Thermo Fisher

Microplastics Analysis using Accelerated Solvent Extraction (ASE) and Pyrolysis Gas Chromatography / Mass Spectrometry (Pyr-GC/MS)

Chris Shevlin

Scientific Affairs Manager NEMC 2023 August 1, 2023

The world leader in serving science

The microplastic problem

Microplastics detected in meat, milk and blood of farm animals

Particles found in supermarket products and on Dutch farms, but human health impacts unknown

Scientists found microplastics in 75% of meat an in their pilot study. Photograph: David Kelly

Microplastic contamination has been rej time, as well as in the blood of cows and

Microplastics found in human blood for first time

Exclusive: The discovery show body and may lodge in organs

 Microplastics cause damage to huma Kelly/Photograph David Kelly

lodge in organs Antarctic snow for first time Vin

New Zealand researchers identified tiny plastics, whic toxic to plants and animals, in 19 snow samples

Microplastics found in freshly fallen

Research published in The Cryosphere journal identified microplast Antarctica for the first time. Photograph: Alex Aves

Viruses survive in fresh water by 'hitchhiking' on plastic, study finds

Thermo Fisher

Intestinal viruses such as rotavirus were found to be infectious for up to three days by attaching to microplastics, research shows

Human enteric, or intestinal, viruses survive for days on plastic particles easily swallowed by swimmers, Stirling University researchers found. Photograph: GJ Flick and DD Kuhn/Virginia Tech

Source: www.guardian.co.uk

Analysis of microplastics: challenges

Sample collection and preparation

- Critical to understand distribution, composition, size
- Automation where feasible to reduce costs and accelerate sample throughput

hermo

• Include sub 1µm size (nanoplastic)

Technique	Attribute
FTIR	 Widely used particle number concentration Polymer identification (> 10 μm) Spectra match to library
Raman micro-spectroscopy	 Size and shape to 1 µm
Py-GC-MS	 Provides molecular level information to determine chemical composition/structure <u>regardless of size</u> Polymer determination Contaminants on MP surface Quantitative and unknowns

Microplastics analysis

- Detection of target polymers
- Quantitation

- Detection of non-target polymers
- Identification of unknowns

thermo scientific

Accelerated solvent extraction (ASE) Pyr-GC-MS

Gives massbased concentrations of polymers Reduces processing and labor Quantitation is time required not limited by to pre-treat size and isolate MP/NP ASE-Pyrolysis ĠC-MS Methods can Can be used report total plastic content with low or high lipid of a sample, both MPs and content (3%) NPs Method is particle size independent

Thermo Fisher

SCIENTIFIC

Sample prep is extremely important!

Accelerated Solvent Extraction

- Automates sample preparation for solid and semisolid samples using solvents at elevated temperatures and pressure.
- Operates above the boiling point of extraction solvents by using pressurized sealed extraction cells.
- Ensures complete dissolution of all polymer materials

Thermo Scientific[™] EXTREVA[™] ASE[™] Accelerated Solvent Extractor

Thermo Scientific[™] Dionex[™] ASE[™] 350 Accelerated Solvent Extractor system

Extraction and analysis of rice samples

Sample Preparation Procedure

Matrix spiked store-bought rice

- Polystyrene (PS)
- Polypropylene (PP)
- Polyethylene Terephthalate (PET)
- Polycarbonate (PC)
- Polyvinyl Chloride (PVC)

Homogenized sample + 40 μ g deuterated PS $(d_5 - PS)$ Inert diatomaceous earth precleaned with DCM in void

Glass fiber filter

1.0 g

Glass fiber filter

10mL ASE Cell

Polyethylene (PE)

ASE extraction conditions

Parameter	Extraction parameters
Cell type	Stainless steel
Extraction solvent	Dichloromethane (DCM)
Extraction/Oven temperature (°C)	180
Static time	5
Cycles	2
Rinse volume (%)	80
Purge time (s)	75
System rinse volume (mL)	9
Heating time (min)	9
Pressure (psi)	1,500

Thermo

- 80 µL extract transferred into a pyrolysis cup
- Evaporated for 30 min in fume hood
- Loaded onto autosampler for Pyr-GC-MS

