Development of a Semi-Volatile Column Optimized for the Analysis of Hazardous Waste

Chris English, Christopher Rattray, Corby Hilliard, Kristi Sellers, Jason Herrington, Whitney Dudek-Salisbury, Brian Salisbury.

National Bureau of Standards Restek Corporation, 110 Benner Circle, Bellefonte, PA 16823, United States

> and yrical methods for the determination A pAHs in diesel particulate estracts and Certificate of 2 Certificate of Analysis Standard Reference Material®

Standard Reference Material Ic.

(F) Aational Institute of Standards & Technology

Standard Reference Material® 1975

Diesel Particulate Extract

Stan Die Die Mais Standard Reference Material (SRM) is intended fon of selected ward Reference of Analysis Of selected Ward Reference Material® 1941b

This Standard Reference Material (SRM) is in-

Sulfur in Residual Fuel Oir

Development of a Semi-Volatile Column Optimized for the Analysis of Hazardous Waste

Chris English, Christopher Rattray, Corby Hilliard, Kristi Sellers, Jason Herrington, Whitney Dudek-Salisbury, Brian Salisbury.

Restek Corporation, 110 Benner Circle, Bellefonte, PA 16823, United States

Review Details of the Lifetime Study Results Using Contaminated Extracts

Highly Contaminated Samples: Sulfur & Hydrocarbons

What is Dirt?

RESTÈK

What is Dirt?

GC/MS Tune Check Solution: DFTPP, DDT, PCP & Benzidine

https://www.epa.gov/sites/production/files/2017-04/documents/method_8260d_update_vi_final_03-13-2017_0.pdf

Sources of activity in the sample pathway

Pure Chromatography

What causes activity in the column?

Shifting retention times

Activity in the column will act as a 2nd retention mechanism

•Retention (and RI) depend on degree of activity

• If not carefully controlled, each column can show a different RI

Impact:

- Retention time increases Peak start to tail
- Peakheight reduces

Retention time becomes a function of mass injected on the column: Lower levels elute later

Impact:

- Retention time increases Peak start to tail
- Peakheight reduces

The consequence of strong interactions with active sites

Other Options: Extract and Analyze Dirt

National Institute of Standards & Technology

Certificate of Analysis

Standard Reference Material® 1622e

Sulfur in Residual Fuel Oil (Nominal Mass Fraction 2 %)

Lifetime test w/ Sulfurs

Other Possible Standards

National Institute of Standards & Technology

Certificate of Analysis

Standard Reference Material® 1991

Mixed Coal Tar/Petroleum Extract in Methylene Chloride

This Standard Reference Material (SRM) is intended for use in evaluating analytical methods for the determination of selected polycyclic aromatic hydrocarbons (PAHs), particularly in determining relative response factors for ASTM Method D7363-11 "Standard Test Method for Determination of Parent and Alkyl Polycyclic Aromatics in Sediment Pore Water Using Solid-Phase Microextraction and Gas Chromatography/Mass Spectrometry in Selected Ion Monitoring Mode" [1]. All of the constituents for which certified, reference, and information values are provided are naturally present in the extract. A unit of SRM 1991 consists of five ampoules each containing 1.2 mL of a methylene chloride solution.

Are fatty acids overwhelming your QuEChERS dSPE PSA cleanup and causing issues in your GC analysis? Get more cleanup capacity with cartridge SPE cleanup!

March 4th, 2014 by Michelle Misselwitz

Fatty acids are important molecules in the human body because they are used as a source of fuel. There are many food sources of both "healthy" and "unhealthy" fatty acids. Many sources of dietary fatty acids come from fruits, vegetables, seeds, nuts, and animal fats. The QuEChERS methodology was developed to analyze

Testing Contamination in Columns and Liners

National Institute of Standards & Technology

Certificate of Analysis

Standard Reference Material® 1975

Diesel Particulate Extract

This Standard Reference Material (SRM) is intended for use in evaluating analytical methods for the determination of selected polycyclic aromatic hydrocarbons (PAHs) and nitro-substituted PAHs in diesel particulate extracts and similar matrices. In addition to certified, reference, and information values for selected PAHs and nitro-substituted

https://www-s.nist.gov/srmors/certificates/1975.pdf

SRM 1975 Lifetime Test

GC Inlet Maintenance

- After the 30 SRM Injections, a segment of column was cut from the head of the column (highlighted on the right), and the liner, septum, and gold seal was replaced
 - We've been saving the segments to ensure that the same length is removed each day
- Ideally, the column performance should be restored by these maintenance actions.

