

Mechanics of Data Acquisition for PFAS Forensics

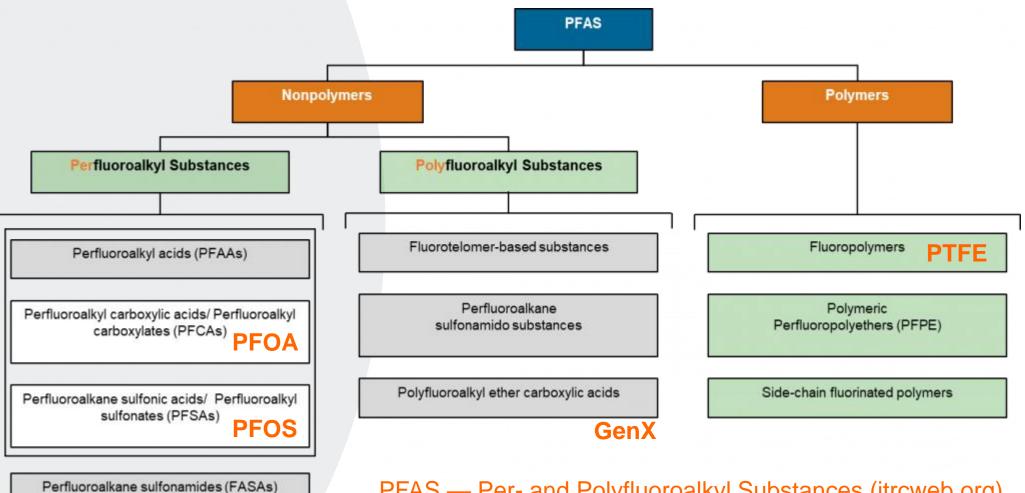
Environmental Measurement Symposium 2023 Kesavalu M. Bagawandoss, Ph.D., J.D. | July 31, 2023 | ??? pm EST

SAFER GREENER SMARTER

Agenda

- Background
- What type of Data is necessary for Forensics?
- Analytical Methods
- Fingerprinting and PFAS
- Non-Target Analysis
- PFAS Forensics
- Summary

Background



Background: PFAS Compounds

- Standards Availability
- Current methods for measuring PFAS are limited in scope
- ~ 4000 to 6000 PFAS compounds
- TRI reporting requirements 189 compounds
- How do we acquire the best possible data for Forensics?

Background: PFAS Terminology and Family Tree

PFAS — Per- and Polyfluoroalkyl Substances (itrcweb.org)

5

Background: Traditional Forensics Approach

- Sophisticated Data Acquisition
- Analytical Methods:
 - LC/MS/MS
 - AOF
 - TOP Assay
 - LC qTOF HRMS
 - GC qTOF HRMS
 - Non Targeted Analysis (NTA)
 - Complex Libraries
 - Mass Spectral Interpretation

Background: Pioneering PFAS Analysis

- Isotope dilution analysis of ~ 100 targets with some of the lowest reporting limits in the industry
- Total Oxidizable Precursor Assay (TOP)
- Branched Isomer Characterization for Forensics
- Short Chain PFAS analysis
- AOF analysis
- AFFF and Non PFAS AFFF
- Custom Method Development and Validation
- Leadership on analytical issues, including stability, filtration and subsampling

Background: Pioneering PFAS Analysis

- SGS AXYS performed the single-lab validation of the isotope-dilution PFAS method in water, solids, and tissue for the US EPA/US DoD (1633)
- Fish tissue, wastewater

treatment mass balance, ambient monitoring, drinking water, ambient air, site investigation, remediation, human biomonitoring, product testing, passive sampling

Background: AFFF Products Method for US-DoD

Method Features

- 10 ppb PFOS and PFOA
- 31 other targets
- Isotope dilution, DoD QSM 5.3 compliant method

Status

 Validated for AFFF, AR-AFFF and tested on fluorine-free foams for DoD

What Type of Data is Necessary for Forensics?

