Thermo Fisher s c | e N T | F | C

Applying new ion chromatography technology to enable faster determinations of inorganic anions and disinfection byproducts in drinking water

Jingli Hu, Hua Yang, Jeff Rohrer, Chris Shevlin, and **Carl Fisher** August 4, 2023

The world leader in serving science

Agenda

3

Drinking water analysis

Inorganic anion determinations

Shortening runtime

IC innovations

Resources

Drinking water analysis

- National Primary Drinking Water Regulations (NPDWR)
 - Microorganisms
 - Disinfectants
 - Disinfection byproducts
 - Inorganic chemicals
 - US EPA 300
 - Organic chemicals
 - Radionuclides

Drinking water analysis

- National Primary Drinking Water Regulations (NPDWR)
 - Microorganisms
 - Disinfectants
 - Disinfection byproducts
 - Inorganic chemicals
 - US EPA 300
 - Organic chemicals
 - Radionuclides

EPA Method 300.0 and 300.1

Outlines the method for determination of inorganic anions by ion chromatography (IC).

• Specifies use of suppressed conductivity for determination of:

Part A- Common Anions	Part B- Inorganic Disinfection Byproducts
Bromide	Bromide
Chloride	Bromate
Fluoride	Chlorite
Nitrate	Chlorate
Nitrite	
ortho-Phosphate-P	
Sulfate	

- Applies to:
 - Drinking water
 - Ground and Surface water
 - Wastewater (domestic and industrial)
 - Raw water (unfinished drinking water)

IC system

Thermo Scientific[™] Dionex[™] IonPac[™] AS4A column 1.7 mM Na₂CO₃ / 1.8 mM NaHCO₃

Thermo Scientific[™] Dionex[™] IonPac[™] AS4A column 1.7 mM Na₂CO₃ / 1.8 mM NaHCO₃

Carbonate-based eluents

Benefits

- Strong elution potential
- Inexpensive

Limitations

- Conductivity is 10–20x higher than pure water which impacts sensitivity
- Response is nonlinear at lower analyte concentrations
- Gradient separations are difficult
 - Ramping, baseline disturbances, slow buffering

Solution: Hydroxide-based eluent

Thermo Scientific[™] Dionex[™] IonPac[™] AS4A column 1.7 mM Na₂CO₃ / 1.8 mM NaHCO₃

Carbonate-based eluents

Benefits

- Strong elution potential
- Inexpensive

Limitations

- Conductivity is 10–20x higher than pure water which impacts sensitivity
- Response is nonlinear at lower analyte concentrations
- Gradient separations are difficult
 - Ramping, baseline disturbances, slow buffering

Solution: Hydroxide-based eluent

Thermo Scientific[™] Dionex[™] IonPac[™] AS18 column 22–40 mM KOH

Thermo Scientific[™] Dionex[™] IonPac[™] AS18 column 22–40 mM KOH

Hydroxide-based eluents

Benefits

- Suppressed to water, yielding low background, greater sensitivity
- Produces linear gradients

Limitations of manual eluent preparation

- Absorbance of CO₂ from the air causes instability of
 - Retention time, peak area, baseline
- For gradients, a proportioning pump is required

Thermo Scientific[™] Dionex[™] IonPac[™] AS18 column 22–40 mM KOH

Hydroxide-based eluents

Benefits

- Suppressed to water, yielding low background, greater sensitivity
- Produces linear gradients

Limitations of manual eluent preparation

- Absorbance of CO₂ from the air causes instability of
 - Retention time, peak area, baseline
- For gradients, a proportioning pump is required
- Solution: Electrolytic eluent generation (Reagent-free IC (RFIC))
- Precise and accurate eluent concentrations
- An isocratic pump can be used for gradients

Automated eluent generation (EG)

ONE current for ONE concentration (of eluent)

Deionized water used as the carrier

- Eliminates need to handle acids or bases
- Decreases pump maintenance

Electrolysis automatically generates high purity acid, base, or carbonate eluents in-line

Delivers concentrations specified in Chromeleon CDS through control of electrical **current**

Gradients created without need for a more costly, proportioning pump

ThermoFisher SCIENTIFIC

Gradient reproducibility: Thermo Scientific Dionex IonPac AS11 4 mm (n=30)

	Fluoride	Chloride	Nitrite	Sulfate	Bromide	Nitrate	Phosphate
Area (µS⋅min)	0.110	0.324	0.236	0.137	0.242	0.182	0.217
% RSD Area	0.059	0.075	0.075	0.130	0.061	0.101	0.049
Ret. Time (min)	2.400	5.297	5.755	7.223	10.047	7.394	13.139
%RSD Ret.	0.060	0.020	0.029	0.021	0.014	0.023	0.022