The six polymers investigated remained sufficiently dissolved for over 2.5 hours post extraction

Pyrolysis GC-MS parameters

Parameter	Setting				
Micro-furnace Multi-Shot Pyrolyzer [™] (Double-Shot analysis) EGA/PY-3030D (Frontier Lab)					
First-shot furnace temperature (thermal desorption)	Ramped from 100 °C \rightarrow 20 °C /min \rightarrow 300 °C (1 min)				
Second-shot furnace temperature (pyrolysis)	650 °C				
Interface temperature	320 °C				
Pyrolysis time	0.20 min (12 s)				
GC					
Column	Ultra Alloy™ 5 capillary column (30 m, 0.25 mm i.d., 0.25 µm film thickness) (Frontier Lab)				
Injector port temperature	300 °C				
Column oven temperature program	40 °C (2 min) \rightarrow (20 °C /min) \rightarrow 320 °C (14 min)				
Injector mode	Split/splitless (split 50:1)				
Carrier gas	Helium, 1.0 mL/min, constant linear velocity				
MS					
Ion source temperature	250 °C				
Ionization energy	Electron ionization (EI); 70 eV				
Scan range	40 to 600 <i>m/z</i>				

Polymer targets and recoveries

Plastic type	Pyrolysis product	Indicator ions (<i>m/z</i>)	Molecular ion (<i>m/z</i>)	LOQ (µg/g)
PP	2,4-dimethyl-1-heptene	70, 83, 126	126	1.25
PS	5-hexene-1,3,5-triyltribenzene (styrene trimer)	91, 117, 194, 312	312	0.94
PET	Dimethyl terephthalate* Vinyl benzoate	194, 163 105, 77, 148, 51	194 148	2.86
PC	Bisphenol A (BA)	213, 119, 91, 165, 228	242	1.73
PE	n-alkene (C ₁₀ , C ₁₂ , C ₁₄)	83, 111, 140	140, 196	3.95
PVC	Naphthalene	128, 132, 146, 116, 102	128	3.97
Internal standard				
Polystyrene-d ₅	Styrene monomer	109, 82, 54, 107, 108		
*Only after TMAH treatment				

	PE	PP	PET (VB)	PET*	PS	PVC	PC
Spike 1	95	96	99	91	86	80	128
Spike 2	75	75	97	66	96	73	131
Spike 3	86	78	97	87	90	93	132
Avg	85	83	97	81	90	82	130
St Dev	10	11	1	13	5	10	2