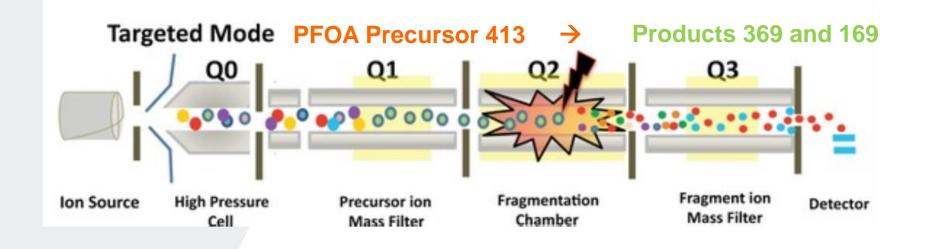
What Type of Data is Necessary for Forensics?

- Historical site use data
- Fire fighting activities on site
- Types of foams used in fire-fighting activities over time
- Any type of polymers used on site
- Due to ubiquitous nature of PFAS any information regarding products used onsite
- Site Maps

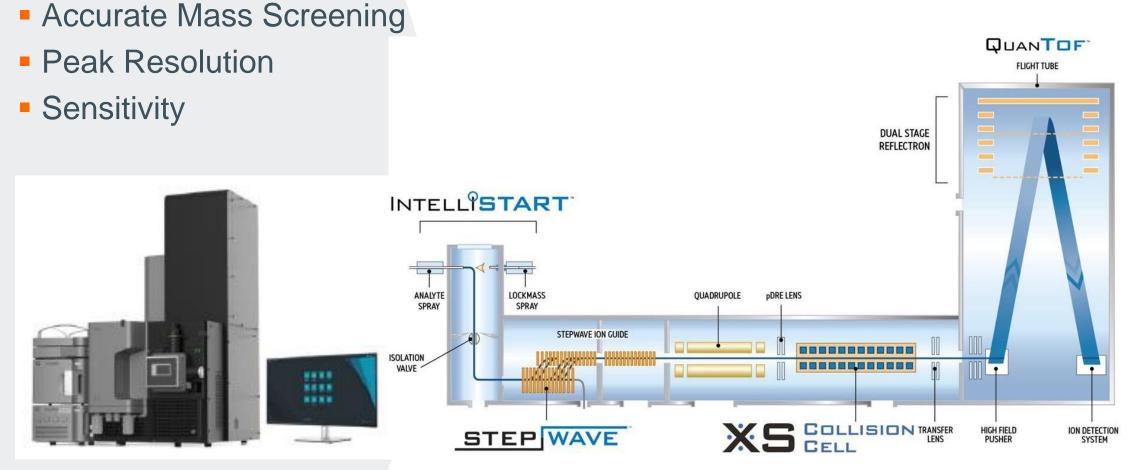
What Type of Data is Necessary for Forensics?

Analytical Data

- LC/MS/MS
- AOF
- TOP Assay
- LC qTOF HRMS
- GC qTOF HRMS
- Non Targeted Analysis (NTA) Software
- Understanding Complex Work-Flows
- Expertise in processing data
- Libraries example EPA DSS TOX database (~875,000 unique substances) (MS ready structures)
- Complex Software and Mass Spectral Interpretation

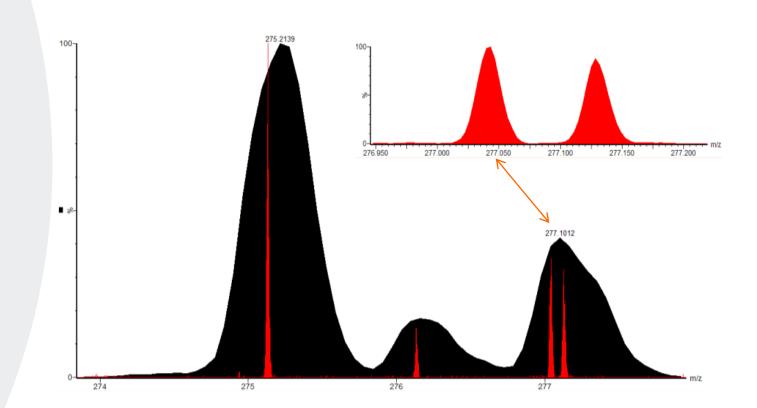

Analytical Methods

Analytical Methods: LC/MS/MS



- LC/MS/MS: First separate analytes in solution by liquid chromatography
- Triple Quadrupole or Tandem Mass Spec
 - Q1/MS1 separates the precursor ion(s) from everything else in the sample and allows them into the collision cell
 - Q2 is the collision cell, ions are fragmented forming product ions
 - Q3/MS2 allows only selected product ions to pass through to the detector

