A Forensics Based Approach to Evaluating PFAS Contamination in the Environment

NEMC Environmental Forensics Session July 31, 2023

Charles Neslund Scientific Officer and PFAS Practice Leader Eurofins Environment Testing Lancaster Laboratories

Copyright © 2022 Eurofins

Environment Testing

PFAS Forensic Tools

The tools for PFAS forensics are a developing area of applications. We currently have several tools already in use that can be applied towards forensic investigations;

- Chemical Fingerprinting
- Isomer comparison
- Applications of TOP Assay

PFAS Forensic Tools

Additional techniques that are gaining in use and application

- Total Organic Fluorine Analysis
- Non-Target Analysis

The General Classes of Per- and Polyfluoroalkyl Substances (PFAS)

Source: ITRC Naming Conventions and Physical Chemical Properties fact sheet

User-Defined Methods: PUT TO THE TEST!

- Biphasic
 Biosolids
 Tissues
 Dispersions
 Activated Ca
 Cosmetics
 - Activated Carbon Cosmetics Concrete
- n NELAC NELAC DoD ELAP Client/Program Specific Audits Semiannual PT NMI International Round Robin

DOW Study

- >85% of all PFASdata includes avalidationpackage
- >300,000 sample data validated

ы С

Copyright © 2022 Eurofins

Benefits of Isotope Dilution

eurofins Environment Testing

What affects the native analyte will equally affect the isotope

Calibratio

Most accurate and precise method

Target analytes are quantitated against structurally similar materials, the isotopes themselves Expands ability to process a broader range of matrices

Mitigation

Matrix

Reduces the potential for false positives

cation

D

ŏ

Reduces the potential for error; corrects for retention time shifts

Copyright © 2022 Eurofir

Perfluorooctanesulfonamide (FOSA)

Compounds Included in EPA	A Draft 1633 (RLs ~2-5ng/L)	Target Compounds Not Part of EPA Draft 1633 (RLs ~2-5ng/L)		
Perfluorobutanoic acid (PFBA)	NEtFOSA	10:2 FTS	EVE Acid	
Perfluoropentanoic acid (PFPeA)	NMeFOSA	6:2 FTCA	PFO5DA	
Perfluorohexanoic acid (PFHxA)	NMeFOSAA	8:2 FTCA	РМРА	
Perfluoroheptanoic acid (PFHpA)	NEtFOSAA	10:2 FTCA	PEPA	
Perfluorooctanoic acid (PFOA)	NMeFOSE	6:2 FTUCA	МТР	
Perfluorononanoic acid (PFNA)	NEtFOSE	8:2 FTUCA	PS Acid	
Perfluorodecanoic acid (PFDA)	4:2 FTS	10:2 FTUCA	Hydro-PS Acid	
Perfluoroundecanoic acid (PFUnA)	6:2 FTS	PFECHS	R-PSDA	
Perfluorododecanoic acid (PFDoA)	8:2 FTS	PFPrS	Hydrolyzed PSDA	
Perfluorotridecanoic acid (PFTriA)	9CI-PF3ONS	PFPrA	R-PSDCA	
Perfluorotetradecanoic acid (PFTeA)	11CI-PF3OUdS	PFMOAA	6:2 diPAP	
Perfluorobutanesulfonic acid (PFBS)	DONA	PFECAG	8:2 diPAP	
Perfluoropentanesulfonic acid (PFPeS)	HFPO-DA (GenX)	PFO4DA	6:2/8:2 diPAP	
Perfluorohexanesulfonic acid (PFHxS)	3:3 FTCA	PFO3OA	10:2 diPAP	
Perfluoroheptanesulfonic Acid (PFHpS)	5:3 FTCA	PFO2HxA	10:2 FTOH (RL=1ug/L)	
Perfluorooctanesulfonic acid (PFOS)	7:3 FTCA	R-EVE	8:2 FTOH (RL=1ug/L)	
Perfluorononanesulfonic acid (PFNS)	NFDHA	NVHOS	7:2 FTOH (RL=1ug/L)	
Perfluorodecanesulfonic acid (PFDS)	PFMBA	Hydro-EVE Acid	6:2 FTOH (RL=1ug/L)	
Perfluorododecanesulfonic acid (PEDoS)	ΡΕΜΡΔ	Perfluoro-n-octadecanoic acid (PEODA)	$4.2 \text{ FTOH} (\text{RI} = 1 \mu \sigma / 1)$	

PFEESA

Perfluoro-n-hexadecanoic acid (PFHxDA)

Additional PFAS Methods

Fluorotelomer Alcohols

- GCMSMS method
- Water and solids
- Instrumental set-up like 8270E and extractions like 3510 and 3540/50
- Current compound list
- Fluorotelomer acrylates and acetates being added

4:2 Fluorotelomer alcohol **6:2** Fluorotelomer alcohol 7:25 Fluorotelomer alcohol 8:2 Fluorotelomer alcohol 10:2 Fluorotelomer alcohol