*After TMAH treatment, VB: quantification using vinyl benzoate

Real world rice samples

	Cor	ncentration (µg/g	n of polyethylene Concentration of po μ/g dw) (μg/g dv			of polypropy g dw)	w) Concentration of polyethylene terephthalate (µg/g dw)				Overall (μg/g dw)					
	Not s	haken	Sha	ıken	Not s	haken	Sha	aken	Not s	haken	Sha	iken	Not s	haken	Sha	iken
Sample	Not washed	Washed	Not washed	Washed	Not washed	Washed	Not washed	Washed	Not washed	Washed	Not washed	Washed	Not washed	Washed	Not washed	Washed
1	317	143	207	166	3	3	10	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>320</td><td>146</td><td>217</td><td>166</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>320</td><td>146</td><td>217</td><td>166</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>320</td><td>146</td><td>217</td><td>166</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>320</td><td>146</td><td>217</td><td>166</td></lod<></td></lod<>	<lod< td=""><td>320</td><td>146</td><td>217</td><td>166</td></lod<>	320	146	217	166
2	314	132	260	209	3	<lod< td=""><td>3</td><td><lod< td=""><td>4</td><td><lod< td=""><td>8</td><td>17</td><td>322</td><td>132</td><td>272</td><td>226</td></lod<></td></lod<></td></lod<>	3	<lod< td=""><td>4</td><td><lod< td=""><td>8</td><td>17</td><td>322</td><td>132</td><td>272</td><td>226</td></lod<></td></lod<>	4	<lod< td=""><td>8</td><td>17</td><td>322</td><td>132</td><td>272</td><td>226</td></lod<>	8	17	322	132	272	226
3	64	47	55	51	105	<lod< td=""><td><lod< td=""><td>3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>168</td><td>47</td><td>55</td><td>54</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>168</td><td>47</td><td>55</td><td>54</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>168</td><td>47</td><td>55</td><td>54</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>168</td><td>47</td><td>55</td><td>54</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>168</td><td>47</td><td>55</td><td>54</td></lod<></td></lod<>	<lod< td=""><td>168</td><td>47</td><td>55</td><td>54</td></lod<>	168	47	55	54
4	94	51	56	51	14	10	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>108</td><td>61</td><td>56</td><td>51</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>108</td><td>61</td><td>56</td><td>51</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>108</td><td>61</td><td>56</td><td>51</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>108</td><td>61</td><td>56</td><td>51</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>108</td><td>61</td><td>56</td><td>51</td></lod<></td></lod<>	<lod< td=""><td>108</td><td>61</td><td>56</td><td>51</td></lod<>	108	61	56	51
5	60	45	56	45	3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>64</td><td>45</td><td>56</td><td>45</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>64</td><td>45</td><td>56</td><td>45</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>64</td><td>45</td><td>56</td><td>45</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>64</td><td>45</td><td>56</td><td>45</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>64</td><td>45</td><td>56</td><td>45</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>64</td><td>45</td><td>56</td><td>45</td></lod<></td></lod<>	<lod< td=""><td>64</td><td>45</td><td>56</td><td>45</td></lod<>	64	45	56	45
6	57	48	67	53	3	<lod< td=""><td>7</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>61</td><td>48</td><td>74</td><td>53</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	7	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>61</td><td>48</td><td>74</td><td>53</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>61</td><td>48</td><td>74</td><td>53</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>61</td><td>48</td><td>74</td><td>53</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>61</td><td>48</td><td>74</td><td>53</td></lod<></td></lod<>	<lod< td=""><td>61</td><td>48</td><td>74</td><td>53</td></lod<>	61	48	74	53
7	55	58	55	54	3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>59</td><td>58</td><td>55</td><td>54</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>59</td><td>58</td><td>55</td><td>54</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>59</td><td>58</td><td>55</td><td>54</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>59</td><td>58</td><td>55</td><td>54</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>59</td><td>58</td><td>55</td><td>54</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>59</td><td>58</td><td>55</td><td>54</td></lod<></td></lod<>	<lod< td=""><td>59</td><td>58</td><td>55</td><td>54</td></lod<>	59	58	55	54
8	60	46	57	46	3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>46</td><td>57</td><td>46</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>46</td><td>57</td><td>46</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>46</td><td>57</td><td>46</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>46</td><td>57</td><td>46</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>46</td><td>57</td><td>46</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>63</td><td>46</td><td>57</td><td>46</td></lod<></td></lod<>	<lod< td=""><td>63</td><td>46</td><td>57</td><td>46</td></lod<>	63	46	57	46
9	60	54	57	54	3	<lod< td=""><td>3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>54</td><td>61</td><td>54</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>54</td><td>61</td><td>54</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>54</td><td>61</td><td>54</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>54</td><td>61</td><td>54</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>63</td><td>54</td><td>61</td><td>54</td></lod<></td></lod<>	<lod< td=""><td>63</td><td>54</td><td>61</td><td>54</td></lod<>	63	54	61	54
10	63	53	54	50	0	3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>56</td><td>54</td><td>50</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>56</td><td>54</td><td>50</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>56</td><td>54</td><td>50</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>56</td><td>54</td><td>50</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>63</td><td>56</td><td>54</td><td>50</td></lod<></td></lod<>	<lod< td=""><td>63</td><td>56</td><td>54</td><td>50</td></lod<>	63	56	54	50
11	79	51	47	45	3	3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>82</td><td>54</td><td>47</td><td>45</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>82</td><td>54</td><td>47</td><td>45</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>82</td><td>54</td><td>47</td><td>45</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>82</td><td>54</td><td>47</td><td>45</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>82</td><td>54</td><td>47</td><td>45</td></lod<></td></lod<>	<lod< td=""><td>82</td><td>54</td><td>47</td><td>45</td></lod<>	82	54	47	45
12	68	52	63	56	3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>71</td><td>52</td><td>63</td><td>56</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>71</td><td>52</td><td>63</td><td>56</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>71</td><td>52</td><td>63</td><td>56</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>71</td><td>52</td><td>63</td><td>56</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>71</td><td>52</td><td>63</td><td>56</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>71</td><td>52</td><td>63</td><td>56</td></lod<></td></lod<>	<lod< td=""><td>71</td><td>52</td><td>63</td><td>56</td></lod<>	71	52	63	56
13	51	51	48	60	3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>54</td><td>51</td><td>48</td><td>60</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>54</td><td>51</td><td>48</td><td>60</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>54</td><td>51</td><td>48</td><td>60</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>54</td><td>51</td><td>48</td><td>60</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>54</td><td>51</td><td>48</td><td>60</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>54</td><td>51</td><td>48</td><td>60</td></lod<></td></lod<>	<lod< td=""><td>54</td><td>51</td><td>48</td><td>60</td></lod<>	54	51	48	60

