38th Annual 2023 Environmental Measurement Symposium

Flashpoint Measurement by MCCCFP Method

Juan J Ayala 1st August 2023

MCCCFP

• First Developed in 1998

- Original Methods for Petroleum Industry
- Innovative Continuously Closed Cup Flash Point (CCCFP)
- •ASTM approved since year 2004 as D6450
- D6450, further developed for optimization of low level contamination, Modified *Continuously C*losed Cup Flash Point (MCCCFP)

•Lead to development of new method; D7094

 Today used in many different industries, one of the many applications is liquid waste testing

MCCCFP - Applications

ASTM D7094:

Various other samples:

Diesel
Jet Fuel
Kerosene
Fuel Oil
Lube Oil
Gasoil

 Chemicals Solvents Liquid Waste • Flavors • Fragrances •Varnish •Vegetable oil

MCCCFP – Measuring principle

Continuously closed cup method:

- 1. 1-2 mL of sample are filled into the sample cup
- 2. The sample cup is installed in the analyzer, lifted to heating plate and regulated to the starting temperature
- 3. A stable heating rate of 2.5 °C/min is adjusted
- 4. An ignition attempt (high voltage arc) is done every 1 °C
- 5. The pressure inside the sample cup is continuously monitored
- 6. As soon as flame occurs in the headspace of the cup the pressure peak during an ignition distinctively increases
 - □ A flashpoint is detected!

Established method ASTM D8175 (D93)

Pensky Martens Tester:

Sample quantity: 75 mL
Open flame or filament
Danger of fire when measuring contaminated samples

MCCCFP Advantages - Safety

Continuously closed
No open flame
Small sample quantities
Intrinsically safe

No safety concern even for unknown samples!

MCCCFP Advantages – Testing Range

- Wide flashpoint testing range from -40°F to 790°F (-40°C to 420°C)
- •Small sample quantities of 2mL
- Fast turnaround time

Test Samples used for D8174 & D8175

TABLE X4.1	Sample	Reference,	Corresponding	Descriptions ,	and

Sample ID	Components and Their Volumetric Fractions	Phases
X50B50	50 % Xylenes, 50 % Butan-1-ol	1
B60D40	60 % Butan-1-ol, 40 % <i>n</i> -Decane	1
D70U30	70 % n-Decane, 30 % <i>n</i> -Undecane	1
A10H90	10 % Acetone, 90 % <i>n</i> -Heptane	1
Multi-Phase	50 % Diesel, 47.5 % Water, 2.5 % Acetone	2

Test Results of MCCCFP, D8174 and D8175

Sample	Flash Point	MCCCFP average	r	D8175 average	r	D8174 average	r
A10H90	-18,6	-18,5	1,9	no result		-21,4	2,34
A10H90	-18,6						
A10H90	-18,6						
A10H90	-19,6						
A10H90	-17,6						
A10H90	-19,6						
A10H90	-17,6						
A10H90	-18,6						
A10H90	-18,6						
A10H90	-17,6						
Multi-Phase aqueous laver	30.2	30.6	1 /	29.5	2.0	22.2	1 /10
Multi-Phase aqueous layer	31.2	50,0	<u> </u>	25,5	2,0	52,5	<u> </u>
Multi-Phase aqueous layer	30.2						
Multi-Phase aqueous layer	30.2						
Multi-Phase aqueous layer	30.2						
Multi-Phase aqueous layer	31.2						
Multi-Phase aqueous layer	31.2						
Multi-Phase aqueous layer	30.2						
Multi-Phase aqueous layer	30.2						
Multi-Phase aqueous layer	31,2						
Multi Phase organic lavor	22.4	22.0	2.2	24.1	2.0	21.1	2 21
Multi-Phase organic layer	32.4	55,5	2,2	54,1	2,0	51,1	2,21
Multi-Phase organic layer	32,4						
Multi-Phase organic layer	34.4						
Multi-Phase organic layer	34.4						
Multi-Phase organic layer	33.4						
Multi-Phase organic layer	35.4						
Multi-Phase organic layer	34.4						
Multi-Phase organic laver	33.4						
Multi-Phase organic layer	34,4						

Test Results of MCCCFP, D8174 and D8175

Sample	Flash Point	MCCCFP average	r	D8175 average	r	D8174 average	r
X50B50	25,4	25,1	1,8	26	2,3	24,1	0,88
X50B50	25,4						
X50B50	25,4						
X50B50	24,4						
X50B50	25,4						
X50B50	24,4						
X50B50	24,4						
X50B50	24,4						
X50B50	25,4						
X50B50	26,4						
	52.2	53.0	1 /	54.7	13	52.8	0.97
D70U30	53.3		±,Ŧ	<u> </u>	1,5	52,0	0,57
D70U30	54.3						
D70U30	54.3						
D70U30	53 3						
D70U30	54.3						
D70U30	54.3						
D70U30	53.3						
D70U30	54,3						
D70U30	54,3						
P60D40	25.2	24.8	1 /	24.0	0.0	no rocult	
	35,5	34,8	1,4	34,9	0,9	no result	
B60C40	35,5						
	34,3						
B60C41	34,3						
B60D42	35,5						
	25.2						
	30,5						
	34,3						
B60C44	34,5						

MCCCFP – Method Consensus Development

- ASTM approved since 1999 as D6450
- D7094 published in 2003 after successful ILS in 2001 with direct comparison to D93 using neat hydrocarbons like diesel, jet and lube oil + with gasoline contaminated hydrocarbons.
- Comparison to D93 done to show our MCCCFP can successful test difficult samples as well (such contaminated samples can be found in waste waters as well).
- 2018 the first European flash point method was developed based on D7094, namely IP620
- European work started in 2021 to develop new standard method based on D7094 as an EN ISO method.

MCCCFP – Method Consensus Development Cont'

- The new 2022 ILS and its resulting precision will be used together with the British method IP620 for the development.
- Currently draft of new EN ISO method is written which will be circulated in the ISO/TC28 and in WG9 flash point work group together with research report of ILS2022.
- In 2022, the largest ever flashpoint ILS was performed for MCCCFP using labs in North America and in Europe.
- 20 labs with 25 samples tested in duplicate were included in the ILS. More than 1000 test measurements were used to produce new precision for this advanced method

MCCCFP -

New Developments:

- New draft method circulated
- ASTM Committee D34; WK84158 Standard Test Method for Finite Flash
 Point determination of Liquid Wastes by Modified Continuously Closed Cup
 (MCCCFP) Tester (Technical Contact: Andreas Schwarzmann)
- o Ballot currently issued
- Results to be discussed during December, 2023 Meetings in Orlando, Florida
- © Expecting method publication in 2023, early 2024
- $\circ \, \text{as}$ the safest flash point test method for waste samples

Any Questions?

Juan J Ayala Chicago | Houston USA P +1 312.476.9292 F +1 312.268.7111 C +1 312.622.7520 juan@ayalytical.com

ayalytical.com