Thermo Fisher

Recent Advances in Discrete Analysis Technology for Automated Simultaneous Multi-parameter Wet Chemistry Testing in Drinking Water, Wastewater, and Soil Samples

Carl Fisher, Ph.D.

Product Marketing Manager, Thermo Fisher Scientific July 31st, 2023

The world leader in serving science

Agenda

1

Limited lab resource vs. demand for improved throughput?

Limitations of traditional wet chemistry workflow

3

Improve lab productivity by workflow automation

4

Recent advances of Gallery Aqua Master systems

Thermo Fisher

Water analysis

Same analytics – Different purpose

- Drinking water
 - Safe drinking water
 - Regulatory compliance

- Process water
 - Protect process equipment from corrosion, scaling
 - Energy efficiency
 - Regulatory compliance

- Wastewater
 - Environmental Protection Agency – clean water act
 - Reuse Repurpose
 - Regulatory compliance

Water analysis is critical across all industries, water utilities and contract testing labs

Thermo Fisher SCIENTIFIC

Soil analysis

Same analytics – Different purpose

- Environmental soil samples
 - to check pollution e.g. after flooding.
 - Contaminants near ground water area

- Agricultural nutrient
 - Soil samples analysis to instruct the quantity of fertilizers needed for enhanced crop yield

- Animal nutritional value
 - Farm animal manure for nutritional values and to give advice on animal feeding
 - Cows, hogs etc.

Soil analysis is critical for the determination of nutrients and contaminants

How does routine water and soil testing impact laboratory operations?

Many analytes, and diverse samples and concentrations

 Testing many samples for diverse parameters and concentrations can create a bottleneck with limited lab resources.

Thermo F

 Traditional analytical methods are slow, only process one parameter at a time—resulting in low throughput.

Analyte concentration varies from very low to high depending on the purpose and process

Wet chemistry analysis techniques and challenges

Spectrophotometers

Auto titrators

Flow injection analyzers (FIA)

Segmented flow analyzers (SFA)

• Manual techniques

Thermo Fisher

- Visual detection
- Labor intensive
- Time consuming
- Large volume of reagent consumption per test
- Large waste generated

Water and soil testing can create a bottleneck for laboratories with limited resources

Gallery wet chemistry automation | gary.he@thermofisher.com

Consolidate water and soil analysis parameters

Basic water testing: pH, conductivity, alkalinity, total hardness

- Comprehensive waste water testing as per regulatory methods: Total Kjeldal Nitrogen (TKN), total phosphate, total phenol, Total Oxidizable Nitrogen (TON), phosphate, nitrite, nitrate, boron, aluminium
- **Corrosive anions:** Fluoride, chloride, sulfate, sulfide, nitrite, nitrate, phosphate, thiocyanate
- Scale formers: Silica, calcium, magnesium
- **Corrosion inhibitors:** Ammonia, zinc, molybdenum, nitrite
- Corrosion indicators: Total iron, hexavalent chromium, zinc
- Free and total cyanide

Regulatory fulfillment: Waste water analysis as per U.S. EPA and other standard methods

Multiple parameters – Multiple instruments – Multiple operators

Multiple parameters – One instrument – One operator

Thermo Fisher SCIENTIFIC

What is wet chemical colorimetric analysis?

For a basic assay, in this case sulphate

- Add an aliquot of sample (100µl)
- Shine light (420 nm) through the sample and measure the intensity in absorbance units (Au)
- Add an aliquot of barium chloride reagent (40 µl)
- Wait for the reaction to occur (300 s) $[SO_4^- + BaCI = BaSO4 + CI^-]$
- Shine light (420 nm) through again and the difference in intensity is the change in absorbance ΔA

Concentration

Discrete analyzers in a nutshell

Photometric detection

- Colorimetric
- Enzymatic
- Electrochemistry

- Sample aspiration
- Reagent addition
- Mixing and washing
- Calibration, QC, spiking, and dilution
- Incubation

- Random access
- Parallel analysis
- Auto-dilutions on overrange samples
- High throughput

High throughput photometric analyzer

Simplified workflow solution

Thermo Fisher

SCIENTI

Highly automated workflows built for regulatory compliance

Recent advances of Gallery Aqua Master systems

 $) \rightarrow$

Gallery[™]Aqua Master systems for regulated water & soil testing

Automated wet chemistry analysis

Water and nutrient analyses finally mastered

Powerful. Efficient. Confident. For fully-automated wet chemistry analyzer for drinking water, wastewater and soil samples

