

Versatile options for extending analyte range and sensitivity for monitoring volatile organic compounds (VOCs) in water and soil by automated, cryogen-free headspace– and SPME–trap with GC–MS

Wednesday August 2, 2023

<u>Ericka Hachmeister³</u>, Rachael Szafnauer¹, Lucy Hearn¹, Jan Peter Mayser², Steve Smith¹, Hannah Calder¹

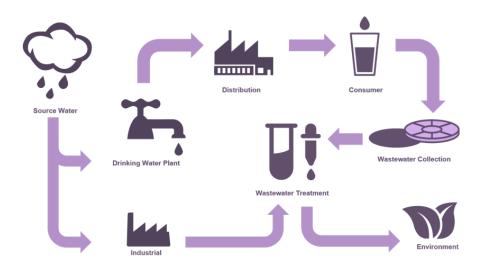
¹Markes International Ltd, Bridgend, UK ²Markes International GmbH, Offenbach am Main, Germany ³Markes International Inc., Sacramento, CA, USA.

Outline

- Regulations connected with VOCs in water
- Importance of soil health, relevance to agriculture and the global impact
- Advantages & drawbacks of traditional techniques
- Case studies to demonstrate alternative techniques:
 - 1) VOCs in water: Exceptional sensitivity enhancements for routine analysis
 - 2) Volatiles in soil: Understanding contamination and effects on soil health
 - 3) Chlorophenols in water: Eliminating sample prep
- Summary

Water: A fundamental resource for life

- Water is one of the most valuable resources
- More than one-quarter of all bottled water comes from a municipal water supply
 - The same place that tap water comes from
- Safe drinking-water is:
 - Essential to health
 - A basic human right _
 - A component of effective policy for health ____ protection
- Each person uses about 80-100 gallons of water per day
 - 92.5% goes to waste


Environmental

Ground

Regulations connected with VOCs in water

- Water is the most regulated substance
- VOCs and SVOCs are major contaminants
- Many stakeholders in the water cycle:

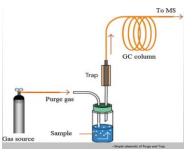
Water type	Regulation	Technique
Drinking	Method 524	Purge-and-trap (P&T)
Waste	Method 624	P&T
Environmental	014/04/0	Performance- based criteria. Choice of extraction methods (5000 series)
Ground	SW-846 (8260D)	

The importance of soil health

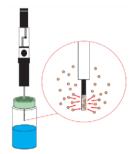
- Fundamental to a wide range of ecosystem services, including water purification.
- Affects the whole earth system¹→ monitoring is essential.
- Anthropogenic sources can cause degradation of soil health.
- Soil remediation: Reducing concentration levels of contaminants within soil² to 'suitable for use' levels.

VOC pollution **negatively impacts human health**, causing:

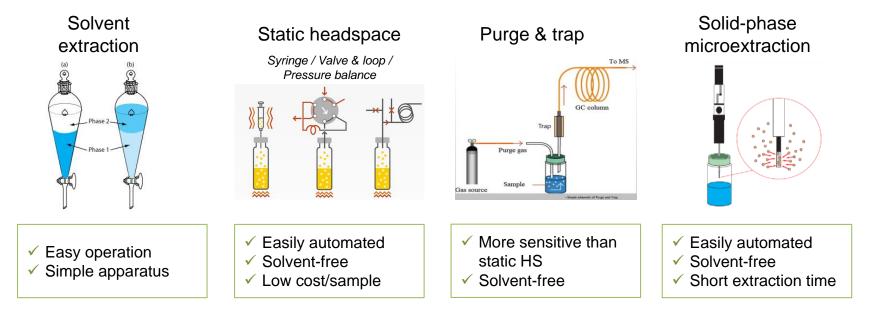
- Irritation of eyes, nose, throat
- Fatigue
- Dizziness
- Allergic skin reaction
- Nausea
- Headaches


