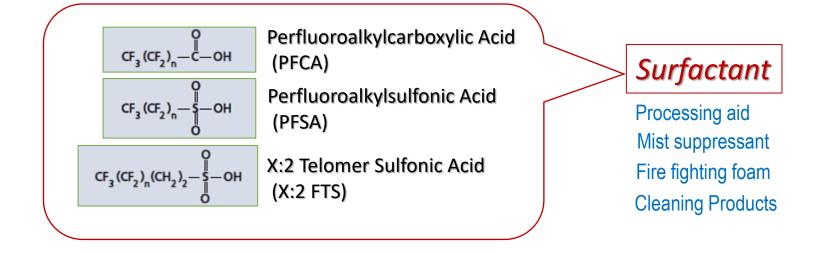


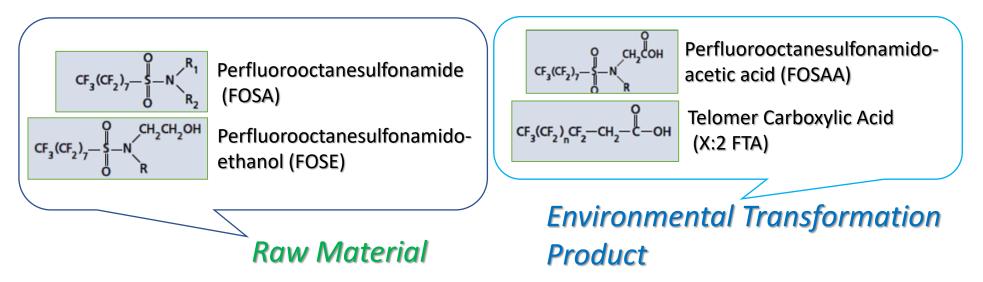
Method Development for Ultrashort-Chain and Short-Chain PFAS Analysis in Potable and Non-Potable Waters

Shun-Hsin Liang, Ph.D

Principal Scientist, LC Solutions

Shun-Hsin.Liang@restek.com

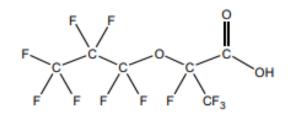



Pure Chromatography

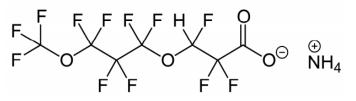
Outline

- PFAS Panel
- Ultrashort-Chain PFAS Analysis
- Direct Injection Method for Ultrashort-Chain/Alternative/Legacy PFAS Analysis
- ASTM WK80687 Method Development for Ultrashort-Chain and Short-Chain PFAS Analysis
- Conclusions

PFAS (Per- and Polyfluoroalkyl Substances)

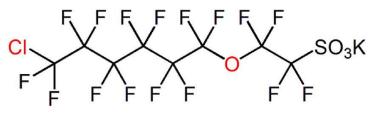


PFAS Testing Standards


Test Method	US EPA 537.1	ISO 25101:2009	DIN 38407-42	ASTM D7968- 17a	ASTM D7979-17	US EPA 533	US EPA 8327	ISO 21675
Sample Matrix	Drinking Water	All water types	All water types	soil	All water types (- drinking water)	Drinking Water	Non-potable water	All water types
# of Analytes	18	24	2	21	21	25	24	30
Sample Prep	SPE	Direct injection	SPE	Direct injection	Direct injection	SPE	Direct injection	SPE
Sample Volume	250 mL	1000 mL	50 mL	2 g	5 mL	250 mL	5 mL	50 – 1000 mL*
Detection limit	Optional	Not shown	 0.01 ug/L 0.025 ng/L for treated waste water 	MDL (2.41 – 258.37 ng/kg)	MDL (0.7 – 106.8 ng/L)	LCMRL (1.7 – 20 ng/L)	 MDL (0.7 – 4.6 ng/L) LLOQ is 10 ng/L 	LOQ: 0.2 ng/L (loose term)

PFOA and PFOS Alternatives

Perfluoroalkyl ether carboxylic acids (PFECAs)

