Practice for estimating pH (ASTM D8294-21)

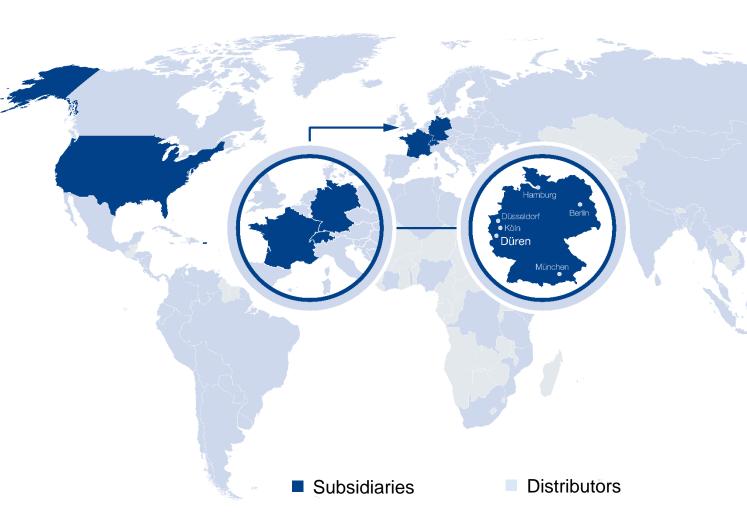
Dr. Christian Prokisch, 01.08.2023

MACHEREY-NAGEL

www.mn-net.com

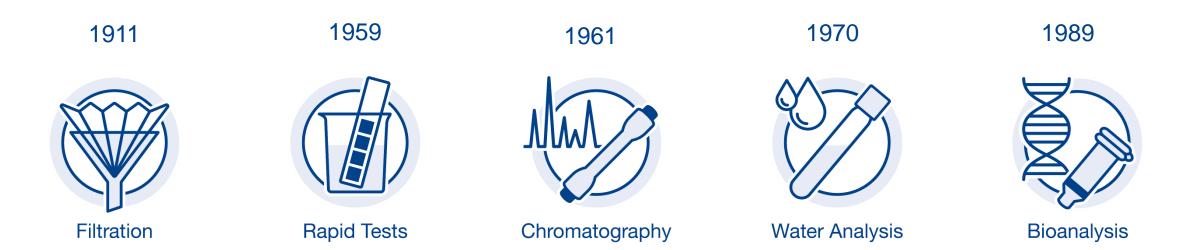
Agenda

MN Water Analysis



Company

MN today


- 4th Generation family owned
- More than 700 employees
- More than 25.000 products
- Turnover 120 Mio. €

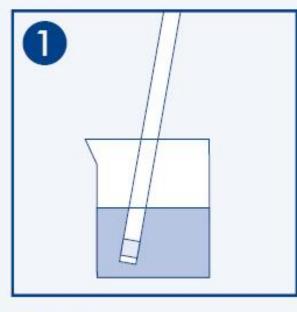
Company

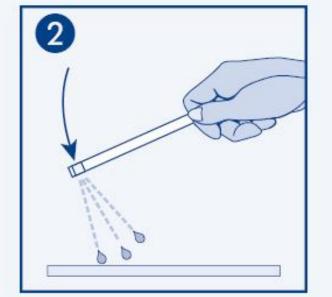
Business units

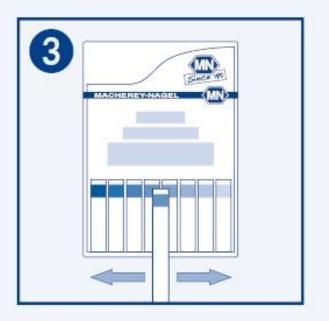
Company

pH test papers and test strips

pH-Fi			PT 5
			ľ
9	10	11 1	2
	┥	┥	







Using pH-Fix test strips

Read result

Dip in

Why bother?

- pH is a little more complex than many people think
 - · consistently underestimated factor
 - often overseen
 - sometimes counter-intuitive
- Lack of knowledge may have consequences
 - Transfer ideas where it is not appropriate
 - "interesting" decisions
 - long term practices that are simply not working
- pH testing is used in many methods

Water sample preserved at pH=2

- In general: correct reading
- pH 1 and pH 3 can easily be distinguished
 - Reliable results
 - Easy to use
 - ...