¹ FAO, Status of the World's Soil Resources. Main report |Policy Support and Governance| Food and Agriculture Organization of the United Nations, 2015. ² https://www.soilutions.co.uk/services/soil-remediation/

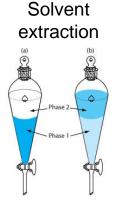
Existing techniques



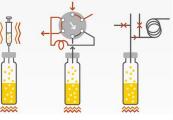
Static headspace Syringe / Valve & loop / Pressure balance



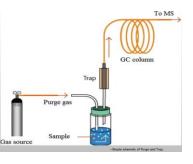
Solid-phase microextraction



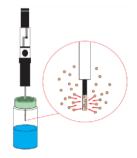
Advantages with existing techniques



Drawbacks with existing techniques


- Easy operationSimple apparatus
- Labour intensive
- Lengthy extraction time
- ► Prone to human error
- Costly disposal of hazardous solvents

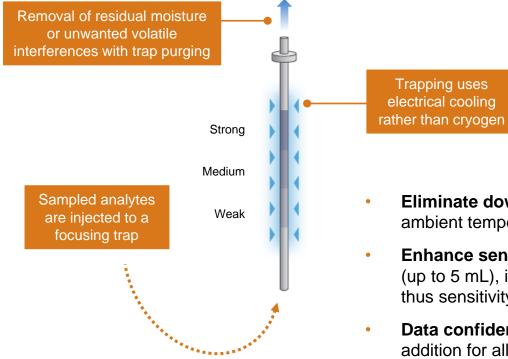
Static headspace Syringe / Valve & loop / Pressure balance



- Easily automated
- ✓ Solvent-free
- ✓ Low cost/sample
- ✗ Poor sensitivity
- Difficult to establish optimal conditions for multi-component mixtures

Purge & trap

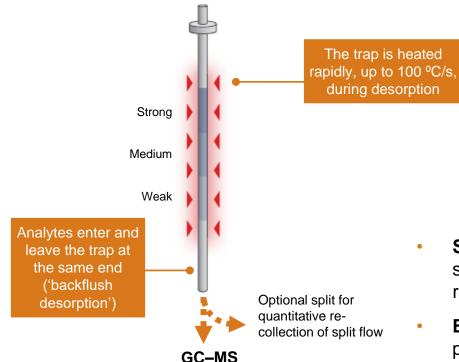
Solid-phase microextraction


- More sensitive than static HS
- ✓ Solvent-free
- Foaming/aerosol formation leading to carryover
- Ice blockages due to use of cryogen

- ✓ Easily automated
- ✓ Solvent-free
- ✓ Short extraction time
- Selective towards compound classes
- Difficult to quantitatively sample VVOCs

Analyte focusing and preconcentration...

Step 1: Injection of sampled analytes and focusing of volatiles

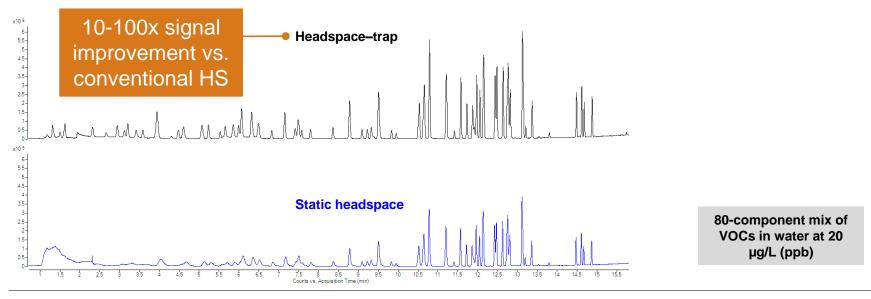


- **Eliminate downtime**: Controlled, cryogen-free trapping at ambient temperatures, therefore, no risk of ice blockages.
- **Enhance sensitivity**: Allows larger HS volume extraction (up to 5 mL), increasing analyte amount for detection, and thus sensitivity.
- **Data confidence**: Unique gas-phase internal standard addition for all trap-enabled sampling modes.