Analytical Methods: LC/QTOF/HRMS


Courtesy: Waters

Analytical Methods: LC/QTOF/HRMS

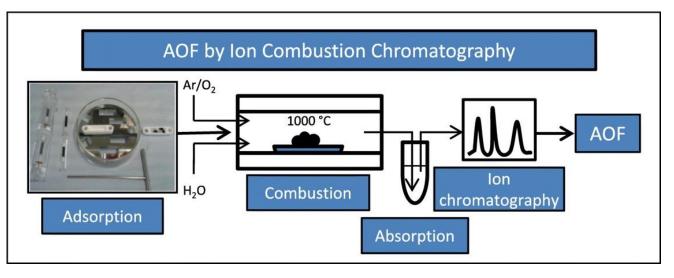
- Accurate Mass
 Screening
- Power of High Resolution

Analytical Methods: GC/QTOF/HRMS

- Accurate Mass Screening
- Utilized for Air Samples¹
- Resolving power

Ref¹: Seth Newton, Jonathan Casey, Office of Research and Development, US Environmental Protection Agency

Courtesy: Agilent


Analytical Methods: Adsorbable Organic Fluorine

 Good potential for quickly understanding total fluorine,
 EPA Method 1621 in progress

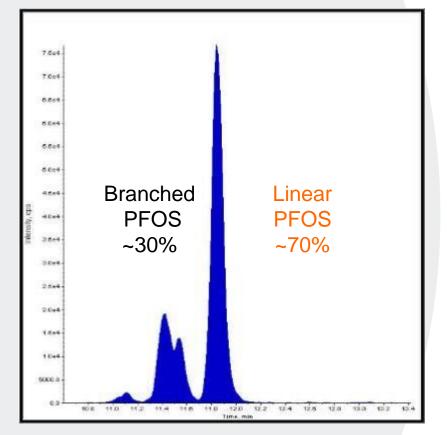
- Challenges
 - Fluorine background
 - Reporting limits 100-1000 times higher than LC-MS/MS
 - No chain length information

Technique for estimating organic fluorine in a sample by combustion ion chromatography.

Science of The Total Environment 673, 384–391 (2019).

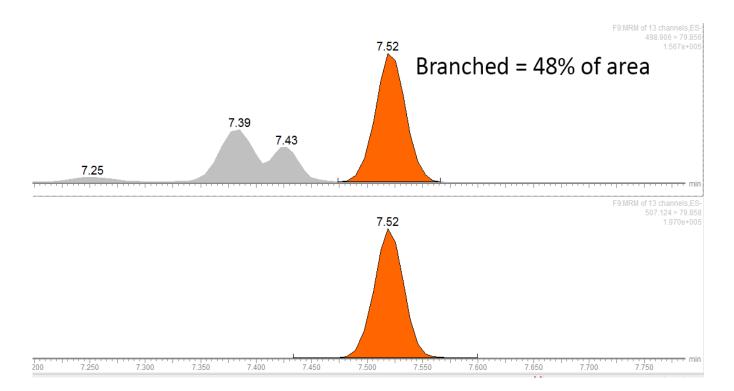
Fingerprinting and PFAS

Fingerprinting



Long List of Targets	 Add targets relevant to specific sources Multivariate analysis of patterns HFPO-DA (GenX), FTCAs (landfills), sulfonamides (legacy waterproofing)
Branched Characterization	 Additional lines of evidence on manufacturing
TOP and Other Total Methods	 TOP provides chain length information on precursors TOP patterns point to different sources Organic fluorine by CIC emerging commercially
High Resolution Untargeted (QTOF)	 Provides distinct fingerprints Commercial availability very limited, data workflows a challenge. Future liability?

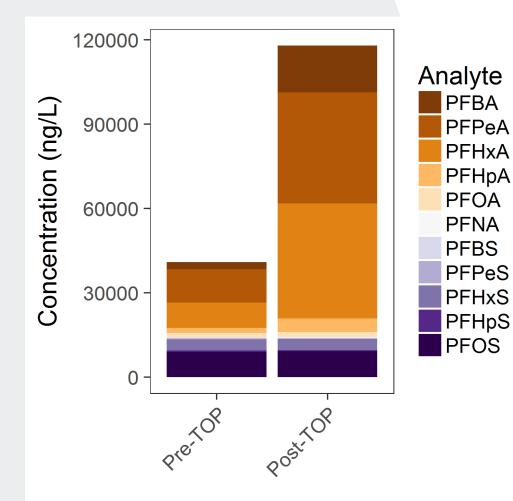
Linear vs. Branched Isomers


Riddell, N. et. al, Environ Sci. Technol. 2009 (43) 7902-7908.

