOSAA	1	2.5	5	10	25	40	60	80	100	150	200	250	375	500	800
	13C4-PFBA, 13C3-HFPO-DA	2	5	10	20	50	80	120	160	200	300	400	500	750	1000	1600
	D7-NMeFOSE, D9-NEtFOSE	5	12.5	25	50	125	200	300	400	500	750	1000	1250	1875	2500	4000

Only the calibration points within the method specified range were used.

Measurement results of standard samples

MRM Chromatograms of CS5

Calibration curve and midpoint chromatogram

Results meet the requirements outlined in the method.

Measurement results of standard samples

Good repeatability results were obtained at low concentrations for most compounds.

Recovery and Repeatability Study: Reagent Water

<Surrogate>

These data are well within the 70 -130 % Recovery and \leq 30% RSD limits of the method.

Recovery and Repeatability Study: Wastewater

<Surrogate> 150 100 50 0 13C2-4:2FTS 13C3-PFBS 13C3-PFHxS 13C8-PFOA 13C8-PFOSA D3-NMeFOSAA D5-NEtFOSAA D5-NEtFOSA D7-NMeFOSE D9-NEtFOSE 13C3-HFPO-DA 13C2-6:2FTS 13C2-8:2FTS 13C8-PFOS 13C4-PFBA 13C5-PFPeA 13C5-PFHxA 13C4-PFHpA 13C9-PFNA 13C6-PFDA **3C7-PFUnA** 13C2-PFDoA 13C2-PFTreA D3-NMeFOSA

These data are well within the 70 -130 % Recovery and \leq 30% RSD limits of the method. MS ionization efficiency is not affected by the sample matrix.

Summary

- ASTM D8421-22 is a simple extraction procedure validated by ASTM for the analysis of PFAS in wastewater samples.
- The LCMS-8060NX easily meets method performance criteria of ASTM D8421-22 for 44 PFAS and 24 surrogates.
- Using the optimized method for ASTM D8421-22 with a column having favorable dimensions, good results can be obtained for short-chain to long-chain PFAS compounds.
- The optimized method does not require any equipment modification, so it is possible to measure EPA draft method 1633 on the same equipment.

Thank you for your attention.