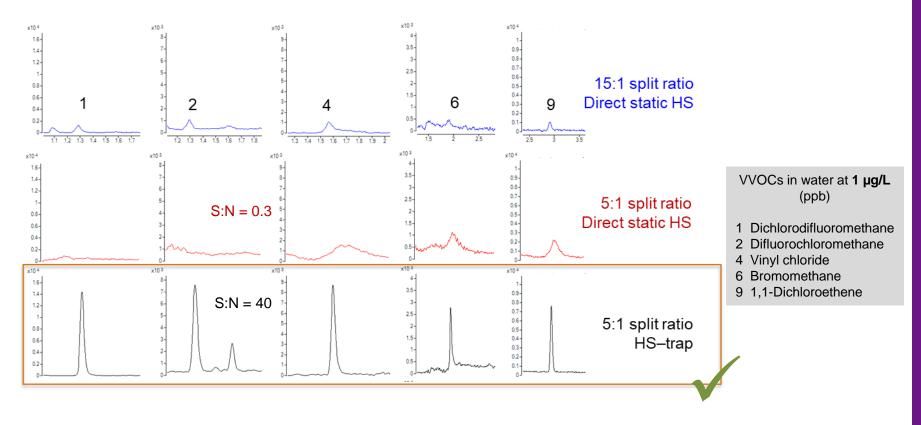
... combined with rapid GC injection

Step 2: Rapid desorption and transfer/injection to the GC

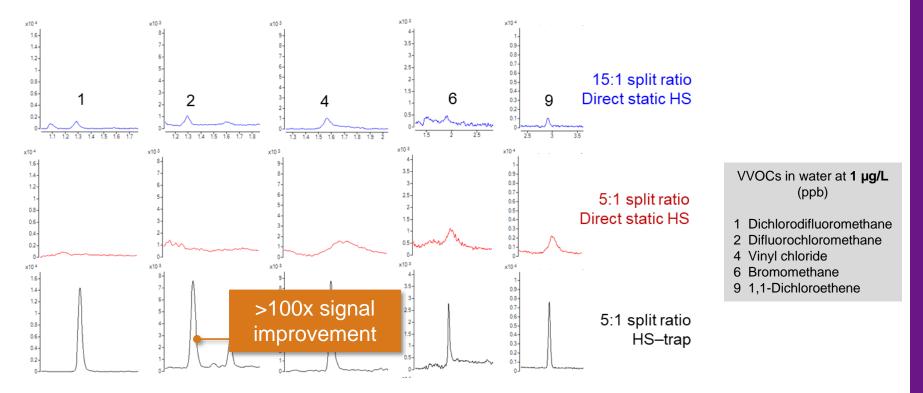
- **Superior chromatographic performance**: Multisorbents and backflush operation for wideranging VOC analysis.
- **Better peak shape**: Fast injection provides sharp peaks, significantly enhancing analyte response.



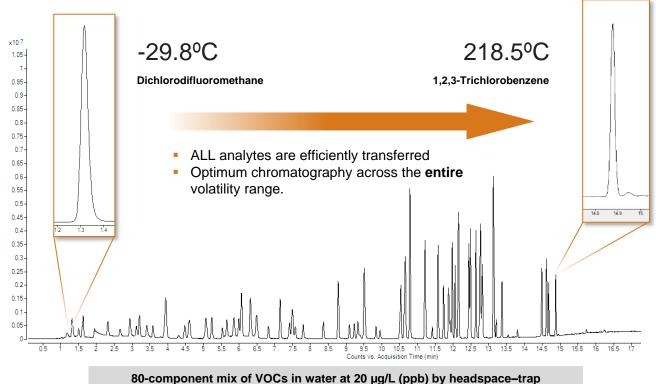
1. VOCs in water: Exceptional sensitivity enhancements for routine analysis


Improving sensitivity for VVOC analysis in water

- Exceptional concentration enhancements to achieve trace-level detection of VOCs
- Refocusing and fast injection of VVOCs ensures good peak shape & signal-to-noise to boost sensitivity

