Analytical method range – what is it and how to maximize it?

Fluidics Intelligently Automated

FIA

- Definition of range
- What determines range low end & high end
- How can the range be extended?
- Conclusions and questions

I am Dr. Ilkka Lahdesmaki

Chief Scientist You can find me at ilkka@flowinjection.com

DEFINITION OF RANGE

Copyright 2018. FIAlab Instruments, INC. All rights reserved.

IUPAC Gold Book (goldbook.iupac.org)

Dynamic range = "The ratio between the maximum usable indication and the minimum usable indication (detection limit). A distinction may be made between the linear dynamic range, where the response is directly proportional to concentration, and the dynamic range where the response may be non-linear, especially at higher concentrations."

Eurachem Validation Guide (www.eurachem.org)

- "The 'working range' is the interval over which the method provides results with an **acceptable uncertainty**. The lower end of the working range is bounded by the limit of quantification LOQ. The upper end of the working range is defined by concentrations at which **significant anomalies** in the analytical sensitivity are observed."
- Differentiates between instrument working range and method working range

7

ICH guidelines, 1994-2005 (database.ich.org)

Range "... is established by confirming that the analytical procedure provides an acceptable degree of **linearity, accuracy and precision** when applied to samples containing amounts of analyte within or at the extremes of the specified range of the analytical procedure."

ICH guidelines, 2022 draft (www.ema.europa.eu)

- Mentions different cases: linear response, non-linear response, multivariate calibration
- ▷ Defining a range: general considerations, little specifics

Instrument working range vs. method working range

- ▷ TKN: detect ammonia, but digestion and impurities affect range
- ▷ TN: detect nitrate, impurities in persulfate affect range

WHAT DETERMINES RANGE

Low end & high end

Low end ("What determines LOD/LOQ")

- ▷ Signal strength (e.g., color intensity)
- Instrument parameters (e.g., sample volume)
- Chemical noise (e.g., baseline wobble)
- Electronic noise detector (light source, flow cell, sensor)
- Electronic noise A/D converter
- ⊳ Blank variability

SIGNAL

WHAT DETERMINES RANGE

Copyright 2018. FIAlab Instruments, INC. All rights reserved.

WHAT DETERMINES RANGE

Fluidics Intelligently Automated

High end

- Chemical depletion (limiting reagent), chemical reaction
- Instrument parameters (e.g., sample volume, detector optical path)
- ▷ Detector limitation (e.g., stray light)
- ▷ Electronic limitation (e.g., A/D range)

DEVIATION AT HIGH A.U. IN PRESENCE OF STRAY LIGHT

- Back-of-the-envelope calculation: absorbance detector
- Noise on a great absorbance detector ~10 µAU
- \triangleright For LOQ, need to be at ~10× noise \rightarrow ~100 μ AU = 0.1 mAU = 0.0001 AU
- ▷ Upper range of a good absorbance detector ~2 AU
- ▷ Widest possible range ~ 2 AU / 0.0001 AU = 20,000 ~ theor. max 4 orders of magnitude
- ▷ Realistic max range probably a little over 3 orders of magnitude

Back-of-the-envelope calculation: fluorescence by PMT

- Use a PMT in "photon counting mode"
- ightarrow Measure increase of light, not decrease of light ightarrow no hard ceiling like in absorbance
- \succ Digitization based on a counter instead of A/D \rightarrow no "bit resolution" issue
- ▷ Can handle ~5 orders of magnitude

HOW CAN RANGE BE EXTENDED?

Specifically for the high end

- "Lazy answer": automated dilution
 - Easy but also **slow**
- Adjust sample loop size (FIA, LC, IC)
- Adjust optical path on flow cell
- Use alternate wavelength (absorbance detection)
- Use a different detection principle
- In-line dilution (dilute while previous sample measured)

Adjust sample loop size

- A very simple & efficient way to adjust range
- Scales proportionately for low volumes, diminishing returns for high volumes
- Avoid extremes
 (in FIA, 30 μL 300 μL is a safe range)

Peak Maximum

+ (baseline)

1050

Split peak due to high acidity

Adjust optical path on flow cell

- Another simple & efficient route
- Again, avoid extremes (in FIA, 2.5-50 mm is a good range)

Alternate detection wavelength

- \sim Wavelength off of absorbance max \rightarrow lower response
- Only possible with array-type detectors (CCD, PDA)

Fit model:	1st order polynomia 🗸	Name	Peak Response	Known Concentratior	Calculated Concentratior	% Error	Enabled
Weighting:	none ~	1 ppm N-N	0.1298	1000	907.2553	9.27	
(Inverse relation	2 ppm N-N	0.2626	2000	2046.1953	2.31	
Fit Parameters		2 ppm N-N	0.2626	2000	2046.3046	2.32	
Coeff A:	0.02400	5 ppm N-N	0.6662	5000	5507.2974	10.15	
Coeff B:	0.00012	5 ppm N-N	0.6681	5000	5523.2417	10.46	
Coeff C:	Coeff C: 0	10 ppm N	1.3253	10000	11158.847	11.59	
C# D		10 ppm N	1.3307	10000	11205.1135	12.05	
Coeff D:		20 ppm N	2.2789	20000	19336.0992	3.32	
R ² :	0.99383	20 ppm N	2.2671	20000	19234.7387	3.83	

Fit model:	1st order polynomia 🗸		Name	Peak Response	Known Concentratior	Calculated Concentration	% Error	Enabled	1
Weighting:	none ~	•	0 ppm N-N	0.0006	0	4.3543	NA		
	Inverse relation		0 ppm N-N	0.0005	0	0.442	NA		
Fit Parameters			0.015 ppm	0.0006	15	4.3865	70.76	 Image: A set of the set of the	
Coeff A:	0.00045		0.015 ppm	0.0009	15	14.3584	4.28		
Coeff B:	0.00003		0.05 ppm	0.0019	50	45.8554	8.29		
Coeff C:	0		0.05 ppm	0.0017	50	41.2026	17.59	_	
c "D			0.1 ppm N	0.0036	100	102.1914	2.19		
Coeff D:	0		0.1 ppm N	0.0031	100	86.1146	13.89	Image: A start of the start	
R ² :	0.99989		0.5 ppm N	0.0155	500	480.2498	3.95		

595 nm

520 nm

40 CFR §136.6 allows the use of alternate wavelengths

(xx) Changes in equipment operating parameters such as the monitoring wavelength of a colorimeter or the reaction time and temperature as needed to achieve the chemical reactions defined in the unmodified CWA method. For example, molybdenum blue phosphate methods have two absorbance maxima, one at about 660 nm and another at about 880 nm. The former is about 2.5 times less sensitive than the latter. Wavelength choice provides a cost-effective, dilution-free means to increase sensitivity of molybdenum blue phosphate methods.

Traditional photometric detector

Fluorescence-based NH3 method

- Distinction between instrument range and method range
- "Moderation in everything" is a good guideline
- Understanding how instruments and methods work helps you in range adjustment
- In most cases, 3 orders of magnitude is the practical limit
- Use of alternate detection wavelength is a "penalty-free" way of extending range

THANKS!

Any questions? You can find me at sales@flowinjection.com