EPA Draft Method In Progress

EPA Draft 1633

- Targeted Analysis of 40 PFAS
- Non-Potable Water, Soil & Tissue
- LCMSMS, WAX SPE, Isotope Dilution
- Multi-Lab Validation Underway

Copyright © 2022 Eurofi

Chemical Fingerprinting

Herzke, et al., 2012, Chemosphere, 88, 980-987

The selles

Isomer Comparison

 $F_{3}C-CF_{2}-CF_{2}-CF_{2}-CF_{2}-CF_{2}-CF_{2}-CF_{2}-CF_{2}-SO_{3}^{-1}$

Linear Perfluorooctane sulfonate (PFOS)

CF₃ | F₃C-CF-CF₂-CF₂-CF₂-CF₂-SO₃⁻

Branched Perfluorooctane sulfonate (PFOS)

Figure 4-1. Linear and one branched isomer of PFOS

ITRC PFAS Fact Sheet Naming Conventions April 2020

Copyright © 2022 Eurofins

Isomer Comparison

Chromatogram of PFOS Standard of Linear Isomer

Chromatogram of PFOS Standard of Branched/Linear Mix Typical Ratio

Copyright © 2022 Eurofins

Isomer Comparison

Chromatogram of PFOS Sample with Branched/Linear Mix High Bias Ratio

Chromatogram of PFOS Sample with Branched/Linear Mix Low Bias Ratio

Total Oxidizable Precursors

Total Organic Fluorine Analysis

CIC: Combustion Ion Chromatography

Total Oxidizable Precursors - TOP

pubs.acs.org/est

Oxidative Conversion as a Means of Detecting Precursors to Perfluoroalkyl Acids in Urban Runoff

Erika F. Houtz and David L. Sedlak*

Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California, 94720-1710

Concept is to analyze a sample for perfluoroalkyl carboxylic acids (PFCA) and perfluoroalkyl sulfonic acids (PFSA) and any identified precursors. Then subject a second aliquot of the sample to relatively harsh oxidative conditions. Analyze the oxidized sample for the same perfluoroalkyl acids and precursors. Expect to see;

- a) Reduction or elimination of the precursors
- b) Increase in concentrations of perfluoroalkyl acids

Results of oxidation of 6:2 Fluorotelomer sulfonate at 250 ng/l

PFCA	ELLE	Houtz
PFBA	21.6	22
PFPeA	43.6	27
PFHxA	16.1	22
PFHpA	2.4	2
PFOA	0.3	0
PFNA	0.0	0
PFDA	0.0	0
PFUnDA	0.0	0

Molar Yield

Copyright © 2022 Eurofins

Results of oxidation of 8:2 Fluorotelomer sulfonate at 250 ng/l

PFCA	ELLE	Houtz
PFBA	9.9	11
PFPeA	16.1	12
PFHxA	19.4	19
PFH _P A	36.1	27
PFOA	15.9	21
PFNA	3.1	3
PFDA	0.0	
PFUnDA	0.0	

Copyright © 2022 Eurofins

TOP Assay – Other Precursors

NEtFOSAA

Molar Yield

10:2 FTS

Copyright © 2022 Eurofins

in alla

TOP Assay Results

Compound	Pre-Ox	Post-Ox	Difference
PFBA	ND	98 ng/l	98 ng/l
PFPeA	ND	87 ng/l	87 ng/l
PFHxA	5 ng/l	61 ng/l	56 ng/l
6:2 FTS	100 ng/l	ND	- 100 ng/l
PFHpA	ll ng/l	32 ng/l	21 ng/l
PFOA	7 ng/l	26 ng/l	19 ng/l
PFOS	56 ng/l	52 ng/l	- 4 ng/l
8:2 FTS	26 ng/l	ND	- 26 ng/l
PFNA	ND	5 ng/l	5 ng/l

and have

51PP

an alla

Total Organic Fluorine Analysis

Marriage of TOX and IC

Sample (or treated sample) is combusted in a furnace at $900^{\circ}C - 1100^{\circ}C$

Effluent collected in buffer and injected into ion chromatograph (IC)

Quantify fluorine (as fluoride) content

Compare ratio of total (or extractable) fluorine to total PFAS

Oxidative pyrohydrolytic combustion Handling of the sample prior to fluoride determination determines result evaluated

EOF – Extractable Organic Fluorine AOF – Absorbable Organic Fluorine

Total Organic Fluorine Analysis in Water

Adsorbable Org. F (AOF)

- Sample Prep
 - 100mls sample pass thru activated charcoal bed(s)
 - Final wash with
 nitrate solution to
 remove inorganic
 fluoride
- Combustion of Charcoal into CIC to measure F⁻ by IC

Extractable Org. F (EOF)

- Sample Prep
 - 100mls sample pass thru weak anion exchange (WAX) SPE
 - Elute PFAS with
 methanol
 - Concentrate
 methanol to final
 1mL
- Combustion of extracted sample into CIC to measure F⁻ by IC

Total Org. F (TOF)

- Sample Prep (water samples)
 - No Sample Prep
- Direct injection of aqueous sample into CIC system to measure both Inorganic F⁻ and Organic F⁻ simultaneously