Thermo Fisher S C I E N T I F I C

Gradient reproducibility: Thermo Scientific Dionex IonPac AS11 4 mm (n=30)

% RSD Area	0.059	0.075	0.075	0.130	0.061	0.101	0.049	
Ret. Time (min)	2.400	5.297	5.755	7.223	10.047	7.394	13.139	
%RSD Ret.	0.060	0.020	0.029	0.021	0.014	0.023	0.022	

Peak focusing using a KOH eluent generator

Thermo Fisher

Peak focusing using a KOH eluent generator

A: Isocratic

Thermo Fis

FIOW Tale.	Z 111L/11111		
Inj. volume:	25 µL		
Detection:	Suppressed conductiv	vity	
Suppressor:	ASRS, AutoSuppression		
	Recycle Mode		
Peaks:	1. Fluoride	2	[mg/L]
	2. Chloride	3	
	3. Nitrate	10	
	4. Sulfate	15	
	5. Orthophosphate	15	

Ease of use and consistency of RFIC, but how do we shorten run time?

30

IC column parameters: Speed, capacity, and resolution

Thermo Fisher

IC column parameters: Speed, capacity, and resolution

Thermo Fisher

Column efficiency: Increase with smaller particles (4 µm)

Thermo

Produce more efficient peaks

Impact chromatographic speed and resolution

Improve peak integration – more accurate and reliable results

Increase sample throughput without compromising data quality

Improve quality of analytical results

4 µm columns: Combining speed and resolution

4 µm columns: Combining speed and resolution

Need High Pressure IC (HPIC) system to take full advantage of benefits

Column efficiency: 4 µm vs. 6.5 µm particles

Column efficiency: 4 µm vs. 6.5 µm particles

Smaller particles deliver more efficient peaks and higher resolution.

Faster runs using smaller particle columns

Faster runs using smaller particle columns

Fast determinations using carbonate eluent

10 Sample: A mixed anions standard 2 Peaks: Min mg/L 1.2 1. Fluoride 2.0 2. Chloride 1.6 10.0 3. Nitrite 2.0 10.0 4. Bromide 2.3 10.0 2.6 5. Nitrate 10.0 µS/cm 6. Phosphate 3.5 20.0 7. Sulfate 4.0 10.0 3 5 4 6 0 -1.0 -2 3 5 1 4 0

Minutes

Column:

Thermo Scientific[™] Dionex[™] IonPac[™] AS22-Fast-4µm, 4 mm **Eluent:** 4.5 mM Na₂CO₃ / 1.4 mM NaHCO₃ Flow rate: 2 mL/min

Thermo Fisher

Fast determinations using carbonate eluent

10 Sample: A mixed anions standard 2 Peaks: Min mg/L 1.2 1. Fluoride 2.0 2. Chloride 1.6 10.0 3. Nitrite 2.0 10.0 4. Bromide 2.3 10.0 5. Nitrate 2.6 10.0 µS/cm 6. Phosphate 3.5 20.0 7. Sulfate 4.0 10.0 3 5 4 6 0 -1.0 -2 3 5 Δ 0

Minutes

Column:

Thermo Scientific[™] Dionex[™] IonPac[™] AS22-Fast-4µm, 4 mm Eluent: $4.5 \text{ mM Na}_2\text{CO}_3 / 1.4 \text{ mM NaHCO}_3$ Flow rate: 2 mL/min

Thermo Fisher

Baseline resolution in under five minutes.

Fast anion determinations: drinking water

Sample:	Mun	icipal drinking water
Peaks:		
	Min	mg/L
1. Fluoride	1.2	0.6
2. Chloride	1.6	9.5
3. Nitrite	2.0	0.2
4. Unknown	_	-
5. Nitrate	2.6	1.2
6. Phosphate	3.5	0.2
7. Sulfate	4.0	16.5

Thermo Scientific Dionex IonPac anion exchange column development

Carbonate-based

Thermo Fisher

Peaks (Standard):	mg/L
1. Monochloroacetate	1.0
2. Monobromoacetate	1.0
3. Bromate	1.0
4. Chloride	316
5. Carbonate	150
6. Sulfate	250
7. Dalapon	1.0
8. Dichloroacetate	1.0
9. Bromochloroacetate	1.0
10. Nitrite	0.25
11. Dibromoacetate	1.0
12. Nitrate	20.0
13. Trichloroacetate	1.0
14. Bromodichloroacetate	1.0
15. Chlorodibromoacetate	1.0
16. Tribromoacetate	1.0