Software features for regulatory (EPA) compliance

- Choice of calibration order and relative standard error calculation (RSE)
- ✓ Automated spiking procedure for easy identification of sample-matrix-related interferences
- More flexibility for automated QC procedures
- ✓ More flexible results reporting
- Easy dilution rerun of multiple samples

New automation features reduce manual workarounds and risk of errors

Choice of calibration order, relative standard error calculation (RSE)

- Comprehensive calibration commands and flexibility
- Ascending or descending concentration calibration orders
- Automated RSE calculation with userdefined limits and automated error flagging if a limit is exceeded
- Instant feedback for calibration and goodness-of-fit — industry preferred

Info	Flow	Dilutio	on Limits	Reflex/Scree	ning Calibratio	n <u>QC</u>	Spiking	
Calib	ration type		Linear			Abs. error (A)	,
Repeat time (days) Points/calibrator Acceptance Concentration axis				30		Rel. error (%)		
			Duplicate			Factor limit min. Factor limit max.	min.	
			Manual	•			nax.	
			Linear	-		Bias limit mir	n.	
Resp	onse axis		Linear	•		Bias limit ma	X.	
Calib	ration order		Ascending	•		Coeff. of det	. min.	
Nbr	Calibrator	Cu	Ascending	1	Dilution 1 +	RSE max. (%))	
1	Cal1	Defa	Descending		0			
2	Cal2	Defa		J,U	0	Factor		1,000
						Rise		0.0000

Choosing the calibration order to meet method requirements either ascending or descending—is fast and easy using the Gallery Aqua Master discrete analyzer software.

Automated spiking procedure for easy identification of sample-matrix-related interferences

F1 🏠	F2	R	F3	0	F4	F5	E.	
<u>1</u> Test status	<u>2</u> Rea	gents	<u>4</u> Test definitio	n <u>5</u> Reagent de	finition <u>6</u> \	Wash definition	<u>7</u> Profile de	finition
Info	Flow	Dilution	Limits	Reflex/Screening	Calibration	QC	Spiking	
Standard for t	he preparation	n cell	c	:I-High	Ţ			Spike ratio (%) 2,00
Volume	(µl)				4			
Extra vo	lume (µl)			1	0			
Sample for the Volume	e preparation ((µl)	cell		19	6			
Extra vo	lume (µl)			5	0			
Recovery limi	t min. (%)			90,0	0			
Recovery limi	t max. (%)			110,0	0			
RPD limit max	. (%)			10,0	0			
Spike on inter	rval		Ŷ	es	•			
Request inter	val			1	0			

The Gallery Aqua Master discrete analyzer software provides for automated sample spiking that can streamline identification of samplematrix-related interferences, including minimum and maximum limits for percent recovery and maximum limit for percent RPD Spiking series can be automatically and repeatedly performed at user-specified intervals

Thermo Fisher

- Saves time and reduces error compared to manual sample spiking
- Automated calculation of the concentration of native and spiked samples, recovery for both spiked samples, and the Relative Percent Difference (RPD) between spiked samples
- User-defined minimum and maximum limits for percent recovery and maximum limit for RPD

Thermo Fisher

More flexibility for automated QC procedures

- User-configurable QC elements and procedures can be set to run 1) at defined intervals, and 2) at the start or end of a run
- If multiple QC procedures must be run, their sequence is user definable

Info Flow Dilution Limits Reflex/Screening Calibration QC Trigger Usage Procedure QC profile Manual Procedure1 Calibration In use Interval Acceptance Reagent lot change Interval type Reagent vial change [Procedure] Start of run Requests -End of run

	<u>1</u> Messages	2 Actions	<u>3</u> Maintenan	ce <u>4</u> Use	r definition	5 Adjustment	program <u>6</u>	Water blank res	ults <u>7</u> C	onfiguration
Laboratory	LIS	Test LIS	ECM	Analyzer	Filter	Temperature	Sample types	Reports	Report edite	or 🛈 Refere
Analyzer nar	ne						Clear sample	IDs when rack r	emoved	No
Debug in bo	ot		ON		-		QC mandator	ry for sample run		No
Default sam	ple type		Sample type 1		-		Include rejec	ted QC results ir	n mean	No
Max sample	age (hhh:mm)		2:00							
Max calibrat	or age (hhh:mm)	720:00				Use request of	counter		No
Max control	age (hhh:mm)		720:00				Result accep	tance mode		Test
Max pretreat	ed sample age	(hhh:mm)	10:00				Use max volu	ime for cuvette o	lilution	No
Sample resu	Its archived		No		-		Automatic st	art		NO
UI language	selection		English		-					
Help langua	ge selection		English		-					
Perform QC	in start and end	of run	Yes		-					
Use barcode	checkdigit		Yes							
Report resul	t outside of tes	t limits	No							
			Procedure sp	ecific	_					