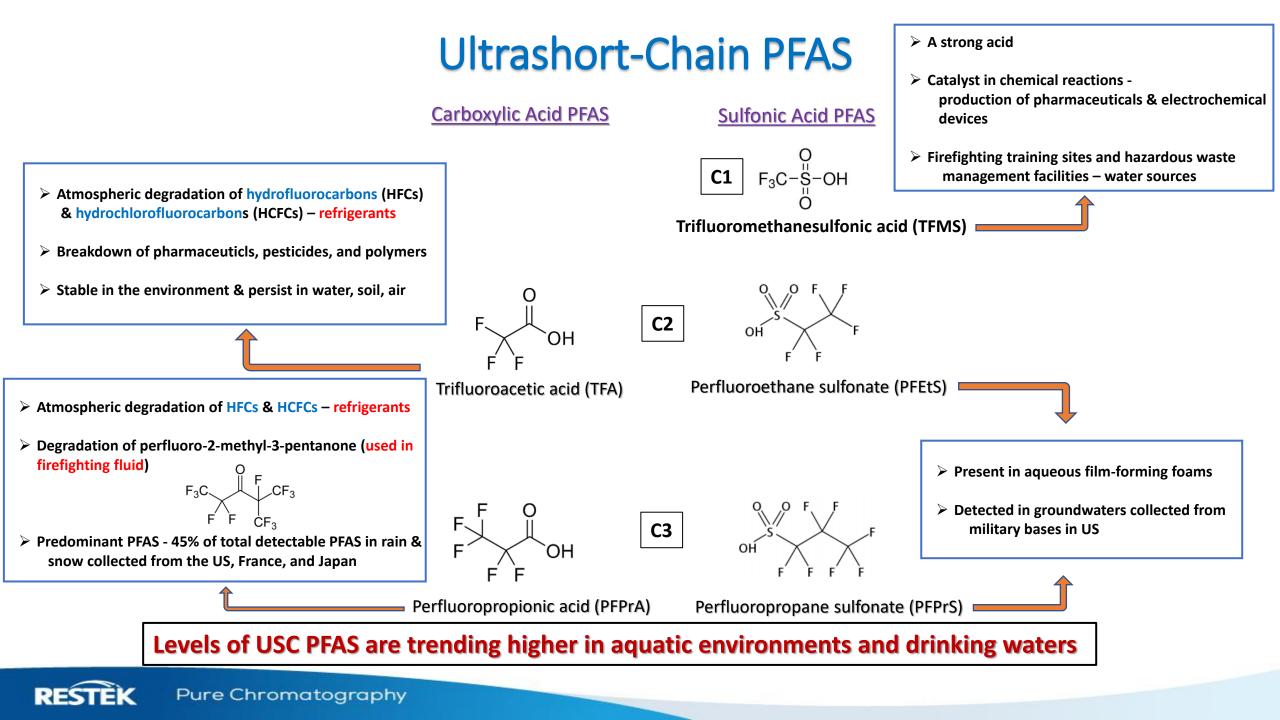


Hexafluoropropylene oxide dimer acid (HFPO-DA) GenX

ammonium 4,8-dioxa-3H-perfluorononanoate (ADONA)

Polyfluoroalkyl ether sulfonates (PFESAs)

F-53B (9-chlorohexadecafluoro-3-oxanonane-1-sulfonate) (9CI-PF3ONS)



F-53B (11-chloroeicosafluoro-3-oxanonane-1-sulfonate) (11Cl-PF3OUdS)

