
Detection of 40+ per- and polyfluoroalkyl substances (PFAS) in non-potable waters INAR using liquid chromatography tandem mass spectrometry (LC-MS/MS)

INTRODUCTION

Per- and polyfluoroalkyl substances (PFAS), a large group of manufactured fluorinated compounds, have been used in a wide variety of applications ranging from nonstick cookware, water-repellent clothing, food packaging, firefighting foams, and even cosmetics. The prevalent use in consumer products and persistence in the environment has led to growing concern regarding PFAS exposure and human health. PFAS have leached into the air, soil, and water, making exposure widespread, with the most likely sources coming from contaminated food or water. Historically, the focus of PFAS research has been on drinking water (EPA methods 537.1 and 533), the biggest source of human exposure. PFAS have also been found in non-potable waters (e.g., wastewater, groundwater), which if not treated or properly removed will remain in the environment furthering potential exposure. There is still a need to better understand the fate and transport of PFAS within the environment. Public concern regarding the level of these compounds in environmental sources has required laboratories to develop efficient and reproducible methods for routine analysis. Here we present an efficient, sensitive, and reproducible method for the detection of 40+ PFAS in non-potable sources.

Instrumentation

LC Conditions				
Analytical Column	Brownlee™ SPP C18 Column, 75 x			
	4.6mm, 2.7 μm			
Cuard Column	Brownlee™ SPP C18 Column, 5mm x			
Guard Column	4.6mm, 2.7 μm			
Delay Column	Brownlee™ SPP C18 Column, 50 x			
	3.0mm, 2.7 μm			
Mobile Phase A	10 mM ammonium acetate in water			
Mobile Phase B	Methanol			
Flow Rate	0.8 mL/min			
Oven Temp (°C)	40			
Auto Sampler Temp (°C)	15			
Injection Volume	10			
Gradiant (B Cana)	0 min (5%), 0.7-1 min (45%), 1-7 ,min			
Gradient (B Conc.)	(98%), 8-10 min (5%)			

SPE METHOD

Automated System: Promochrome SPE-003 Cartridge Phase: WAX/GCB (Phenomenex)