Slide Courtesy Christopher Rattray

The ageing process during routine analysis of challenging samples is normal

-4-Nitrophenol -Dibenzofuran

Trimming alone shouldn't cause the elution order switch

4-Nitrophenol is a good example of how column activity can change relative retention times.

Adsorption at active sites

- Peak height reduces (sensitivity) •
- Peaks become broader (separation) •

New Column Inertness Performance

Injection of 12, 8, 4, 2, 1, 0.5 and 0.1 ng on the column

Inertness Facilitates Linear Calibrations

Average %RSDs for 6 Rxi-SVOCms columns (16623) calibrated from 1 ng/µL to 120 ng/µL

Compound	Calibration Range (µg/mL)	Average %RSD of Response Factors
N-Nitrosodimethylamine	1 - 120	4.70%
Pyridine	1 - 120	6.10%
(SS) 2-Fluorophenol	1 - 120	1.70%
(SS) Phenol-d6	1 - 120	2.10%
Phenol	1 - 120	3.20%
Aniline	1 - 120	3.10%
Bis(2-chloroethyl)ether	1 - 120	2.40%
2-chlorophenol	1 - 120	2.80%
1,3-dichlorobenzene	1 - 120	2.60%
1,4-Dichlorobenzene	1 - 120	2.10%
Benzyl alcohol	1 - 120	3.30%
1,2-Dichlorobenzene	1 - 120	2.70%
2-Methylphenol	1 - 120	3.30%
Bis(2-chloroisopropyl)ether	1 - 120	2.40%
4-Methylphenol/3-methylphenol	1 - 120	3.30%
N-nitroso-di-n-propylamine	1 - 120	3.80%
Hexachloroethane	1 - 120	3.00%
(SS) Nitrobenzene-D5	1 - 120	1.60%
Nitrobenzene	1 - 120	2.60%
Isophorone	1 - 120	3.40%
2-Nitrophenol	1 - 120	7.00%
2,4-Dimethylphenol	1 - 120	3.70%
Benzoic acid	2.5 - 120	25.00%

Compound	Calibration Range (µg/mL)	Average %RSD of Response Factors	
Bis(2-chloroethoxy)methane	1 - 120	3.60%	
2,4-Dichlorophenol	1 - 120	4.10%	
1,2,4-Trichlorobenzene	1 - 120	2.80%	
Naphthalene	1 - 120	3.20%	
4-Chloroaniline	1 - 120	3.90%	
Hexachlorobutadiene	1 - 120	3.70%	
4-Chloro-3-methylphenol	1 - 120	4.40%	
2-Methylnaphthalene	1 - 120	3.40%	
1-Methylnaphthalene	1 - 120	3.60%	
Hexachlorocyclopentadiene	1 - 120	6	
2,4,6-Trichlorophenol	1 - 120	Benz	o[ghi]peryler
2,4,5-Trichlorophenol	1 - 120	e	
(SS) 2-Fluorobiphenyl	1 - 120	1	
2-Chloronaphthalene	1 - 120	2.80%	
2-Nitroaniline	1 - 120	7.80%	
1,4-Dinitrobenzene	1 - 120	11.10%	
Dimethyl phthalate	1 - 120	3.40%	
1,3-Dinitrobenzene	1 - 120	10.80%	