RES

Outline

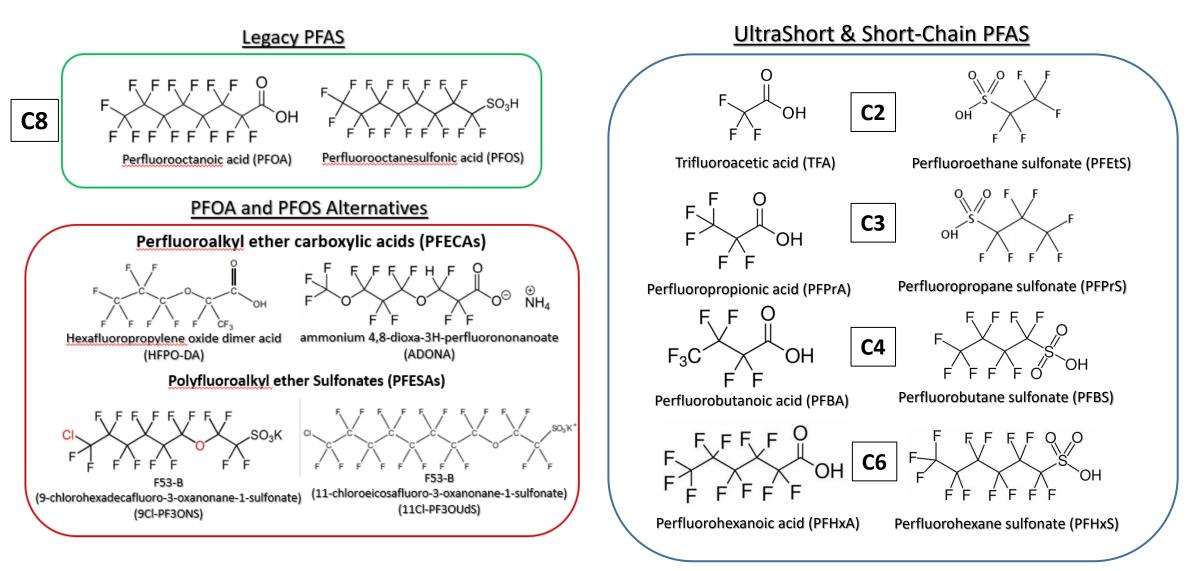
- PFAS Panel
- Ultrashort-Chain PFAS Analysis
- Direct Injection Method for Ultrashort-Chain/Alternative/Legacy PFAS Analysis
- ASTM WK80687 Method Development for Ultrashort-Chain and Short-Chain PFAS Analysis
- Conclusions

Measurement of Ultrashort-Chain PFAS

<u>Reversed-phase liquid chromatography</u> – insufficient retention/matrix effects

<u>GC-MS</u> for TFA and C4 – C6 carboxylic acid PFAS analysis – needs derivatization and is unable for simultaneous analysis of sulfonic acid PFAS

<u>Anionic exchange LC column</u> – extended retention (>20 minutes) and broader peak shapes for USC PFAS


<u>Supercritical fluid chromatography</u> – efficient analysis but needs to invest in SFC instrument