Rain water

Type / Brand	Strip read-off
а	5
b	6
С	7

• Different strips give different results

Desalted water

рН	Read-off A	Read-off B
5	5.5	6.5
5.5	5.5	6.5
6	5.5	6.5
6.5	5.5	6.5
7	5.5	6.5

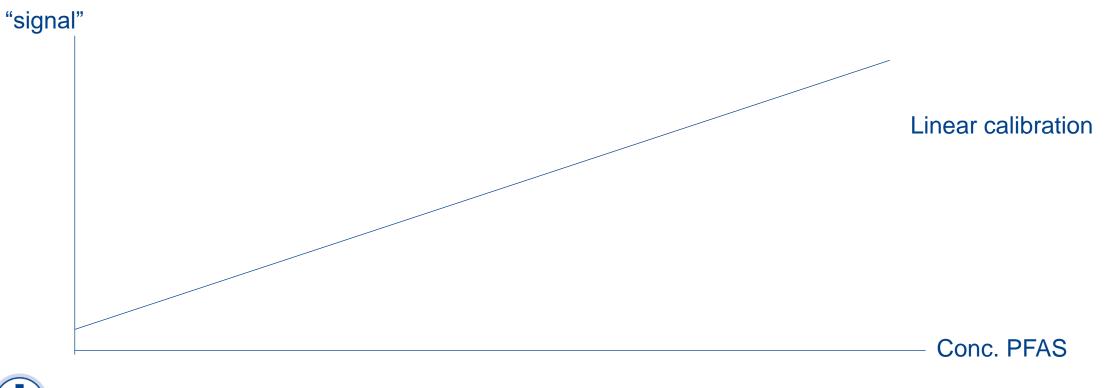
- pH test strips do not seem to react on changes in pH
- Different strips show different readings

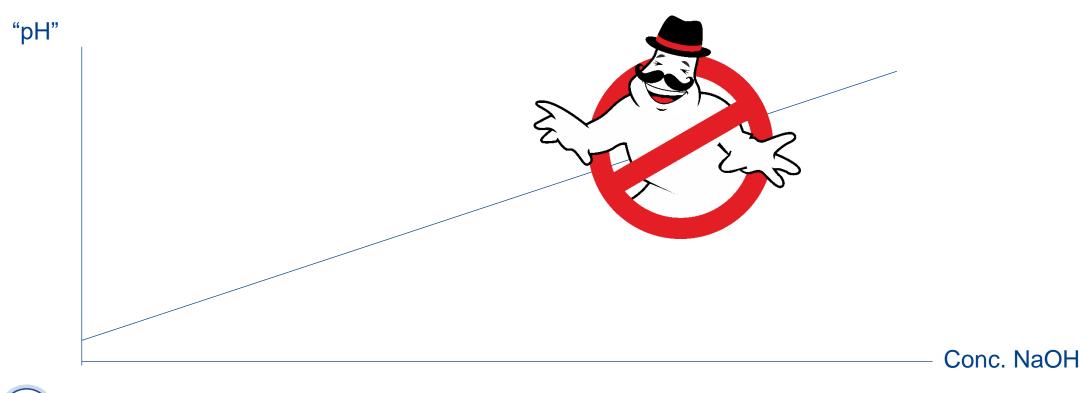
Urine

рН	Read-off A	Read-off B
5.5	5.5	5.5
6.0	5.0	5.0
6.5	6.5	6.5
7.0	7.0	7.0
7.5	7.5	7.5

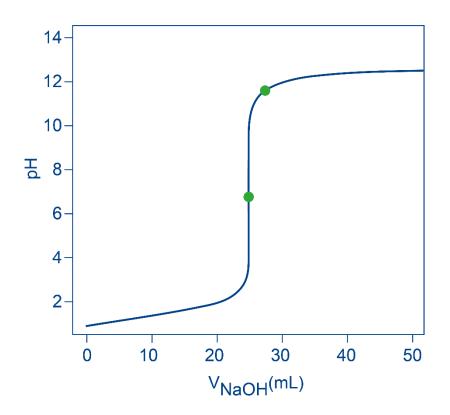
• All pH test strips show correct readings

Summary


рН	Test strip A	Test strip B
pH 2 preserved sample	good	good
Rainwater	Not good	Not good
Desalted water	Not good	Not good
Urine	good	good


Typical calibration

Uncertainty lowest in the middle of the range


pH – intuitive expectation

PH different from most other analytes

Titration curve

() Uncertainty highest in the middle of the range (pH = 7)

pH understanding

- Basic definition
 - $pH = -log_{10} ([H_3O^+])...$
 - [H3O+]*[OH-]=10⁻¹⁴
- Logarithmic relationship
 - Like exponential relationships very difficult to "feel"
- "Concentration" lowest in the middle of range...

Concentration of analyte

- "Analyte" concentration in this case:
 - [H3O+] + [OH-]

рН	[H ₃ O+]	[OH ⁻]	[H ₃ O ⁺] + [OH ⁻]	
1	10 ⁻¹	10 ⁻¹³	10 ⁻¹	
2	10 ⁻²	10 ⁻¹²	10-2	Concentration lowest
7	10 ⁻⁷	10 -7	2*10 ⁻⁷	in the middle of the
13	10 ⁻¹³	10-1	10 ⁻¹	range

Capability of test strips

- Example, Nitrate
 - Detection limit: 10 mg/L
 - Molar weight: 62 g/mol
 - => 1,6 * 10⁻³ mol/L
- Rule of thumb for test strip detection limits:
 - Regular = about 10⁻³ mol/L
 - High performance = about 10⁻⁴ mol/L
- Exceptions apply

What does it mean for pH-strips?