ThermoFisher SCIENTIFIC

dw = dry weight

Find out more:

Extraction and analysis of plastics in rice samples using accelerated solvent extraction and pyrolysis-gas chromatography-mass spectrometry

Authors

Kevin Thomas University of Queensland, Brisbane, Australia

Jake O'Brien, Elvis Okoffo, Cassie Rauert, To describe a new method for the extraction and analysis of microplastics using Kevin Thomas accelerated solvent extraction

Introduction

Goal

Keywords Accelerated solvent extraction (ASE), Dionex ASE 350 Accelerated Solvent Extractor, microplestics, nanoplastics Increased production and use of plastics have resulted in growth in the amount of plastic debris accumulating in the environment. This plastic debris can potentially fragment into smaller pices, with particles -5 mm and -5.1 µm defined as microplastics (MPa) and nanoplastics (NPA), respectively.¹ Over the past decades, an increasing number of studies have reported the occurrence of MPa/NPa in the aquatic and terrestrial environments, including oceanes, rivers, lakes, air, soil, and dust.²⁴ Most of the previously reported studies have typically relied on visual inspection and spectroscopic imaging approaches, reporting data on the size, shape, color, number, and polymer type of particles. These measurements may not reflect the total mass concentration of polymers in samples because the approaches are typically initied by size. The number of studies new reporting mass-based concentrations of common plastics is growing, as these methods can report the total plastic content of samples, including plastics in both the

thermo scientific

ThermoFisher

SCIENTIFIC

• <u>www.thermofisher.com/microplastics</u>

Microplastics analysis

- Detection of target polymers
- Quantitation

- Detection of non-target
 polymers
- Identification of unknowns

Thermo Fisher S C I E N T I F I C

Polymer standards & samples

Supplied by NILU & University of Queensland

- Polymer standards supplied by NILU
- Enables pyrolysis products to be determined
- HRAM spectrum obtained and added to library
- Two types of samples:
 - Stormwater samples (Filtration)
 - Milk & meat samples (ASE)

Preparation of milk and meat samples

Thermo Fisher scientific

Freeze dried and milled for 30 min.

Homogenize on overhead shaker at 140 rpm for 2 hours

Accelerated Solvent Extraction with ASE 350

Extraction parameter	Setting
Cell type	5 mL Stainless Steel
Extraction solvent	Dichloromethane (DCM)
Extraction temperature	180 °C
Static time	5 min.
Extraction cycles	3
Pressure	1,500 psi

- 80 µL extract transferred into a pyrolysis cup
- Evaporated in fume hood
- Loaded onto autosampler for Pyr-GC-HRAM

Method parameters

Multi-Shot Pyrolyzer EGA/PY-3030D parameters					
Analysis type	Double-shot analysis				
Thermal desorption					
Initial (°C)	100				
Initial (min)	0				
Rate (°C /min)	20				
Final (°C)	300				
Final (min)	1				
Total time (min)	11				
Pyrolysis					
Initial (°C)	650				
Initial (min)	0.2				
Interface temperature °C	320				

