Waters[™]

GC/MS/MS Determination of Semivolatiles Using Nitrogen Carrier, Reagent and CID Gas

Douglas Stevens Stuart Oehrle, Frank Dorman

Waters Corporation

TIONAL ENVIRONMENTAL MONITORING CONFERENCE

Hurdles and Highlights for Helium Carrier Gas

- Non-renewable
- Petroleum production by-product
- Supply instability
- Pricing instability

Will I be able to deliver results on time?

Inertness

- Chromatographic resolving power
- Compatibility with MS vacuum
- Compatibility with MS ionization
- Broad applications/publications

Alternatives to Helium

- Nitrogen
- Local generation possible
- Inertness
- Slower optimum linear velocity
- Requires column scaling
- Adverse effects on sensitivity for EI
- How does N₂ effect GC-APCI?

Hydrogen

- Local generation possible
- Undesirable reactivity
- Higher optimum linear velocity
- Requires column scaling
- Adverse effects on sensitivity for EI
- Not supported for GC-APCI

GC-APCI MS: Gas Chromatography Atmospheric Pressure Chemical Ionization Mass Spectrometry

Multiple Reaction Monitoring: MRM (aka SRM)

- MS1 filters precursor ions
- Gas filled cell with fragmenting voltage applied
- Ions undergo collision induced dissociation (CID)
- MS2 passes only specific product ions

Why MS/MS?

- Higher confidence
 - Decrease/eliminate false positives/negatives
- Ease of integration
 - Easier to automate
 - Less manual reprocessing
- Time Savings
 - -Allows faster run times
 - -Reduce/eliminate sample clean up steps
 - Reduced/eliminated chemical noise
 - Increases accuracy
 - Improves precision
 - Improves dynamic range

Specificity & Sensitivity

PAHs: N₂ v He, Without Column Scaling

- N₂ ~10% longer runtime
- He v. N₂ functionally equivalent separation
- Rxi-35Sil MS 30m x .25 x.25
 - No commercially available scaled column

<u>Nitrogen Carrier Gas White Paper, 2023</u>

Translating Methods from He to N₂ Carrier Gas

- Define gas type
- Scale column dimensions
 Keep phase ratio constant
- Outlet Pressure for APGC (Atm) or EI (Vacuum)

Link to EZGC Method Translator, (Restek)

Carrier Gas	0	Original			Translation			
	н	elium	~		Nitroge	en 🔨	2	
Column								
Length			30.00			20.0	0 m	
Inner Diameter			0.25			0.1	. 5 mm	
Film Thickness			0.25			0.1	5 µm	
Phase Ratio			250			25	0	
Control Parameters								
Column Flow	-	•	1.40		⇒	0.3	8 mL/	min
Average Velocity			42.74			22.4	0 cm/	sec
Holdup Time			1.17			1.4	9 min	
InletPressure 🏾 psi 🗸	 I 		11.42			17.9	3 psi	
Outlet Pressure (abs)	Г	_	0.00			14.7	0 psi	
		Atm	Vacuum		Atm	Vacuu	m	
Oven Program								
 ○ Isothermal ● Ramps 	Ramp Rate (°C/min)	Temp (°C)	Hold Time (min)	1	Ramp Rate (°C/min)	Temp (°C)	Hold Time (min)	
Ramps (1-4)		40	1			40	1.35	
1	8.5	330	1		7.3	330	1.15	
Control Method								
		Constant Flow				~		
Results Solve for Efficiency O Speed Translate O Custom								

OCPs: N₂ v He, Scaled Column

 N₂ 40m x .18 x .18 Rxi-5Sil MS

 He 60m x .25 x .25 Rxi-5Sil MS

- 50 peaks (39/11)
- +/- 1.1s average
- He at 1.5 mL/min

N₂ at 0.45 mL/min

Helium

Nitrogen

Phthalates: N₂ v He, Scaled Column

Rxi-5Sil MS **30 m** x 0.25 mm x 0.25 μ m for **He** and **20 m** x 0.15 mm x 0.15 μ m for N₂

Average r² 0.996 for 16 of 17 analytes. Method includes 11 IS/Surr.

Multi-Class Semivolatiles (SVOCs)

- Single class SVOC analyses successfully translated to N₂ carrier GC-APCI
- Multi-class SVOC methods present additional challenges
 - Wider range of ionization characteristics
 - Different, specific requirements for long term stability assessment
- With the change to N₂ carrier, evaluation of N₂ collision gas in place of Ar was performed

GC/MS Conditions

MS	Xevo [™] TQ-Absolute	GC	Agilent 8890
Source Type	APGC [™] , dry source	Column	Rxi [®] -SVOCms 20m x 0.15 x
Source Temp	150°C		0.15
Transfer Line	320°C	Outlet	Atm
Temp		Injection	SSL, 310°C, Split 10:1, 4 mm pkd
Corona Current	2.0 μΑ		liner
Auxiliary Gas	200 L/hr	Carrier Gas	N ₂ , 0.25 mL/min
Cone Gas	270 L/hr	Temp Program	40°C 1min, to 120°C at 15°C/min,
Make Up Gas	350 mL/min		to 335°C at 30°C/min hold 7 min.
CID Gas	N ₂ , 0.4 mL/min		20.5min run time

Translating From Ar CID Gas to N₂

Dry source APGC method developed on TQ 2 and transferred to TQ 1

- TQ 2, N₂ carrier gas and N₂ CID gas
 TQ 1, He carrier gas and Ar CID gas
- Identical MRM Transitions

TQ 2 N₂ CEs modified for Ar on TQ 1

- Based on guidance in graph

Estimated v. Optimized, N₂ CID to Ar CID Gas

Comparison Between Different Configurations

Comparison Between Different Configurations

Comparison Between Different Configurations

All N2 System, TQ2 v. He/Ar System TQ1

- Coefficient of determination > 0.992 v. 0.994
- %RSD IStds <10% v < 7%</p>
- 65 of 67 analytes gave same LOQ on both

Conclusions

- GC-APCI enables translation of SVOC methods to N₂ carrier gas without loss of separation or sensitivity
- N₂ CID gas, in place of Ar, allows a GC/MS/MS system to be operated using a single gas supply
- Dry source (charge exchange) ionization mode demonstrated compatibility with multi-class SVOCs
- However...
- N₂ carrier gas not allowed for EPA SVOC methods (8270, 525, 1625)
- Ability to meet long term stability requirements CCV of some methods requires further evaluation

Acknowledgements

- Quebec Laboratory for Environmental Testing (QLET)
 - PAH, OCP, phthalate samples, standards and methods
- Gordon Fujimoto, Sarah Dowd, Lindsay Hatch Waters Corporation

Thank You for Your Attention. Questions?

Douglas Stevens Principal Scientist doug_stevens@waters.com