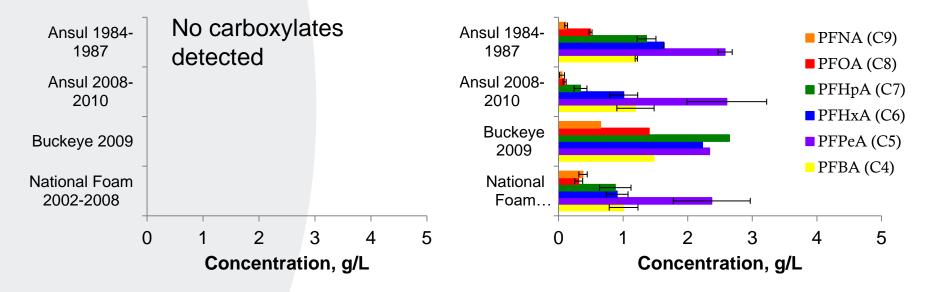
- Eleven known isomers of PFOS in Electrochemical Fluorination (ECF) process
- Transitions have different relative response factors for the linear and the branched isomers for most PFAS
- Quantitative biases possible depending on standard type and MRM transitions used for quantitation
- Distribution/half lives in tissue are different between linear and branched
- All best-practice methods, and US DoD QSM require measurement of all identified isomers
- Speciation adds line of evidence on fingerprinting

Linear vs. Branched Isomers

- Eleven known isomers of PFOS in Electrochemical Fluorination (ECF) process
- Distribution/half lives in tissue are different between linear and branched
- All current EPA methods, and US DoD QSM require measurement of all identified isomers
- Separating branched/linear isomers adds a forensics line of evidence on PFAS provenance

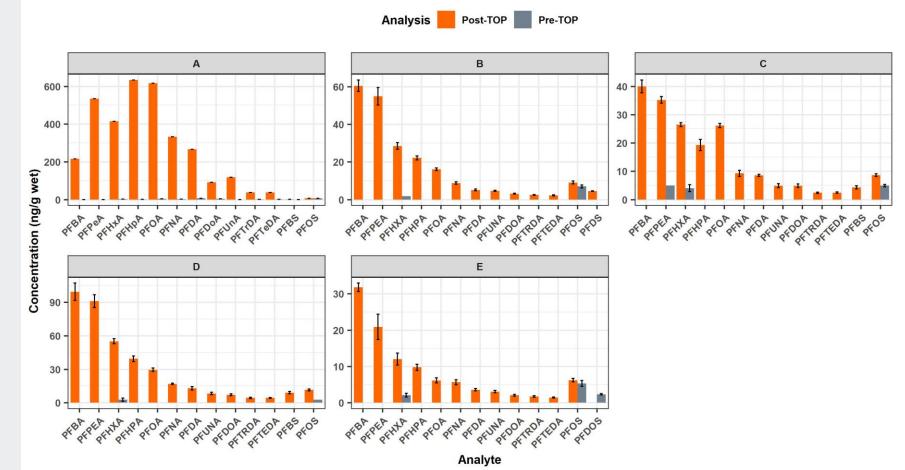

Chromatogram of PFOS in a surface water sample with significant branched isomer content. Linear isomer shaded in orange, branched in gray. Bottom chromatogram shows isotopically labeled linear standard for reference

TOP Shows Significant Non-target PFAS at AFFF Sites


- 300% increase
- Increases primarily in C4, C5 and C6, indicating use of a 6:2 AFFF product
- Sulfonates constant
- FTS disappears completely

Example: TOP Assay Conversion of AFFF

Before Oxidation



After Oxidation

Ref: Thomas Bruton, David Sedlak, Department of Civil and Environmental Engineering, University of California at Berkeley; Houtz et.al ES&T, 2013, 46:9342-9349.