Run group for controls

- Controls of a QC procedure have a new setting: Run group
- Controls can be defined to be part of a specific, or of all, run groups.
- Each time a QC procedure is run, the software will run the controls appropriate for the current run group
- The Run group setting provides flexibility for automatically alternating the controls that are run each time the procedure is run

Info	Flow	Dilution	Limit	ts Re	eflex/Screenin	g Calibration	QC	Spiking		
Procedure1	Procedure		Trigger ☐ Manu ☐ Calib ☑ Interv ☐ Reag ☐ Reag ☐ Start ☐ End o	ual ration /al gent lot char gent vial cha of run of run	nge		Usage QC profil In use Acceptan Interval ty Requests	Usage QC profile In use Acceptance Interval type Requests Requests		
Controls and ru	lles	1	1	1						
Control	Current Lot	Conc.	SD	Req. co	unt	Run gro	up	Nbr of c	ontrols S	SD multiplier
High_CL-QC	Default	50,00	5,000	1	1			1	1	
Low-CL-QC	Default	5,00	0,250	1	2					
CL-QC20	Default	20,00	2,000	1	All					
						_				

Example above: The first time the procedure 1 is run, the control High-CL-QC belonging to **Run** group 1 is run. The next time the procedure1 is run, the control Low-CL-QC belonging to **Run** group 2 is run. As there are no more run groups defined, on the third round it starts again from run group 1. The control CL-QC20 is run every time the procedure1 is run, as it belongs to **Run group** "All".

More flexibility for automated QC procedures

- Automated transfer of QC data into the Gallery Aqua Master discrete analyzer's QC charts to visualize trends
- Saves time compared to manually transferring data to LIMS or Shewhart control charts

Thermo Fisher

Flexible results reporting

aboratory	LIS	Test LIS	ECM	Analyzer	Filter	Temper	ature Sample typ	Report	s Report editor	Reference ranges	Additional
Template se Results wind	lection dow list repor	t	*						Test results	report	Page 1/1
Result colum	ins I ID						Date 2 Time 0 Test name Sample ID	0.10.2022 8:40	User Adr Software version 8.1. Group ID Group name	nin 1661.0 Sample typ	Not accepted
Test							Sample/ctrl ID	Tes	t Accepte	d Result time	Result
Accepted											
Result time	•										
Result											
		Disch also		Add		0					
		Biank abs.									

Sample report	Default 1	•		
Test report	Custom			
Spreadsheet report	Default			
Archive window list report	Default	•		
Results window list report	Default	•		
Archive window spreadsheet report	Default	-		

The report editor includes versatile capabilities to report test results, including report templates that can be easily customized to meet laboratory needs.

- Versatile results reporting, including predefined and easily customizable report templates available by test
- Environmental laboratories can report by tests, samples and or batches
- The report editor also allows customization of the header texts and logos used

Easy rerun of samples with new dilution factors

- Multiple samples can be rerun without having to individually define a new dilution factor for each
- Important usability improvement makes life a lot easier and enables time saved each day

Test name Sample ID	CI H [AII]		+ G	roup ID roup name		P	AII] AJI]	Require San Con	ist type iple itrol	
Test same	Sample/etd ID	Rebuilt	Uelt	Status	Note	0	51.1+	Errors	J	Q
CI H	7 MD	57,88	mg/l	calc		0		Spike recovery high		
CIH	CCVB	-11,46	mg/l	calc		0		Outside calibration		
CI H	CCV CI 50	62,36	mg/l	calc		0				
CLH	10	0,33	mg/l	calo		0	Uniter	dilution for rerum	1	
CI H	10 M	56,48	mg/l	calc		0	Te	et diutions (1 +)		
сін	11	1,11	mg/l	calc		0				
CI H	12	0,53	reg/l	celo		0			- 17	1.00
сгн	10 MD	57,00	mg/l	calc		0	3		-17	
CLH	CCVB	-11,49	mg/l	calc		0			-17	
CI H	CCV CI 50	52,08	mg/l	calc		0	2	9	- 11	4
CIH	14	0,45	mg/l	calc	1	0	à	3	- 1	
сін	15	0,46	mg/l	calc		0	Er	nter dilution (1 +):		
CI N	13 MD	57,89	mg/l	calc		0	3			
CLH	CCVB	-11,53	mg/l	calc		0		OK Cancel		
GI H	CCV CI 58	52.28	mg/l	calc		0		ON CONCER		

Thermo Fi

To rerun samples using a new dilution factor simply select the samples to rerun and then enter the new dilution factor.