Benzoic Acid is the only compound > 20% RSD

			Range (µg/mL)	Response Factors	
	2,6-Dinitrotoluene		1 - 120	7.80%	
	Acenaphthylene		1 - 120	4.10%	
	1,2-Dinitrobenzene		1 - 120	8.10%	
	3-Nitroaniline		1 - 120	5.80%	
	Acenaphthene		1 - 120	3.30%	
	2,4-Dinitrophenol		2.5 - 120	17.30%	
	4-Nitrophenol		1 - 120	7.90%	
	Dibenzofuran		1 - 120	3.50%	
	2,4-Dinitrotoluene		1 - 120	11.60%	
ne		1	- 120	6.40%	
	\langle	Avera	ge %RSD:	6.00%	
	Fluorene	Avera	ge %RSD:	6.00%	
	Fuorene 4-Nitroaniline	Avera	ge %RSD:	6.00% 4.40% 9.10%	
	Fuorene 4-Nitroaniline 4,6-Dinitro-2-methylpl	Avera	ge %RSD: 1-120 1-120 2.5-120	6.00% 4.40% 9.10% 15.10%	
•	Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylpl N-nitrosodiphenylamin	Avera	ge %RSD: 1-120 2.5-120 1-120	6.00% 9.10% 15.10% 4.60%	
•	Fuorene 4-Nitroaniline 4,6-Dinitro-2-methylpl N-nitrosodiphenylamin Diphenylhydrazine	Avera	ge %RSD: 1 - 120 1 - 120 2.5 - 120 1 - 120 1 - 120	6.00% 9.10% 15.10% 4.60% 4.60%	-
•	Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylpl N-nitrosadiphenylamin Diphenylhydrazine (SS) 2,4,6-Tribromophe	Avera	ge %RSD: 1-120 2.5-120 1-120 1-120 1-120 1-120	6.00% 9.10% 15.10% 4.60% 4.60% 5.50%	-
*	Fuorene 4-Nitroaniline 4,6-Dinitro-2-methylpl N-nitrosodiphenylamin Diphenylhydrazine (SS) 2,4,6-Tribromophe 4-Bromophenyl phenyl	Avera henol e nol	ge %RSD: 1-120 1-120 2.5-120 1-120 1-120 1-120 1-120	4.40% 9.10% 15.10% 4.60% 4.60% 5.50% 5.50%	
•	Huorene 4-Nitroaniline 4,6-Dinitro-2-methylpl N-nitrosodiphenylamin Diphenylhydrazine (SS) 2,4,6-Tribromophe 4-Bromophenyl phenyl Hexachlorobenzene	Avera henol e ether	ge %RSD: 1 - 120 1 - 120 2.5 - 120 1 - 120 1 - 120 1 - 120 1 - 120 1 - 120	6.00% 4.40% 9.10% 15.10% 4.60% 4.60% 5.50% 5.50% 4.30%	-
•	Fuorene 4-Nitroaniline 4,6-Dinitro-2-methylpl N-nitrosodiphenylamin Diphenylhydrazine (SS) 2,4,6-Tribromophe 4-Bromophenyl phenyl Hexachlorobenzene Pentachlorophenol	Avera nenol e ether	ge %RSD: 1-120 1-120 2.5-120 1-120 1-120 1-120 1-120 1-120 1-120 1-120	6.00% 4.40% 9.10% 15.10% 4.60% 4.60% 5.50% 5.50% 4.30% 10.60%	