Courtesy of Dr. Jayesh Ghandi - Metrohm

EPA Draft Method In Progress

EPA Draft 1621

- Adsorbable Organic Fluorine (AOF)
- Applicable to waters
- Proxy analysis for 'Total PFAS'
- Single lab validation complete; multi-lab validation in process

<

Copyright © 2022 Eurolin

Site 1 Private WWTP

Sample	AOF (ng/L)	TOP Assay – PFCA Difference (ng/L)
Influent	1,300	110
Influent Dup	1,300	120
Effluent	1,500	220
Effluent Dup	1,100	230

FTOHs are all non-detect @ 1,000 ng/L

Copyright © 2022 Eurofins

Site 1, Private WWTP Influent & Effluent

AOF Equivalent for these samples is 63%

Site 3			Site 3,			
				<u>6:2 diPAP</u>		
POIW				PFPrA		
				PFHxA		
				PFPeA		
		TOP Assay –		8:2 diPAP		
Sample	AOF (ng/L)	PFCA		PFOA		
		Difference		PFOS		
		(ng/L)		<u>6:2 FTCA</u>		
Influent	5,200	170		<u>10:2 diPAP</u>		
lafl	4,600	170		5:3 FTCA		
Influent	4,000	170		6:2 FTUCA		
Dup				PFPrS		
Effluent	3,100	94		PFHxS		
Ffluent	1 800	85		<u>6:2/8:2 diPAP</u>		
Dup	1,000	05			0	5
FTOHs are all non-detect @ 1,000 ng/L						

POTW Influent & Effluent

Copyright © 2022 Eurofins

24

Non-Target Analysis

WHERE WE'RE GOING, WE DON'T NEED ROADS.

LC-QToF-MS

Liquid Chromatography Quadrupole Time of Flight Mass Spectrometry

Sample X TIC (blue trace) and extraction blank (green trace).

MB injection volume = 10 ul , sample X injection volume 2 uL . Targeted analysis indicated potential matrix

Sample X spectra at 4.56 min. Top pane: XIC 455.959 Da, Middle pane: TOF MS (50-470 Da), Bottom pane: TOF MSMS (50 500 Da) 455.9570 Da is referenced in literature with chemical formula C8H3F13NO4S, see inset structure.

:5

1 11

Copyright

Sample X additional spectra at 4.56 min.

Top pane: XIC 640.916 Da, Middle pane: TOF MS (50-660 Da), Bottom pane: TOF MSMS (50 660 Da). Suspected fluorinated spectra with unknown chemical formula. TOF MS ions 640.916 and 642.915 have similar intensity.

Table 2. Sample X Negative ESI Results

Dracureor Mace	Detention	Area Calculated amount (ng/L)		Calculated Amount (ng/L)
Trecursor Muss	neterition	Arcu	calculated amount (ng/t)	calculated Amount (ng/t)
	Time		using 13C8 PFOA	using 13C8 PFOS
382.9459	4.29	23695	93.96	83.17
643.8879	4.56	18847	74.74	66.15
642.9146	4.56	30786	122.09	108.05
640.9162	4.56	31474	124.82	110.47
455.9591	4.56	45328	179.76	159.10
519.9572	4.72	25027	99.25	87.84
480.9410	4.82	11983	47.52	42.06
580.9343	5.32	47486	188.32	166.67
1056.9204	5.32	20128	79.82	70.65
501.9306	5.32	25046	99.33	87.91
514.9018	5.44	66940	265.46	234.95
514.9261	5.44	12900	51.16	45.28
623.0533	6.81	33976	134.74	119.25

Non-Target Analysis

Accurate mass solves a variety of PFAS problems

No More Limitations

SCIEX

Precursors without TOP Assay No LIMS constraints Want to know all byproducts?

Byproducts?

SWATH uses a moving small mass window for nontarget MS/MS spectra; can capture all byproducts

Exact mass confirmation of 'suspect' positive results

Mitigation of matrix effects for short chain analytes

Application for PFAS lacking standards and unknowns (NTAs)

The selles

Targeted PFAS

All Matrices – Up to 80 Compounds

Strengths: Selectivity, Sensitivity at ~1-5ppt Can be used for risk assessment Weaknesses: Limited list of compounds

Non-Target Analysis

All Matrices – Unknowns

Strengths: Ability to identify 'unknowns' with specificityAbility to conduct novel compound identificationWeaknesses: Limited to current librariesLimited quantitation

• TOP Assay All Matrices – Oxidizable Precursors

Strengths: Sensitivity at ~1-5ppt

Specific to 'unknowns' with potential to convert to risk drivers

Weaknesses: Not specific

Does not complete a mass balance

Total Organic Fluorine

All Matrices – Organic Fluorine

Strengths: Closest to a mass balance Weaknesses: Sensitivity at ~1ppb No selectivity

QUESTIONS?

Charles.Neslund@ET.EurofinsUS.com 717-799-0439

eurofins

Environment Testing

THANK YOU

🔅 eurofins

Environment Testing

Copyright © 2022 Eurofins