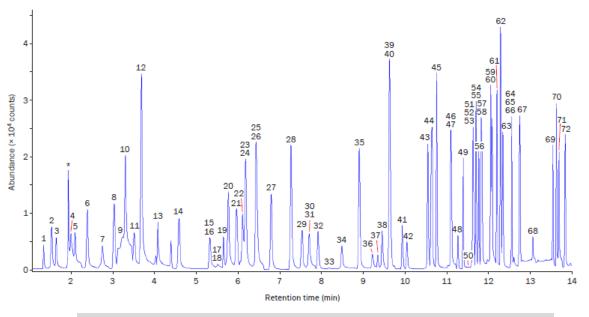


Excellent peak shapes for VVOCs at 1 ppb


Significant improvement in signal-to-noise

Analysis of wide-ranging volatile organics in a single run

Multi-sorbent, backflushed trap

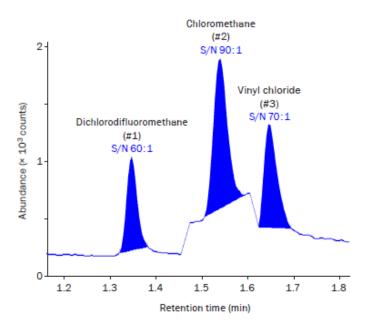


With HS-trap into the ppt-world!

...using a MS-single quad

By using:

- Pre-concentration
- Higher injection volume
- Splitless injection
- MS in SIM mode

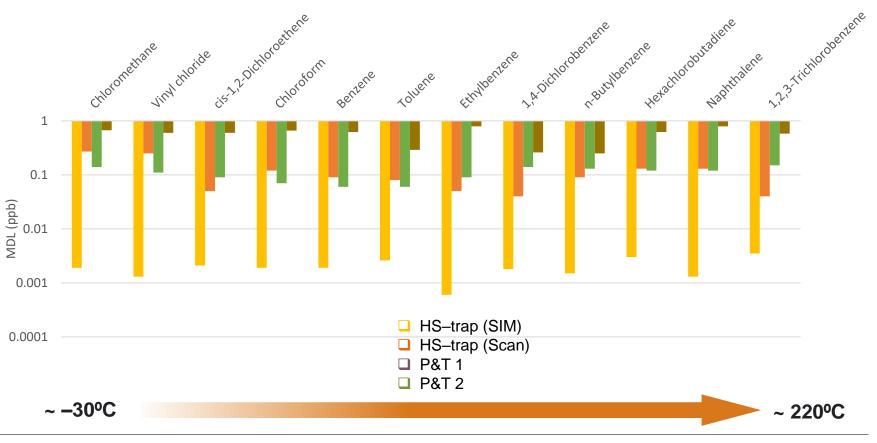


Headspace-trap SIM analysis of the standard mix at 100 ppt on-column.

Large S/N ratios for easy determination

...down to single digit ppt levels

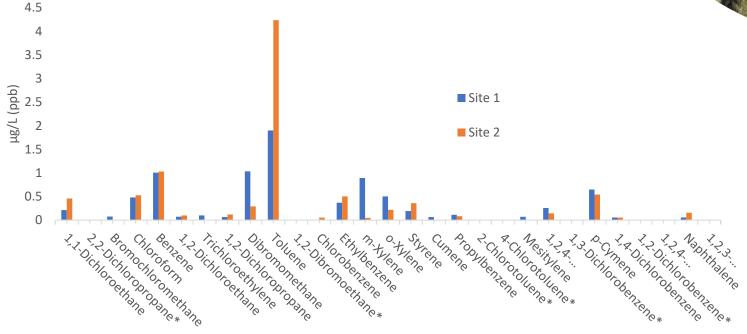
Headspace–trap SIM analysis of the **three most volatile components** in the standard mix,


at 20 ppt on-column.