Conditioning

- 15 mL 1% methanolic ammonium
- hydroxide
- ii. 5 mL 0.3M formic acid

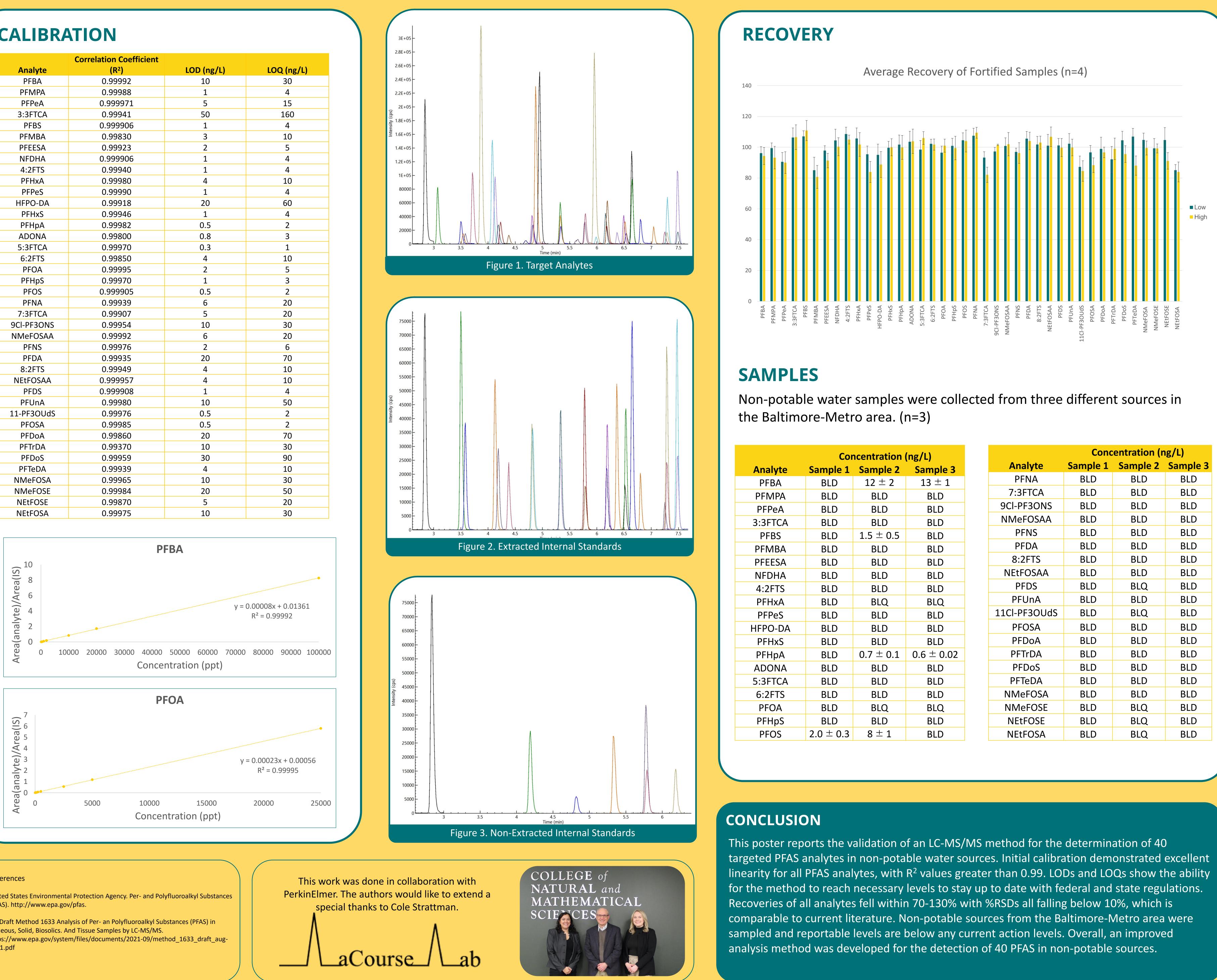
Sample Loading

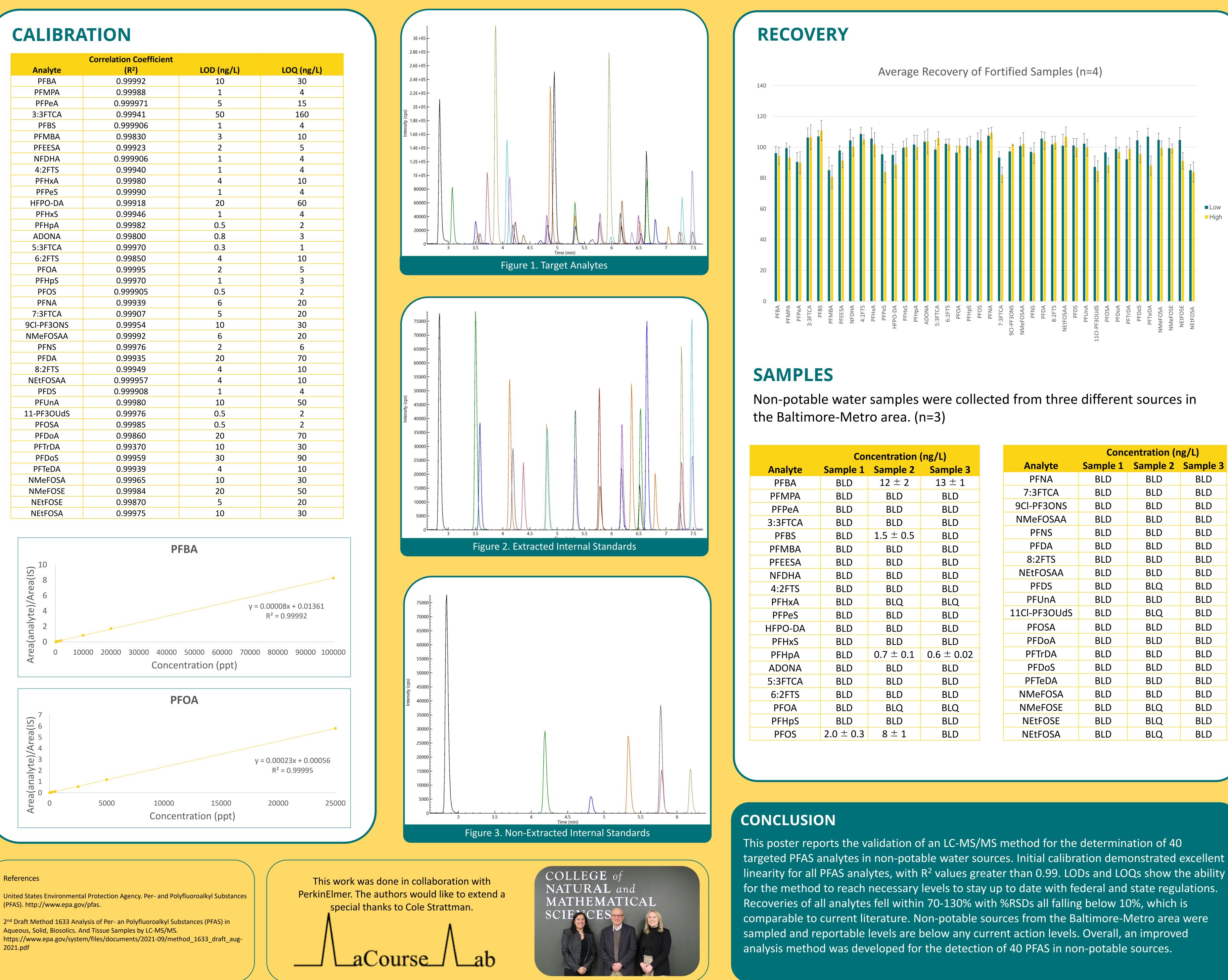
Flow rate 5 mL/min

Rinse and Dry

- i. 5 mL reagent water (x2)
- ii. 5 mL 1:1 0.1M formic acid:Methanol
- iii. Dry under high pressure for 2 min