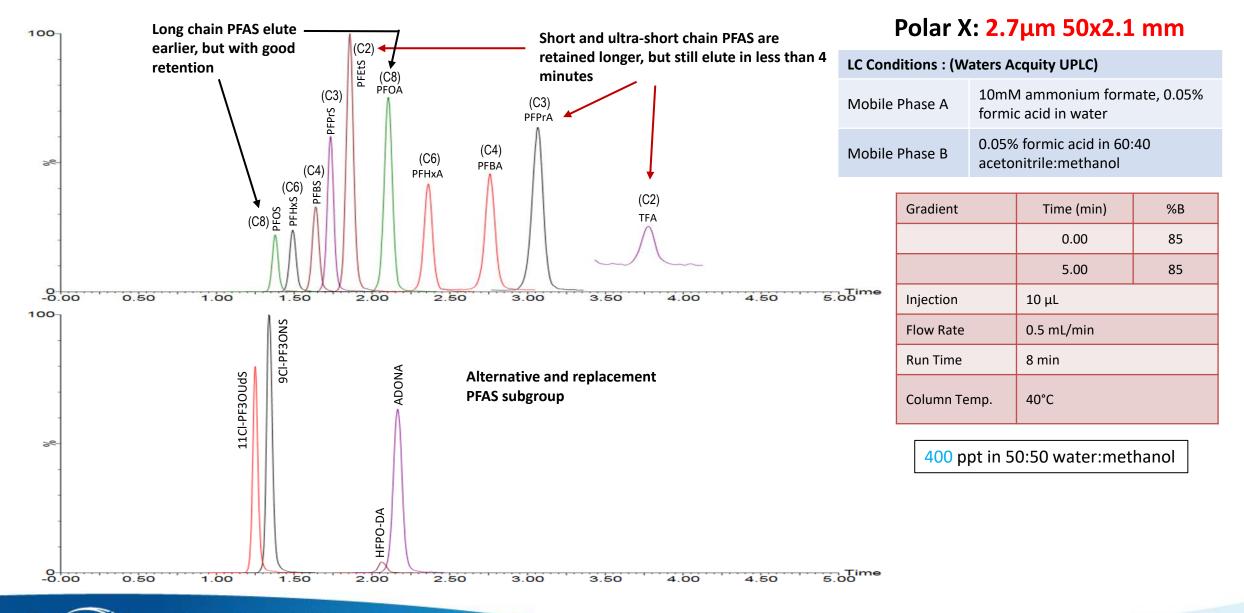
Outline

- PFAS Panel
- Ultrashort-Chain PFAS Analysis
- Direct Injection Method for Ultrashort-Chain/Alternative/Legacy PFAS Analysis
- ASTM WK80687 Method Development for Ultrashort-Chain and Short-Chain PFAS Analysis
- Conclusions

Ultrashort-Chain/Legacy/Alternative PFAS

Pure Chromatography

Novel Solution for Ultrashort-Chain PFAS Analysis

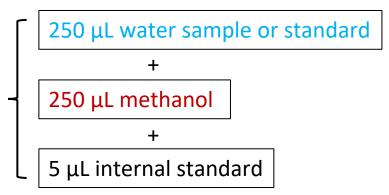


Polar X

- A single ligand capable of HILIC and Ion Exchange retention
- Proper retention for polar compounds

Analysis of Ultrashort-Chain/Legacy/Alternative PFAS

Pure Chromatography


Direct Injection Method Evaluation

Polar X Column 2.7μm, 50x2.1mm

Sample Preparation:

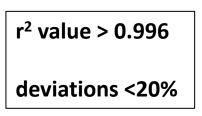
(polypropylene vial)

(10 ng/mL ${}^{13}C_2$ -PFHxA, ${}^{13}C_2$ -PFOA, ${}^{13}C_3$ -PFBS, ${}^{13}C_4$ -PFOS in methanol)

Direct Injection Method Evaluation

Accuracy & Precision of Fortified Water Samples: (40 & 160 ppt)

- 1. Tap water
- 2. River water (Chicago)
- 3. Groundwater
- 4. POTW water (Effluent)



Accuracy	Precision
% Recovery:	% RSD:
92 – 120 %	<20 %

Calibration Range: 10 – 800 ng/L

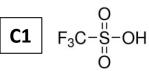
20 – 800 ng/L (for TFA)

Outline

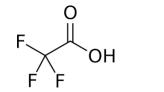
- PFAS Panel
- Ultrashort-Chain PFAS Analysis
- Direct Injection Method for Ultrashort-Chain/Alternative/Legacy PFAS Analysis
- ASTM WK80687 Method Development for Ultrashort-Chain and Short-Chain PFAS Analysis
- Conclusions

ASTM WK80687 Method Development

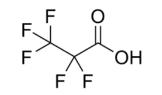
(C1 to C4 PFAS in Potable and Non-Potable Waters)

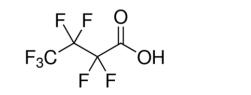

C2

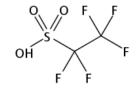
C3

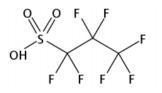

C4

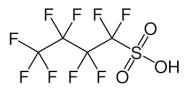
Carboxylic Acid PFAS


Sulfonic Acid PFAS


Trifluoromethanesulfonic acid (TFMS)