Calibration

Average %RSD of

Compound	Calibration Range (µg/mL)	Average %RSD of Response Factors
Anthracene	1 - 120	4.80%
Carbazole	1 - 120	5.30%
di-n-Butyl phthalate	1 - 120	7.90%
Fluoranthene	1 - 120	5.10%
Benzidine	1 - 120	9.30%
(SS) Pyrene-D10	1 - 120	1.50%
Pyrene	1 - 120	4.30%
(SS) p-Terphenyl-d14	1 - 120	1.80%
3,3'-Dimethylbenzidine	1 - 120	9.50%
Butyl benzyl phthalate	1 - 120	8.60%
Bis(2-ethylhexyl)adipate	1 - 120	10.50%
3,3'-Dichlorobenzidine	1 - 120	8.50%
Benz[a]anthracene	1 - 120	3.20%
Chrysene	1 - 120	3.70%
Bis(2-ethylhexyl)phthalate	1 - 120	10.40%
Di-n-octyl phthalate	1 - 120	13.20%
Benzo[b]fluoranthene	1 - 120	5.60%
Benzo[k]fluoranthene	1 - 120	4.90%
Benzo[a]pyrene	1 - 120	6.30%
Indeno[123-cd]pyrene	1 - 120	7.20%
Dibenz[a,h]anthracene	1 - 120	7.50%
Benzo[ghi]perylene	1 - 120	6.40%
<	Average %RSD:	6.00%

New Surface Deactivation: Rugged Enough for the Harshest Matrices

300 injections of a diesel particulate extract (NIST SRM 1975)

- Calibration Verification (CCV) performed every 10 SRM injections
- Maintenance (2 loops removed, new liner, new seal) every 30 SRMinjections

After 300 injections, CCV still meets expected peformance targets

 6.4% of targets analytes fall outside the ± 20% recovery window

Standard inlet maintainence every 30 sample injections restores column performance.

New Polymer, Optimized PAH Selectivity

Improved Benzofluoranthene and Indeno[123-cd]pyrene – Dibenz[ah]anthracene Separations

New Polymer, Same Chromatogram

RES

Benzofluoranthene isomers are still sufficiently resolved after removing ten meters of from a 30 m x 0.25 mm x 0.25 μ m

No Changes to temperature program or flow rate

Calibration Stability Compared to the Typical Columns

Number of SRM Injections

20

There is an extensive PAH library in *EZ*GC

(abs): 0.00 psi Oven Temp.: 40 °C (hold 0.5 min) to 280 °C @ 20 °C/min to 330 °C @ 6 °C/min (hold 6 min)