Elution


5 mL of 1% methanolic ammonium hydroxide


Filter

- 5mL syringe, filter (25-mm, 0.2µm nylon membrane)
- ii. Spike Non-Extracted Internal Standard

<u>Amanda Belunis¹, Dr. William R. LaCourse¹</u> ¹University of Maryland, Baltimore County, Baltimore, MD, 21250 Department of Chemistry and Biochemistry

	Correlation Coefficient						
Analyte	(R ²)	LOD (ng/L)	LOQ (ng/L)				
PFBA	0.99992	10	30				
PFMPA	0.99988	1	4				
PFPeA	0.999971	5	15				
3:3FTCA	0.99941	50	160				
PFBS	0.999906	1	4				
PFMBA	0.99830	3	10				
PFEESA	0.99923	2	5				
NFDHA	0.999906	1	4				
4:2FTS	0.99940	1	4				
PFHxA	0.99980	4	10				
PFPeS	0.99990	1	4				
HFPO-DA	0.99918	20	60				
PFHxS	0.99946	1	4				
PFHpA	0.99982	0.5	2				
ADONA	0.99800	0.8	3				
5:3FTCA	0.99970	0.3	1				
6:2FTS	0.99850	4	10				
PFOA	0.99995	2	5				
PFHpS	0.99970	1	3				
PFOS	0.999905	0.5	2				
PFNA	0.99939	6	20				
7:3FTCA	0.99907	5	20				
9CI-PF3ONS	0.99954	10	30				
NMeFOSAA	0.99992	6	20				
PFNS	0.99976	2	6				
PFDA	0.99935	20	70				
8:2FTS	0.99949	4	10				
NEtFOSAA	0.999957	4	10				
PFDS	0.999908	1	4				
PFUnA	0.99980	10	50				
11-PF3OUdS	0.99976	0.5	2				
PFOSA	0.99985	0.5	2				
PFDoA	0.99860	20	70				
PFTrDA	0.99370	10	30				
PFDoS	0.99959	30	90				
PFTeDA	0.99939	4	10				
NMeFOSA	0.99965	10	30				
NMeFOSE	0.99984	20	50				
NEtFOSE	0.99870	5	20				
NEtFOSA	0.99975	10	30				

United States Environmental Protection Agency. Per- and Polyfluoroalkyl Substances (PFAS). http://www.epa.gov/pfas.

Aqueous, Solid, Biosolics. And Tissue Samples by LC-MS/MS. https://www.epa.gov/system/files/documents/2021-09/method_1633_draft_aug-

				l .		
	Cor	ncentration	(ng/L)			
yte	Sample 1	Sample 2			Analyte	
B A	BLD	12 ± 2	13 ± 1		PFNA	
PA	BLD	BLD	BLD		7:3FTCA	
eA	BLD	BLD	BLD		9CI-PF3ONS	
СА	BLD	BLD	BLD		NMeFOSAA	
S	BLD	1.5 ± 0.5	BLD		PFNS	
BA	BLD	BLD	BLD		PFDA	
SA	BLD	BLD	BLD		8:2FTS	
HA	BLD	BLD	BLD		NEtFOSAA	
TS	BLD	BLD	BLD		PFDS	
хA	BLD	BLQ	BLQ		PFUnA	
eS	BLD	BLD	BLD		11Cl-PF3OUdS	
-DA	BLD	BLD	BLD		PFOSA	
xS	BLD	BLD	BLD		PFDoA	
ЪА	BLD	0.7 ± 0.1	0.6 ± 0.02		PFTrDA	
NA	BLD	BLD	BLD		PFDoS	
ΓСΑ	BLD	BLD	BLD		PFTeDA	
TS	BLD	BLD	BLD		NMeFOSA	
A	BLD	BLQ	BLQ		NMeFOSE	
pS	BLD	BLD	BLD		NEtFOSE	
)S	2.0 ± 0.3	8 ± 1	BLD		NEtFOSA	

	Concentration (ng/L)			
Analyte	Sample 1	Sample 2	Sample 3	
PFNA	BLD	BLD	BLD	
7:3FTCA	BLD	BLD	BLD	
9CI-PF3ONS	BLD	BLD	BLD	
NMeFOSAA	BLD	BLD	BLD	
PFNS	BLD	BLD	BLD	
PFDA	BLD	BLD	BLD	
8:2FTS	BLD	BLD	BLD	
NEtFOSAA	BLD	BLD	BLD	
PFDS	BLD	BLQ	BLD	
PFUnA	BLD	BLD	BLD	
11Cl-PF3OUdS	BLD	BLQ	BLD	
PFOSA	BLD	BLD	BLD	
PFDoA	BLD	BLD	BLD	
PFTrDA	BLD	BLD	BLD	
PFDoS	BLD	BLD	BLD	
PFTeDA	BLD	BLD	BLD	
NMeFOSA	BLD	BLD	BLD	
NMeFOSE	BLD	BLQ	BLD	
NEtFOSE	BLD	BLQ	BLD	
NEtFOSA	BLD	BLQ	BLD	