Trace 1310 GC System parameters					
Injector type	SSL with an adapter kit for gas injection				
Injection mode	Split				
Temperature (°C)	300				
Split ratio	200:1				
Carrier gas (mL/min)	He, 1				
Oven temperature program					
Temperature 1 (°C)	40				
Hold time (min)	2				
Hold time (min) Rate (°C /min)	2 20				
Hold time (min) Rate (°C /min) Temperature 2 (°C)	2 20 320				

Method parameters

Orbitrap Explor	ris GC 240 MS	parameters
-----------------	---------------	------------

Transfer line temperature (°C)	300
lonization type	EI
Ion source temperature (°C)	280
Electron energy (eV)	70
Emission current (µA)	50
Acquisition mode	Full scan
Mass range (<i>m/z</i>)	40-600
Resolving power setting	60,000
Lock masses (<i>m/z</i>)	133.01356; 207.03235; 225.04292; 281.05114; 299.06171; 355.06993

Thermo Scientific[™] Orbitrap Exploris[™] GC 240

Orbitrap Exploris GC 240 with Frontier multi shot pyrolizer installed on GC

Thermo Fisher SCIENTIFIC

Interferences

Single quadrupole vs Orbitrap

Chromatography and recovery

Pyrolysis products

Sometimes difficult to interpret results !!

Slide by courtesy of Frontier Laboratories

Total ion chromatogram vs blank after TD

Thermo Fi

Total ion current chromatogram (m/z 40–600) obtained for a milk sample (black chromatogram) compared with a solvent standard of a mix of polymers (red chromatogram) after the thermal desorption (TD) step.

Polymers found in real samples

Polymer	Pyrolysis products
Polystyrene (PS)	Styrene; styrene dimer; styrene trimer; allylbenzene; α -methylstyrene; toluene
Polypropylene (PP)	2,4-dimethyl-1-heptane; 3-5-dimethyl-1-hexane
Polyvinyl chloride (PVC)	Benzene, naphthalene, fluorene
Polymethyl methacrylate (PMMA)	Methyl methacrylate
Polycarbonate (PC)	Bisphenol A
Polyethylene terephthalate (PET)	Vinyl benzoate

High resolution spectra

Matching pyrolysis products with NIST 2020 & HRAM contaminants library

Milk samples

Standard

Milk sample

Environmental samples

Standard

Thermo Fisher SCIENTIFIC

Storm water sample

Conclusions

Targeted Analysis:

- Accelerated solvent extraction can extract a variety MPs/NPs including PS, PP, PE, PP, PC, and PVC from rice samples.
- Reduces processing and labor time needed to prepare MP/NP particles from samples
- Effective extraction of MPs/NPs from a wide range of environmental samples
- Rice samples that were found to contain between 17 and 317 µg/g dw of MPs/NPs and this approach has been applied elsewhere

Untargeted Analysis:

- Positive confirmation of the presence and identity of microplastics in different sample types.
- High selectivity and sensitivity were achieved by using the unique characteristics of the Orbitrap mass spectrometer, in combination with a targeted screening
- Combination of automated sample prep and automated analysis using the pyrolizer and targeted data processing enables an automated analysis of environmental samples.

Find out more:

Thermo Fisher

mel Hempstead, United Kingdom

ThermoFisher

SCIENTIFIC

- www.thermofisher.com/microplastics
- www.thermofisher.com/OrbitrapExplorisGC240

Acknowledgements

University of Queensland

- Dr. Kevin Thomas, Dr. Jake O'Brien, Dr. Elvis Okoffo, and Dr. Cassie Rauert
- An extra thank you to Dr Cassie Rauert for supplying milk and meat samples

NILU

• Dr. Vladimir Nikiforov and Dr. Dorte Herzke

Thermo Fisher S C I E N T I F I C

Thank you! Are there any questions?

The world leader in serving science

30 chris.shevlin@thermofisher.com NEMC Aug2023