TOP Shows Large Presence of Non-target PFAS in **Biosolids**

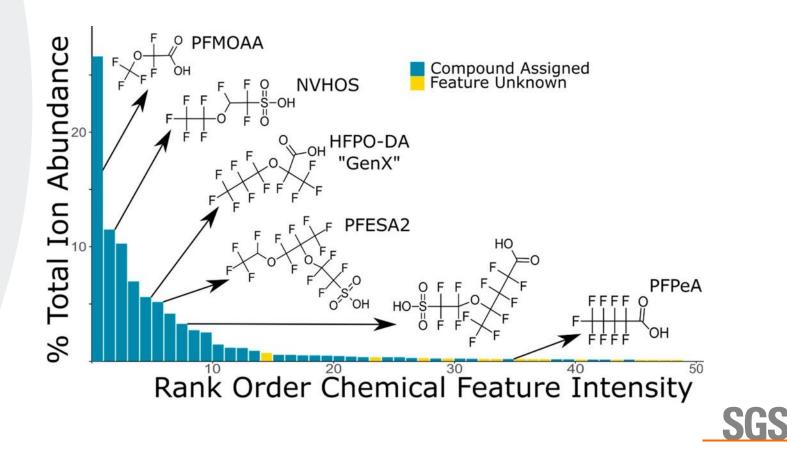
TOP Technical Issues

- Standardization of reaction: Is this a lab specific test?
- Quality of underlying analytical procedures
 - Ensuring isotope dilution through the process
 - Reporting of precursors post-TOP: FTS, other precursor accuracy is not adequate without isotope dilution
 - Need for continued alignment with PFAS methods
- Monitoring reaction completeness
 - Many approaches used
 - The Queensland PFAS guidance (only instance of TOP in regulation) recommends precursors as a percent of total PFAS

Ether PFAS?

See Chandramouli book chapter in Kempisty, D.M., Xing, Y., Racz, L., 2018. Perfluoroalkyl Substances in the Environment: Theory, Practice and Innovation

Non-Target Analysis



Non-Target Analysis; or 175.9591 Rather Than 175

- The wider availability of mass spectrometers that can scan samples at highresolution unlocks another tool to understand and characterize unknown PFAS
- Lots of promise and widely available with academic and some government institutions
- Major questions on data workflow, quality and more
- Commercial availability for environmental analysis limited

Identification of Per- and Polyfluoroalkyl Substances in the Cape Fear River by High Resolution Mass Spectrometry and Nontargeted Screening

James McCord[†][©] and Mark Strynar^{*,‡}[©]

Non-Target Analysis

- Use of standard GC/qTOF/HRMS methods in addition to LC/qTOF/HRMS methods
- Data Dependent (DD) and Data Independent Acquisitions (DIA)
- Mass Spectral Deconvolution
- Selecting cleavage patterns to search
- Peak Picking
- Eliminating Targets from the Non-Targets
- Spectral interpretation
- Complex software Public Domain and Instrument Vendors' NTA software
- Talent Needed Available at Universities
- Availability of resources in Universities

Non-Target Analysis

- Determination of Precursors and Degradation Products (DIA)
- Complex Spectral Interpretations
- Pattern Recognition in Totality
- Complex software
- Statistical Approaches

PFAS Forensics

PFAS Forensics

- Cluster analysis for scoring profile similarities
- Multivariate analysis for identifying source profiles
- Linear mixing models or dimension reducing analyses to find best fit for allocations

Summary

Summary

I HAVE A QUESTION.

WELL, LESS OF A QUESTION AND MORE OF A COMMENT.

AND MORE OF AN UTTERANCE.

REALLY IT'S LESS AN UTTERANCE,

IT'S LESS AN AIR PRESSURE WAVE AND MORE A FRIENDLY HAND WAVE.

I GUESS IT'S LESS A FRIENDLY

WAVE THAN IT IS A FRIENDLY BUG.

I FOUND THIS BUG AND NOW WE'RE FRIENDS. DO YOU WANT TO MEET IT?

MORE AN AIR PRESSURE WAVE.

I GUESS IT'S LESS OF A COMMENT

Complex Analysis – Seek Expertise at the Start !!!

- Sample Collection and Laboratory Analytical protocols must be designed to achieve the desired outcome
- Develop method-specific technical (and robust QC) requirements
- Instrument vendors have NTA software imbedded
- For Forensics, detailed requirements must be written and agreed upon prior to sampling, analysis and data generation which include raw instrument files

https://xkcd.com/2191/

Thank you!

Kesavalu M. Bagawandoss, Ph.D., J.D. dr.doss@sgs.com +1 713 271 4700 x14467