Compound	MDL (ppt)	PQL (ppt)
Vinyl chloride	1.3	11
Benzene	1.9	17
Trichloroethene	1.3	11
Ethylbenzene	0.6	5
Xylenes	0.3	3 - 14

MDLs for a range of VOCs across the volatility range demonstrate **superior sensitivity in the low- to subppt** range using HS–trap SIM analysis.

Method detection limits of HS-trap vs P&T



Applicability to real-world wastewater samples

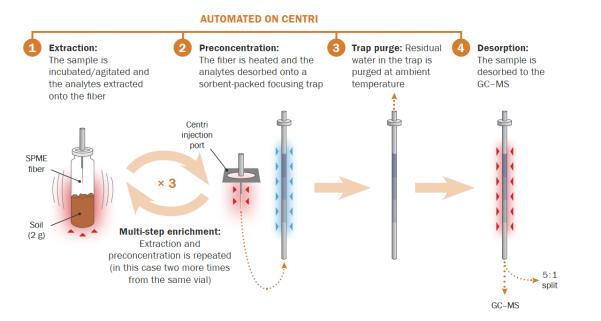
Screening from two industrial sites (ppb-level)

Contamination found in sites 1 & 2

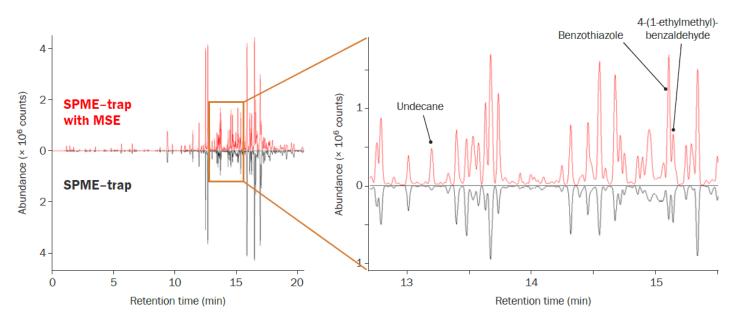
Summary

Case study 1

- Low level VOCs in water (parts per billion/trillion; ppb/ppt)
 - ✓ Automated pre-concentration thanks to cryogen-free trap focusing
- Wide volatility range
 - Multiple sorbent beds and backflush operation
- Extremely volatile challenging compounds
 - Strong sorbents for VVOC re-focusing
 - Electrically-controlled at ambient temperature to allow breakthrough of sample moisture
 - Subsequent rapid injection, sharp chromatographic peaks, high sensitivity
- Removal of water interferences
 - Separation of extraction and injection enabled trap purging, removing water away from the GC-MS

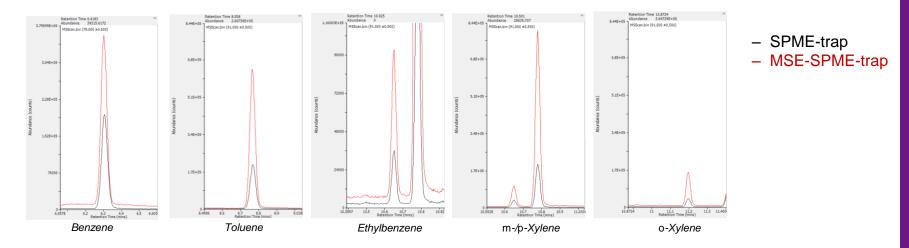


2. Volatiles in soil: Understanding contamination and effects on soil health


Extending performance of traditional SPME

- **Fast, simple sampling**: SPME is ideal for sampling wide-ranging VOCs from a variety of tricky matrices
- Increase sensitivity: Analyte refocusing and preconcentration on a sorbent-packed trap
- Confident identification: Unique multi-step enrichment boosts analyte extraction for trace-level VOCs

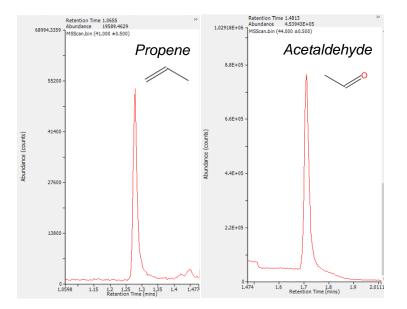
Screening of volatiles in soil near roadside



Multi-step enrichment revealed **112 more compound peaks** with >50% confidently identified (MF >850 in NIST library).