https://ez.restek.com/proezgc/en

Peaks	t: (min)	R,	Peak Width (min)	т, (°С)	Peaks	t∝ (min)	R,	Peak Width (min)	T,
1. Naphthalene-D8	6.15	1.2	0.023	153.0	50. 2-Methylfluoranthene	11.31	11.6	0.019	256.3
2. Naphthalene	6.18	1.2	0.023	153.6	51. Fluoranthene	11.54	9.8	0.025	260.8
3. Quinoline-d7	6.37	1.1	0.023	157.4	52. Pyrene-d10	11.79	0.8	0.026	265.8
4. Quinoline	6.40	1.1	0.023	157.9	53. Pyrene	11.81	0.8	0.025	266.2
5. 2-Methylnaphthalene	7.00	4.9	0.023	169.9	54. p-Terphenyl	12.06	9.8	0.024	271.2
6. 1-Methylnaphthalene	7.11	4.9	0.024	172.3	55. 1-Methylpyrene	12.31	0.1	0.025	276.1
7. 2-Fluorobiphenyl	7.44	2.3	0.023	178.8	56. Benzo[c]fluorene	12.31	0.1	0.025	276.2
8. 2-Ethylnaphthalene	7.50	0.6	0.023	179.9	57. 2-(Acetylamino)fluorene	12.92	5.1	0.027	282.5
9. 1-Ethylnaphthalene	7.51	0.6	0.023	180.2	58. Benzo[ghi]fluoranthene	13.06		0.028	283.3
10. Biphenyl	7.56	0.5	0.023	181.2	59. Benzo[c]phenanthrene	13.06		0.029	283.4
11. 2,6-Dimethylnaphthalene	7.58	0.3	0.023	181.5	60. Cyclopenta[cd]pyrene	13.34	0.3	0.030	285.0
12. 2-Chloronaphthalene	7.58	0.1	0.024	181.7	61. Benz[a]anthracene	13.35	0.3	0.030	285.1
13. 2,7-Dimethylnaphthalene	7.59	0.1	0.023	181.8	62. Triphenylene	13.38	0.5	0.030	285.3
14. 1-Chloronaphthalene	7.61	0.8	0.024	182.1	63. Chrysene	13.40	0.5	0.030	285.4
15. 1,3-Dimethylnaphthalene	7.67	1.1	0.023	183.4	64. 1-Methylbenz[a]anthracene	13.67	1.7	0.031	287.0
16. 1,6-Dimethylnaphthalene	7.70	1.1	0.023	184.0	65. 3-Methylchrysene	13.72	1.4	0.032	287.3
17. 1,4-Naphthoquinone	7.79	0.9	0.023	185.8	66. 2-Methylchrysene	13.77	1.4	0.032	287.6
18. 1,4-Dimethylnaphthalene	7.81		0.023	186.2	67. 4-Methylchrysene	13.83		0.032	288.0
19, 2,3-Dimethylnaphthalene	7.81		0.023	186.2	68. 6-Methylchrysene	13.83		0.032	288.0
20. 1,2-Dimethylnaphthalene	7.90	4.1	0.023	188.1	69. 5-Methylchrysene	14.06	4.1	0.034	289.4
21, 1,8-Dimethylnaphthalene	8.04	1.4	0.023	190.8	70, Benz(A)anthracene-7,12-dione	14.21	4.1	0.034	290.3
22. Acenaphthylene	8.07	1.4	0.024	191.5	7,12-	15.05		0.040	295.3
23. Acenaphthene-d10	8.25	1.6	0.024	195.0	20 Reprofibilitiesenthene				
24. Acenaphthene	8.29	1.6	0.024	195.8	72. Benzolojinuorantinene	15.05		0.040	295.3
25, 1,3,7-Trimethylnaphthalene	8.34	2	0.023	196.7	73. Benzoijjmuorantnene	15.07	0.3	0.040	295.4
26. 1,4,6-Trimethylnaphthalene	8.47	1	0.023	199.5	74. Benzo(k)fluoranthene	15.10	0.9	0.040	295.6
27. Dibenzofuran	8.50	0.3	0.024	200.0	75. Benzo(a)nuorantnene	15.24	3.2	0.041	296.4
28, 2,3,6-Trimethylnaphthalene	8.51	0.3	0.023	200.1	76. Benzolejpyrene	15.54	1.2	0.043	298.2
29, 2,3,5-Trimethylnaphthalene	8.58	0.1	0.023	201.6	//. Benzolajpyrene-d i 2	15.59	0.9	0.043	298.5
30, 1-Naphthalamine	8.58	0.1	0.024	201.7	/8. Benzolajpyrene	15.63	0.9	0.043	298.8
31, 1,2,6-Trimethylnaphthalene	8.60	0.5	0.023	201.9	79. Perviene-D12	15.74	1.1	0.044	299.4
32, 2-Naphthalamine	8.69	1.6	0.024	203.7	80. Perylene	15.78	1.1	0.044	299.7
33, 2,4,5-Trimethylnaphthalene	8.72	0.4	0.024	204.5	81. p-Quaterphenyl	17.02	8	0.048	307.1
34, 1,2,5-Trimethylnaphthalene	8.74	0.4	0.023	204.7	82. Dibenz[a,J]acridine	17.41	3	0.051	309.4
35. 1,2,3-Trimethylnaphthalene	8.84	0.6	0.023	206.8	83. Dibenzo(a,j)anthracene	17.57	3	0.052	310.4
36. 1,4,5-Trimethylnaphthalene	8.86	0.6	0.023	207.1	84. Indeno[1,2,3-cd]pyrene	17.75	1.1	0.053	311.5
37. Fluorene	8.92	0.4	0.024	208.3	85. Dibenz[a,h]anthracene	17.81		0.053	311.8
38, 2-Methyl-5-nitroaniline	8,93	0.4	0.023	208.5	86. Dibenz[a,c]anthracene	17.81		0.053	311.8
39, 1,4,6,7-Tetramethylnaphthalene	9.29	12,4	0.023	215.8	87. Benzo[b]chrysene	17.99	1.2	0.053	313.0
40. 1.2.5.6-Tetramethylnaphthalene	9.58	12.4	0.024	221.6	88. Picene	18.06	1.2	0.054	313.4
41. Dibenzothiophene	9.93	5.1	0.025	228.6	89. Benzo[ghi]perylene	18.24	3.4	0.055	314.5
42. Phenanthrene-D10	10.06	1.1	0.025	231.1	90. Anthanthrene	18.51	4.7	0.056	316.0
43. Phenanthrene	10.08	1.1	0.025	231.7	91. 6,13-Pentacenedione	19.32	14.4	0.057	320.9
44. Anthracene	10.15	2.6	0.025	233.0	92. Dibenzo[a,l]pyrene	20.48	0.4	0.060	327.9
45 Carbazole	10.15	8.1	0.025	233.0	93. Dibenzo[b,k]fluoranthene	20.51	0.4	0.060	328.1
46 2-Methylanthracene	10.55	2.1	0.024	237.0	94. Dibenzo[a,e]pyrene	21.16	0.1	0.064	330.0
47. 1-Methylanthracene	10.58	0.7	0.024	241./	95. Coronene	21.17	0.1	0.065	330.0
40. 1-Methylphenonthrene	10.03	0.7	0.024	242.7	96. Dibenzo(a,i)pyrene	21.42	2	0.067	330.0
40. Chisanyiphenanunene	10.05	0.7	0.024	243.1	97. Dibenzo(a,h)pyrene	21.56	2	0.069	330.0
49. Cyclopenta[def]phenanthrene	10.81	6.4	0.025	246.2	98. p-Quinquephenyl	25.51	57.4	0.109	330.0