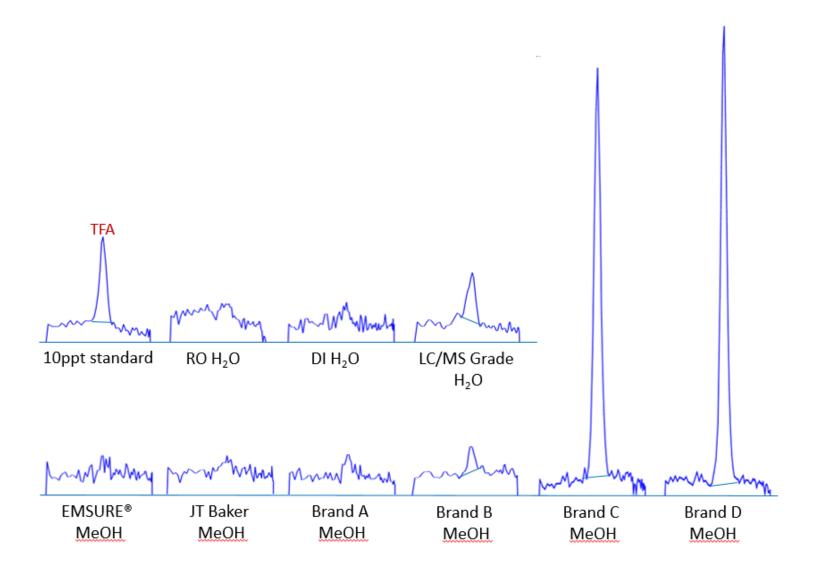

Perfluoropropionic acid (PFPrA)


Perfluorobutanoic acid (PFBA)

Perfluoroethane sulfonate (PFEtS)

Perfluoropropane sulfonate (PFPrS)

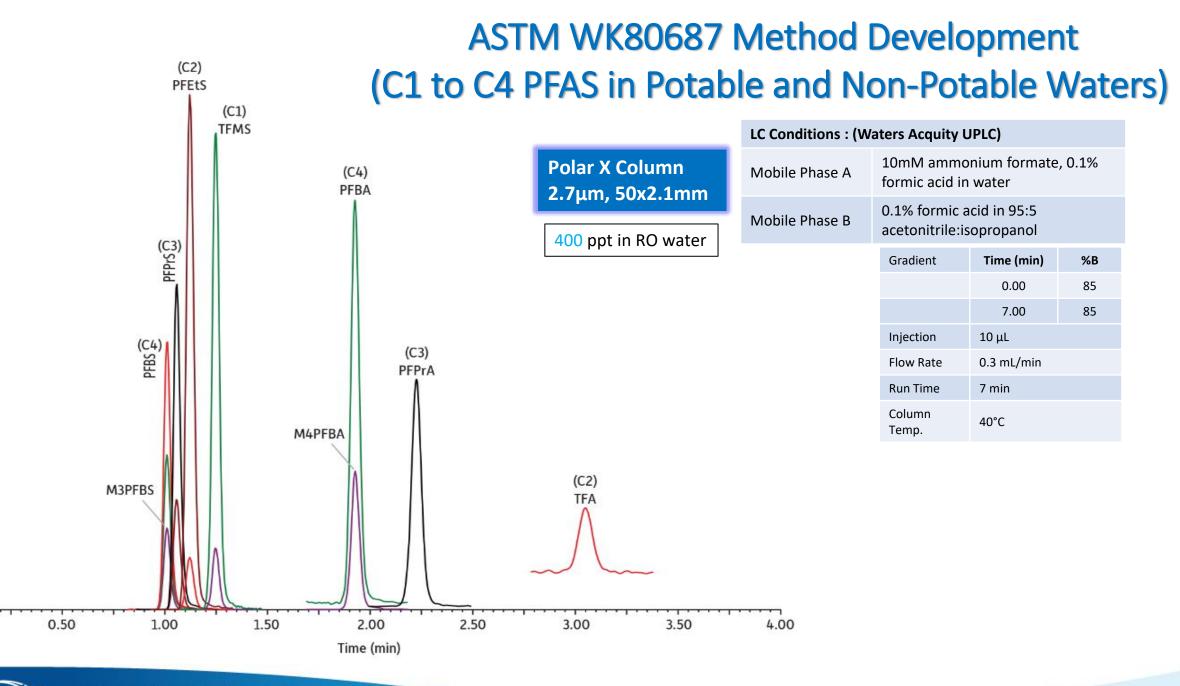
Perfluorobutane sulfonate (PFBS)


TFA contamination:

Reagent waters and solvents (methanol & acetonitrile)

TEK Pure Chromatography

TFA Contamination in Reagent Solvent


RESTEK Pure Chromatography

TFA contamination:

Reagent waters and solvents (methanol & acetonitrile)

Pure Chromatography

-0.00

Accuracy & Precision of Fortified Water Samples: (25, 50, 175 ppt)

- 1. Tap water
- 2. Bottled spring water
- 3. POTW water (Effluent)

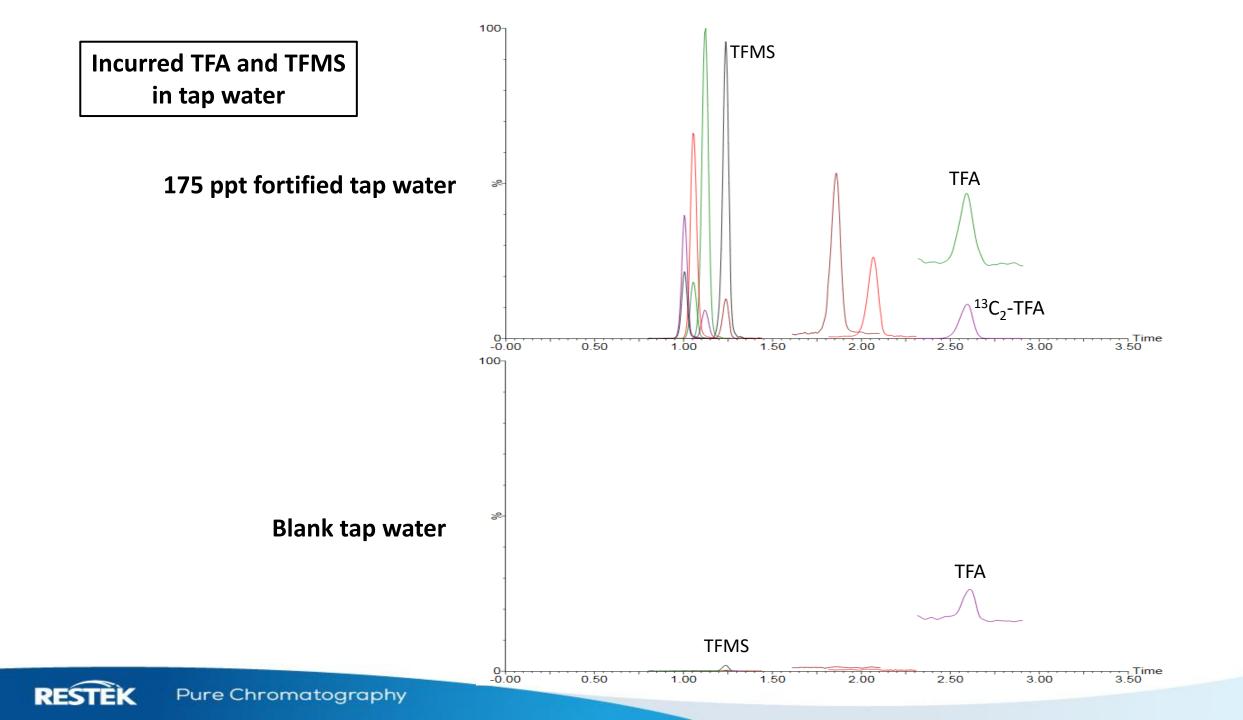
Sample Preparation:

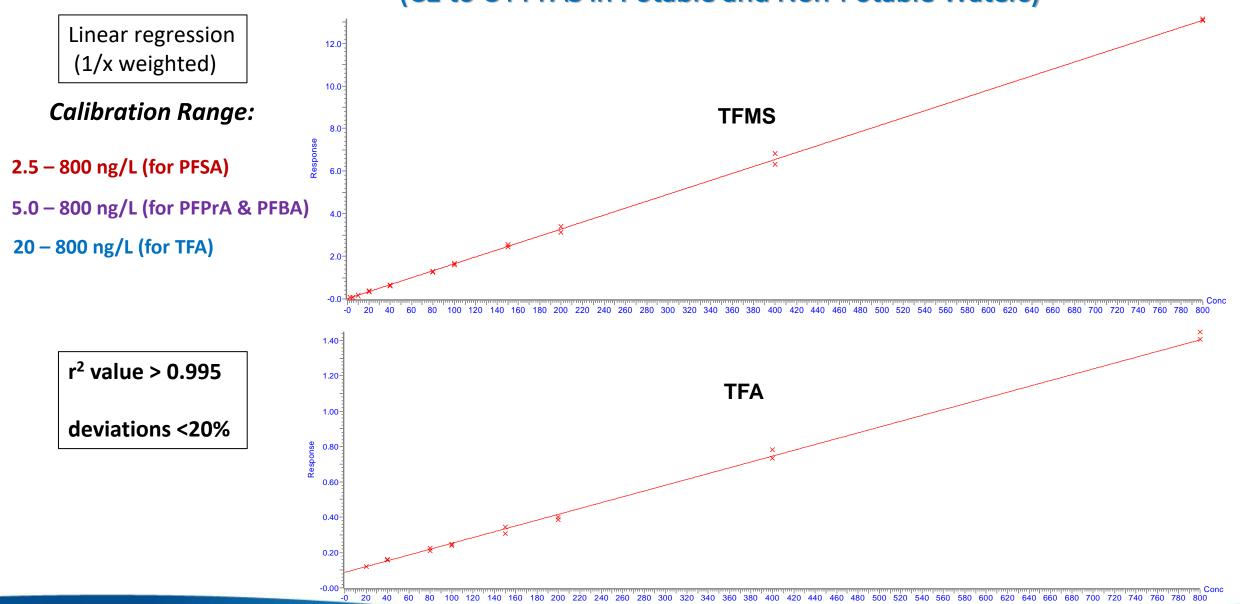
(polypropylene vial)

Direct injection of drinking waters (no filtration)

Direct injection of wastewaters (filtration with syringe filter)

Internal standard : ${}^{13}C_3$ -PFBS, ${}^{13}C_4$ -PFBA


Standard solutions were prepared in RO water



Quantification with Internal Standards

Analytes	Precursor Ion	Product Ion 1	Product Ion 2	IS for Quantification
TFA (C2)	113.03	69.01	-	¹³ C ₄ -PFBA
PFPrA (C3)	162.97	119.02	-	¹³ C ₄ -PFBA
PFBA (C4)	213.03	168.98	-	¹³ C ₄ -PFBA
TFMS (C1)	148.97	79.93	98.92	¹³ C ₃ -PFBS
PFEtS (C2)	198.90	79.92	98.91	¹³ C ₃ -PFBS
PFPrS (C3)	248.97	79.92	98.91	¹³ C ₃ -PFBS
PFBS (C4)	298.97	79.97	98.89	¹³ C ₃ -PFBS
¹³ C ₃ -PFBS	301.97	79.97	-	-
¹³ C ₄ -PFBA	217.03	171.98	-	-

Pure Chromatography

REST

Analytes in Unspiked Water Samples

	Detected Concentration (ng/L)							
Samples	TFA	PFPrA	PFBA	TFMS	PFEtS	PFPrS	PFBS	
Tap Water	230	ND	ND	5.58	ND ND		ND	
Bottled Spring Water	102	ND	ND	ND	ND	ND	ND	
POTW Water	1113	36.6	<5.00	8.53	ND	ND	4.35	