- Undecane: Can irritate skin and eyes.⁴
- Benzothiazole: Central nervous system & respiratory depression. Kidney & liver toxicity.⁵
- 4-(1-Ethylmethyl)-benzaldehyde: Eye, skin and respiratory irritation.⁶

BTEX contamination within soil



- Known carcinogens and endocrine disruptors, often detected around roads and areas affected by emissions from combustion of gasoline and diesel fuels
- Have a high affinity for apolar matrices like soil and so, can be difficult to monitor especially at low levels
- MSE-SPME-trap enabled increased responses, ideal for detecting and identifying components if present at trace levels with increased confidence

In the agricultural sector

- VOC profiles provide non-destructive fingerprints indicative of health
- Allows the monitoring of organisms and understanding of microorganism, plant and invertebrate interactions in soil
- Offers valuable insights of the agronomic effects of composts and mineral fertiliser on soil properties (i.e., chemical, biological and physiological)

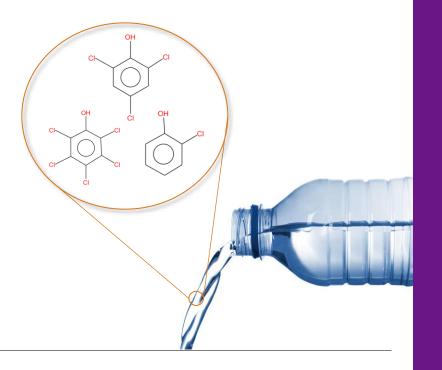
Analyte refocusing provides **excellent peak shape** for these **difficult early-eluting compounds** of interest that have the potential to be used as **indicators for monitoring soil health**.

⁷ M. Schloter, P. Nannipieri, S.J. Sørensen and J.D. van Elsas, Microbial indicators for soil quality, *Biol. Fertil. Soils*, 2018, 54: 1–10.

Summary

Case study 2

- Soil health is important globally as VOC concentration can have a negative effect on human health
- Monitoring ensures environmental health and safety is upheld
- Requires fast, sensitive and non-target screening methods
 - MSE-SPME-trap can be used to increase detection of low-level unknowns
 - Also used for monitoring target VOCs like BTEX in the same run
- This enables:
 - Reuse of land, e.g., for a residential housing development, that is safe and does not negatively impact human health
 - Authorities to be informed of the level of remediation needed to remove contamination
 - An understanding of how to implement sustainable land management, monitoring and remediation processes to reduce global impact



3. Chlorophenols in water: Eliminating sample prep

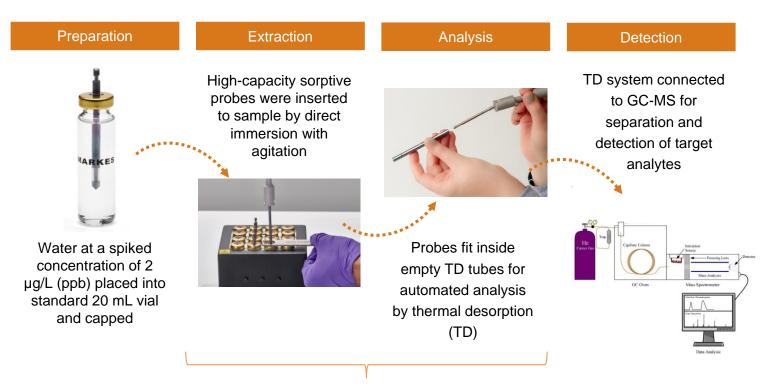
Monitoring disinfection by-products in water

- Water pollution occurs when harmful substances contaminate streams, rivers, lakes or other bodies of water.
- Different processes are used for removing these substances, including disinfection.
- Halogenated disinfection by-products are often formed as a result.
- These substances are being investigated to understand their effect on human health.
- Toxic and persist in water for longer than in air.
- Contribute malodours to water, detectable by humans at very low levels.