Built for regulated analyses

Environmental labs are highly regulated environments, as such analysis techniques & methods used must be compliant with recognized regulatory methods or standards. ✓ New automation features further reduce manual workaround and risk of errors

U.S. EPA wastewater re	eference methods			U.S. EPA drinking w	ater reference method
Analyte	Regulatory method	Analyte	Regulatory method	Analyte	Regulatory method
Alkalinity	EPA 310.2 (Rev. 1974)	Nitrate + Nitrite (TON)	SM 4500-NO3-H	Conductivity	SM 2510-B
Ammonia	EPA 350.1 (Rev. 2.0 1993)	(Hydrazine reduction)		Cyanide (Total)*	EPA 335.4
	SM 4500-NH3-F	Nitrate + Nitrite (TON)	NEMI (Nitrate via manual		SM 4500-E
	SM 4500-NH3-G	(Variadium reduction)	Noz 0002 (Bypage	Cyanide (Amenable)*	SM 4500-G
COD*	DD* EPA 410.4 (Rev. 2.0 1993) aloride SM 4500-CI-E		enzymatic reduction)	Fluoride	3500-F B, D
Chloride			SM 4500 NO2-B	Nitrate + Nitrite (TON)	NECi Nitrate-Reductas
Chlorine (Total residual)*	SM 4500-CI-G	Orthophosphate	EPA 365.1 (Rev. 2.0 1993)	(Enzymatic reduction)	
Conductivity	EPA 120.1 (Rev. 1982)		SM 4500-P-E	Nitrite	NECi Nitrate-Reductas
Copper*	SM 3500-Cu-C	рН	EPA 150.2 (Dec. 1982)		SM 4500-NO2-R
Cyanide (Amenable)*	SM 4500-CN-G	Silica	SM 4500 SiO2-C	nH	EPA 150 2
Cyanide (Total)*	EPA 335.4 (Rev. 1.0 1993)		SM 4500 SiO2-D	Orthophosphate	EPA 365.1
	SM 4500-CN-E	Sulfate	SM 4500 SO4-E	Orthophosphate	SM 4500 P-E
Fluoride	SM 3500-F-D	_	ASTM D516-16		SM 4500 P.E
Total hardness	EPA 130.1 (Issued 1971)	Sulfide*	SM 4500-S2-D	Silica	SM 4500 SiO2-C
Chromium	SM 3500 Cr-B	Total Kieldahl nitrogen (TKN)*	EPA 351.2 (Rev. 2.0 1993)	Olica	SM 4500 SiO2-C
Iron	SM 3500 Fe-B				3IVI 4300 3IO2-D
Nitrate + Nitrite (TON)	N07-0003	Total phenol*	EPA 420.1 (Rev. 1978)		
(Enzymatic reduction)	ASTM D7781-14	Total phosphorous (TP)*	EPA 365.1 (Rev. 2.0 1993)		
	USGS I-2547-11		EPA 365.4 (Issued 1974)		
	USGS I-2548-11		SM 4500-P-E		

* Third party reagent

Methods compliant with U.S. EPA, NELAC, ASTM and other international standards

Overcome nitrate + nitrite (TON) measurement challenges

Thermo Fisher S C | E N T | F | C

In compliance with 40 CFR Part 136, 40 CFR Part 141.23, 40 CFR Part 141, NECi–N07-0003, USGS I-2547-11, USGS I-2548-11 and, NECi Nitrate-Reductase regulatory standards.