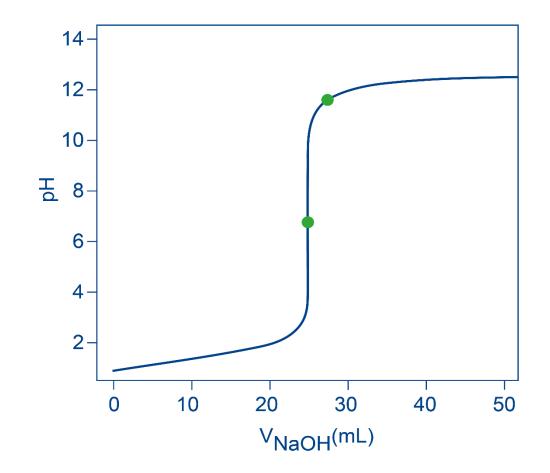
- Similar limits apply
- In pure (!) water
 - pH test papers should NOT be used in the range pH 4-9
 - Between pH = 4 and pH = 9 papers show a value that is a property of the strip rather than a property of the sample

рН	[H ₃ O+]	[OH ⁻]	[H ₃ O ⁺] + [OH ⁻]
1	10 ⁻¹	10 ⁻¹³	10 ⁻¹
3	10 ⁻³	1 0 ⁻¹¹	10 ⁻³
5	10 ⁻⁵	10 ⁻⁹	10 ⁻⁵
7	10 ⁻⁷	10 ⁻⁷	2*10 ⁻⁷
9	10 ⁻⁹	10 ⁻⁵	10 ⁻⁵
11	10 ⁻¹¹	10 ⁻³	10 ⁻³
13	10 ⁻¹³	10 ⁻¹	10 ⁻¹

What we saw before...

рН	Brand A	Brand B	
pH 2 preserved sample	good	good	
Rainwater	Not good	Not good	
Desalted water	Not good	Not good	
Urine	good	good	

- ← Understood
- ← Understood (pH between 4 and 9)
- ← Understood (pH between 4 and 9)
- ← Why does this work?



If we only had this...

...nature would be different

- Most processes in nature require a pH of 4-8
- pH 4-8 very difficult to maintain only with strong acids and bases
- Nature provides weak acids and buffer substances
 - Acetic acid / acetate (pH 4.7)
 - Hydrogenphoshate /Dihydrogenphosphate (pH 7.2)
 - Citric acid / citrate (pH 4.2)

• ...

What we saw before...

рН	Brand A	Brand B	
pH 2 preserved sample	good	good	
Rainwater	Not good	Not good	
Desalted water	Not good	Not good	
Urine	good	good	

- ← Understood
- ← Understood (pH between 4 and 9)
- ← Understood (pH between 4 and 9)
- ← Understood (buffering)

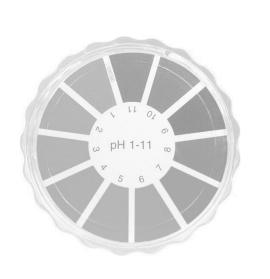

What does the Standard Practice say?

Standard Practice recommendations

- Well buffered solutions
 - pH <3 or pH >10 or Active buffer > 10^{-4} mol/L
- Use of pH test
 - Apply drop to paper
 - Dip into sample
- Typical samples
 - Most body fluids
 - Most surface waters
 - Most solutions in chemical processing
 - Acid stabilized samples

Standard Practice recommendations

- Weakly buffered solutions
 - pH 3-4 or pH 9-10 or Active buffer 10⁻³ -10⁻⁴ mol/L
- Use of pH test
 - Apply drop to paper
 - Dip into sample
- Typical samples
 - Soft river / lake water



Standard Practice recommendations

- Very weakly buffered solutions
 - pH 4-10 AND active buffer <10⁻⁴ mol/L
- Use of pH test
 - Apply drop to paper
 - Dip into sample
- Typical samples
 - DI Water
 - HPLC eluents

Summary

Summary

ASTM Practice

- Important difference
 - Regularly buffered solutions
 - Weakly buffered solutions
 - Very weakly buffered solutions
- Strip testing is useful for regular and weakly buffered solutions

Thank you for your attention!

Dr. Christian Prokisch I cprokisch@mn-net.com I +49-2421-969-166

MACHEREY-NAGEL

www.mn-net.com

[©] Artem Furman (1), darknightsky (10), SG- design (11 und 26), BRAD (12), Ilhnklv (17), jolopes(19) - Fotolia