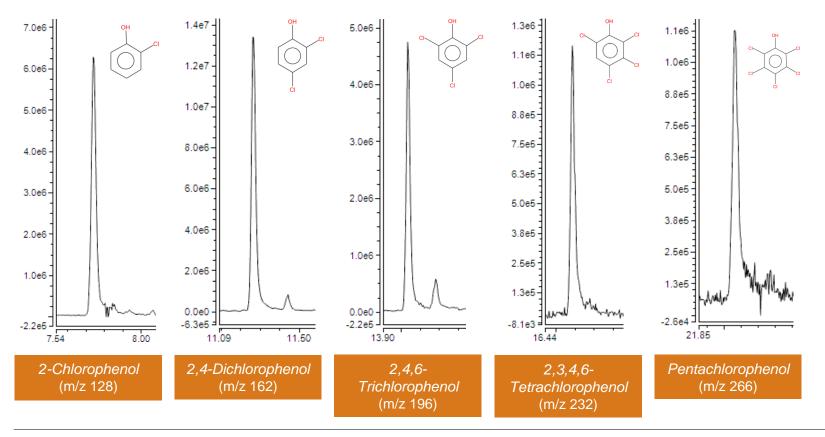
Current methodologies

- Low odour thresholds require sensitive detection.
- Current methods include lengthy and manual solvent extraction steps or SPE.
- In the US:
 - EPA Method 528 (drinking water)
 - Describes SPE
 - Liquid injection of an aliquot of concentrated analytes in **methylene chloride**
 - EPA Method 604 (wastewaters)
 - Many solvent extraction steps
 - Use of harmful **derivatising agent** (pentafluorobenzyl bromide, PFB).

Overcoming challenges of solvent-based methods


Steps towards a greener lab...

- Sorptive extraction allows for:
 - Large concentration enhancements
 - Small sample sizes
 - Easy handling
 - Fast extraction
 - Simple methodology
 - Elimination of solvent use
- Next steps to investigate **high-capacity** sorptive extraction, similar principles to SPME.
- Can sorptive extraction modernise the way labs test for phenols in water?
 - US EPA Methods 528, 604 and 8041 (SW-846)


Fast, simple extraction of chlorophenols in water

Note: Extraction and analysis using high-capacity probes can be automated, providing hands-free operation

Initial results for the detection of chlorophenols in water

Summary

Case study 3

- High-capacity sorptive extraction has the potential for rapid, sensitive analysis of chlorophenols in water
- Eliminates sample preparation steps, use of hazardous solvents and derivatising agents
- Simplifies and expedites the process compared to conventional techniques
- Provides huge improvements in health & safety for the operator
- Can be automated from sampling to GC injection, enabling hands-free approach

Conclusions

- HS-trap, SPME-trap and high-capacity sorptive extraction overcome analytical challenges with existing techniques.
- These alternatives provide **versatile options** for a variety of environmental analyses, enabling:
 - Simplified sample preparation, removing many manual handling steps
 - **Superior sensitivity** for trace-level analysis thanks to analyte preconcentration
 - Excellent peak shape across a wide volatility range of analytes in a single run
 - Enhanced chromatographic performance by removal of residual sample moisture prior to analysis
- High sample throughput is maintained, ideal for high productivity labs.
- Multi-step enrichment boosts sensitivity further, ideal for trace-level non-target screening.
- New techniques are allowing labs to move towards greener ways for sample extraction that are safer and more environmentally friendly.

Contact Markes

enquiries@markes.com

UK: +44 (0)1443 230935

USA: +1 866-483-5684 (toll-free)

Germany: +49 (0)69 6681089-10

P.R. China: +86 21 5465 1216

www.markes.com www.markes.com.cn

@MarkesInt

https://uk.linkedin.com/company/ markes-international