Peaks (Standard):	mg/L
1. Monochloroacetate	1.0
2. Monobromoacetate	1.0
3. Bromate	1.0
4. Chloride	316
5. Carbonate	150
6. Sulfate	250
7. Dalapon	1.0
8. Dichloroacetate	1.0
9. Bromochloroacetate	1.0
10. Nitrite	0.25
11. Dibromoacetate	1.0
12. Nitrate	20.0
13. Trichloroacetate	1.0
14. Bromodichloroacetate	1.0
15. Chlorodibromoacetate	1.0
16. Tribromoacetate	1.0

Peaks (Standard):	mg/L
1. Monochloroacetate	1.0
2. Monobromoacetate	1.0
3. Bromate	1.0
4. Chloride	316
5. Carbonate	150
6. Sulfate	250
7. Dalapon	1.0
8. Dichloroacetate	1.0
9. Bromochloroacetate	1.0
10. Nitrite	0.25
11. Dibromoacetate	1.0
12. Nitrate	20.0
13. Trichloroacetate	1.0
14. Bromodichloroacetate	1.0
15. Chlorodibromoacetate	1.0
16. Tribromoacetate	1.0

Saving time by altering column specificity

Thermo Scientific Dionex ion chromatography family

Reagent-Free Ion Chromatography (RFIC)

High Pressure Ion Chromatography (HPIC)

Thermo Scientific™ Dionex[™] Easion[™] - 2 mm/4 mm IC - Carbonate or MSA eluents

- Chemical suppression

Thermo Scientific™ Dionex™ Aquion™

- 2 mm/4 mm IC
- Carbonate or MSA eluents
- Electrolytic suppression
- - Thermo Scientific™ Dionex[™] Integrion[™] - 2 mm/4 mm HPIC

- Thermo Scientific TM ViperTM fittings

- Field upgradable options

- RFIC or manual eluents

- Tablet control

Thermo Fisher

Thermo Scientific™

- Dionex™ ICS-6000
- 2 mm/4 mm HPIC
- RFIC, dual EGC and gradient pump
- Flexible & modular with tablet
- Versatile detection capabilities
- Performance monitoring/ tracking

Innovations in IC

- Reagent-free IC
 - Reproducibility
 - Ease of use
 - Reduced exposure to chemicals

- Column Chemistry
 - Capacity
 - Tolerance to matrix loading
 - Resolution
 - Reduced run times
 - Specificity

159.1C

- Alternative detectors
 - Broaden the range of applications

Extended application range: optional detectors

Conductivity

Anions and cations

Spectrophotometric

- UV and visible absorbing compounds
- Post-column and pre-column derivatization techniques (e.g. Perchlorate)

Electrochemical

• Electroactive compounds (e.g. saccharides)

Mass spectrometry

 Ionic and polar compounds (e.g. Haloacetic acids (HAAs))

Inductively coupled plasma spectroscopy

• Multiple elemental species (e.g. Bromate, selenium)

Future directions in IC

- Columns
 - Selectivity, capacity, resolution
- Combining other systems with IC
 - Combustion IC; IC-MS
- Component layout
 - Unobstructed accessibly; tubing management
- Upgradability and customization
 - Base that can easily grow as needs expand
- Software
 - Usability; automation, diagnostics
- Online Support
 - Dedicated to post-sales resources

AppsLab: the latest applications

- Fully searchable online, analytical method repository
- Latest applications for IC, LC, GC, GC-MS, LC-MS, ICP-MS, ICP-OES and DIA instruments

Thermo Fisher

- Download one-click eWorkflows for use with Thermo Scientific Chromeleon Chromatography Data System (CDS) software
- Ever-expanding database of field-tested workflows

Resources for IC information

IC Hub

- What's new
- Best practices
- Tips and tricks

thermofisher.com/iceducation

Analyte Guru

- Scientific communities
- Community support
- Knowledgebase
- Blogs
- Events

analyteguru.com

ThermoFisher

SCIEN 1

Dionex IC Products

- Systems
- Detectors
- Autosamplers
- Columns
- Consumables

thermofisher.com/IC

40 carl.fisher@thermofisher.com | 4-August-2023

Thermo Fisher

Any questions?

41 carl.fisher@thermofisher.com | 4-August-2023