EK Pure Chromatography

RE

	Acc		Recovery: 5.6 – 107 %		F	Precision	% RSD: 1.62 – 10.7 %				
		Average Recovery (RSD, %)									
Samples		Tap Water		Spring Bottled Water			POTW Water				
Concentration (ng/L)	25	50	175	25	50	175	25	50	175		
TFA	-	98.2 (7.63)	97.4 (6.68)	-	107 (5.92)	97.1 (4.27)		96.7 (10.7)	106 (4.02)		
PFPrA	106 (3.49)	107 (2.26)	103 (2.19)	96.6 (4.10)	107 (4.29)	102 (2.19)	102 (3.08)	102 (3.02)	101 (1.71)		
PFBA	99.5 (4.61)	100 (5.09)	101 (1.72)	94.4 (9.17)	101 (5.08)	99.6 (3.12)	100 (6.36)	95.2 (5.25)	97.4 (1.62)		
TFMS	87.5 (1.62)	95.8 (5.66)	96.4 (3.02)	86.6 (5.99)	95.5 (5.74)	94.6 (3.99)	92.6 (7.42)	94.5 (7.94)	93.8 (5.25)		
PFEtS	96.2 (5.68)	100 (7.62)	96.9 (3.93)	92.0 (6.18)	101 (6.24)	95.1 (6.77)	93.8 (6.54)	97.2 (7.75)	95.7 (7.48)		
PFPrS	94.2 (4.80)	99.8 (5.38)	97.3 (3.60)	92.5 (7.94)	99.4 (6.31)	96.1 (4.50)	97.6 (4.47)	97.6 (6.52)	96.8 (5.78)		
PFBS	98.7 (4.02)	102 (4.92)	101 (3.79)	95.5 (8.10)	104 (7.03)	98.6 (5.09)	99.8 (6.97)	103 (5.99)	100 (3.58)		

RES

Measurement of C1 to C4 PFAS in Potable and Non-Potable Waters

	Averaged Concentration (ng/L; ppt)								
Water Samples	TFA	PFPrA	PFBA	TFMS	PFEtS	PFPrS	PFBS		
Potable Waters									
Tap Water #1	230	nd*	nd	5.58	nd	nd	nd		
Tap Water #2	520	nd	nd	6.88	nd	nd	nd		
Tap Water #3	450	< 5.00	nd	3.20	nd	nd	nd		
Tap Water #4 (filtrated well water)	267	nd	nd	nd	nd	nd	nd		
Tap Water #5	297	< 5.00	nd	4.68	nd	nd	nd		
Tap Water #6	428	< 5.00	nd	< 2.5	nd	nd	nd		
Tap Water #7 (RO filtrated tap water #6)	nd	nd	nd	nd	nd	nd	nd		
Tap Water #8	400	< 5.00	nd	nd	nd	nd	nd		
Tap Water #9	228	nd	nd	5.22	nd	nd	nd		
Tap Water #10	117	nd	nd	nd	nd	nd	nd		
Bottled Water #1 (RO purified)	nd	nd	nd	nd	nd	nd	nd		
Bottled Water #2 (spring water)	102	nd	nd	nd	nd	nd	nd		
Bottled Water #3 (spring water)	368	nd	nd	< 2.5	nd	nd	nd		
Natural Spring Water	527	<5.00	nd	<2.5	nd	nd	nd		
Well Water (non-filtrated)	342	nd	nd	15.6	nd	nd	nd		
Non-Potable Waters									
POTW water (treated seweage wastewater, effluent)	1113	36.6	< 5.00	8.53	nd	nd	4.35		
Hospital Effluent	1363	24.6	< 5.00	4.67	nd	nd	nd		
Metal Finisher	741	11.4	< 5.00	5.16	nd	nd	2.77		
Chemical Manufacturer Effluent	131200	11084	52.0	4.02	nd	nd	nd		

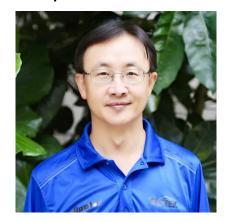
*non-detected

Conclusions

- Unique stationary phase provides proper chromatographic retention of small, polar ultrashort-chain PFAS.
- Fast and simple isocratic LC-MS/MS method allows high-throughput PFAS analysis in potable and non-potable waters.
- This workflow is suitable for labs interested in adding ultrashort-chain compounds to an existing PFAS assay.
- We will be recruiting labs for the multi-lab validation study of ASTM WK80687 for ultrashort-chain and short-chain PFAS analysis

Acknowledgement

<u>General Dynamics Information Technology:</u>


Harry McCarty

RESTEK Pure Chromatography

Thanks for Your Attention

Questions?

Shun-Hsin Liang, Ph.D. Principal Scientist

Shun-Hsin.Liang@Restek.Com

Pure Chromatography

RESTÈK