Method Development Tools

	-		×
E7CC" Elow Cal	culator	/ /	
EZGC FIOW Cal	Culator	//	
Carrier Gas			
	Helium ~	•	
Column			
Length	30.00	⊖m	
Inner Diameter	0.25	mm	
Film Thickness	0.25	μm	
Temperature	40	°C	
Control Parameters			
Outlet Flow Optimum Range	→ 1.40	mL/min	
Average Velocity	42.74	cm/sec	
Holdup Time	1.17	min	
Inlet Pressure (gauge)	11.42	psi 🗸	
Outlet Pressure (abs)	0.00	psi	
	Atm Vacuum		
Inlet			
Temperature	250	°C	
Liner Volume	1.00	mL	
Flow	1.40	mL/min	
Splitless Valve Time	1.1 to 1.5	min	
Use MT Original Values U	se MT Translatio	n Values	

RESTEK For software updates, web-based application, and technical support, visit us at ... www.restek.com/ezgc-mtfc ©2022 Restek Corporation. All rights reserved.

Compounds	Conditions	My <i>EZ</i> GC	~				
Search by P	hase	Search by Name or C	AS >>				
Phase:	Rxi-SVOCms		$\mathbf{ }\mathbf{\vee}$				
Library:	Choose a compound libra	ary	\sim				
	Choose a compound library						
	Semivolatiles						
	Pesticides & Herbicides						

Pro EZGC Chromatogram Modeler

1 ng 8270 MegaMix on the Rxi-SVOCms 20 m x 0.15 mm x 0.15 μm

TIC: 20220729_003.D\data.ms

Thanks to:

Christopher Rattray Corby Hilliard Roy Lautamo Brian Salisbury Kristi Sellers Applications, Development Applications, Development R&D Polymer Chemist Product Development GC Marketing

- 1. Phase for semivolatiles developed with unique characteristics
- 2. Designed for improved lifetime based on testing using NIST SRM 1975
- 3. Targeted for PAH resolutions
- Each column is tested with semivolatiles at 1 ng level & 340°C ٠

ChromaBLOGraphy

DOWNLOAD EZGC Method Translator and Flow For Windows 10/8/7/Vista/XP

Questions?

Pure Chromatography