Data courtesy to the NECi method report N07-0003 Figure 1A, 1B. Results comparison of cd reduction method and nitrate reductase method

Detecting nitrate + nitrite (TON) in drinking water

Official system method for EPA Safe Drinking Water Act (SDWA)

Automated method to detect the sum of nitrate + nitrite (TON) in drinking water using the Thermo Scientific Gallery discrete analyzer

Application benefits

- Meets requirements of regulated nitrate + nitrite total oxidized nitrogen methods
- Minimizes use of hazardous reagents and their associated costs and safety risks when carrying out nitrate + nitrite methods
- Automation and Thermo Scientific[™] Gallery[™] system reagents save time and reduce errors compared to manual approaches

Table 9. Performance of the Thermo Scientific drinking water method: drinking water nitrate + nitrite for Thermo Scientific Gallery discrete analyzer compared to reference method acceptance criteria

	QC acceptance criteria for reference method	
	Method for Nitrate Reductase Nitrate-Nitrogen Analysis of Drinking Water, Ver. 1.0 Rev. 2.0 Feb 2016	Performance of nitrate + nitrite method for the Gallery Discrete Analyzer
MDL	To be determined by each laboratory according to 40 CFR Part 136 Appendix B. (MDL results in reference method validation were between 0.0066 and 0.0097 mg N/L)	MDL: 0.0038 mg N/L when done according to 40 CFR Part 136. Appendix B. MDL 0.009 mg N/L was applied*
MRL	NA	0.027 mg N/L
Reduction efficiency	90–110%	101–103%
Method blank	<mdl< td=""><td>*max. 0.0088 mg/L < MDL (0.009 mg N/L)</td></mdl<>	*max. 0.0088 mg/L < MDL (0.009 mg N/L)
% Recovery initial calibration range (ICR)	±10% of true value, the equation between instrument responses and the nominal values of the standards must have regression coefficient (\mathbb{R}^2) ≥ 0.999	9–110% for both primary and extended ranges (0.027–25 mg N/L). The R ² was 1.000 for both ranges.
% Recovery QCS	±10%	94–97%
Recovery initial precision and recovery (IPR)	From CRM certificate (<i>ERA</i> #698, <i>lot:</i> S234-698 acceptance limits 8.49–10.5 mg N/L) or ±10% of known value, whichever is more restrictive.	Recovery IPR: 8.70–8.95 mg N/L (91–93% recovery)
% Recovery ongoing precision and recovery (OPR)	±10%	91–102%
% Recovery spike sample	±10%	91–100%
% RSD IPR	NA	1.2%
% RSD OPR	≤10%	1.4–1.9%
Relative percent difference (% RPD) spike duplicates	≤10%	0.1–0.4%

*The method criteria state that the LRB sample should never be higher than the MDL. The highest individual LRB result of the test was 0.0088 mg N/L.

Conclusion:

The results demonstrated that the Gallery discrete analyzer-based automated method meets the QC acceptance criteria in the EPA-approved reference method for testing drinking water.

Detecting orthophosphate in drinking water

Official system method for EPA Safe Drinking Water Act (SDWA)

Table 10. Performance of the Thermo Scientific drinking water method: Drinking water orthophosphate for the Thermo Scientific Gallery discrete analyzer compared to the reference method acceptance criteria

	QC acceptance criteria for reference method: standard method 4500-P E.	Performance of drinking water ortho-PO4P method for the Gallery discrete analyzer
MDL	Minimum 7 replicates of MDL sample, conc. 1–5 × MDL estimate, analyzed in 3 days, ideally by different users. Recoveries should be 50–150% and % RSD ≤20%.	0.00036 mg P/L when the procedure in 40 CFR part 136, Appendix B was used. The procedure is similar to reference method.
MRL	Set at or above the lowest calibrator and verified with QC sample at 1 to 2 times the MRL conc. Result is acceptable if precision and accuracy meet laboratory method requirements.	0.0125 mg P/L. The MRL confirmation procedure was done per EPA requirements. ⁷
Method blank	<1/2 MRL	Max. 0.0035 mg/L
% Recovery continuing calibration verification (CCV)	±10%	100–105%
% Recovery QCS	±15%	97–98%
% Recovery spike sample	Laboratory specific	92–98%
% RSD CCV	Laboratory specific	1.3–1.9%

Automated method to detect orthophosphate in drinking water using the Thermo Scientific Gallery discrete analyzer

Application benefits

- Meets the requirements of regulated methods for orthophosphate testing in drinking water.
- Automation and ready-to-use reagents save time and reduce errors compared to manual approaches.

Conclusion:

The results demonstrated that the Gallery discrete analyzer-based automated method meets the QC acceptance criteria in the EPA-approved reference method for testing drinking water.

Learn more about Gallery Aqua Master systems

Thermo Fi

Visit thermofisher.com/AquaMaster

- > 3D Product Tour
- Technology overview
- Educational videos
- More on-demand webinars
- Smart note, application notes, brochures
- Reagent information

Thank you

25 Gallery wet chemistry automation | gary.he@thermofisher.com