# **Reduced Sample Volume Extractions for** US EPA Method 608.3

Deanna Bissonnette<sup>1</sup>, Ken Fuller<sup>2</sup>, Marie Gemmill<sup>2</sup>, Evan Walters<sup>1</sup>, David Gallagher<sup>1</sup> <sup>1</sup>Biotage, 16 Northwestern Drive, Salem, NH 03079 United States. lack Environmental Services, Albany, NY, USA

## Introduction

Pesticides, including insecticides, fungicides, and herbicides, are used extensively to increase agricultural yield. It is important to monitor organochlorine pesticides and polychlorinated biphenyls (PCBs) not just in drinking water (US EPA Method 508), but also in wastewater (US EPA Method 608.3). These wastewater samples can be heavily laden with particulates and sludge, making it difficult to extract an entire liter. This work provides a solution for extracting 100 mL of 608.3 wastewater samples utilizing the Biotage® Horizon 5000, DryDisk® and the TurboVap® II.

## Procedure

- 1. Obtain the 100 mL samples of DL water that will be extracted. Acidify to a pH <2 with HCl. For Matrix Spike (MS) and Matrix Spike Duplicate (MSD) test samples only, 2 mg of oil and grease (hexadecane and stearic acid) was added to the acidified DI water.
- 2. Fortify samples with surrogates decachlorobiphenyl (DCB) and tetrachloro-m-xylene (TCMX). Fortify laboratory control spike (LCS), MS, and MSD samples with target analytes.
- Run Biotage® Horizon 5000 extraction method (Table 1).
- 4. Pour each extract into the DryDisk®-R glass reservoir and open the stopcock. Allow the extract to flowthrough completely before rinsing the collection vessel three times with methylene chloride.
- 5. Transfer dried extract to a concentration tube and concentrate using the TurboVap® II. 6. Concentrate to end-point (approximately 0.7 mL) following the methylene chloride concentration parameters found in Table 2.
- Add 10 mL of hexane directly into the tip of the evaporation tube using a glass pipette and swirl well for the solvent exchange step.
- 8. Concentrate to end-point again following the hexane concentration parameters found in Table 2 and bring extracts up to 2 mL with hexane.
- 9. For PCB extracts only, perform a sulfuric acid cleanup.
- 10. For pesticides and PCB MS extracts, perform a copper cleanup.
- 11. For pesticides and PCB Method Detection Limit (MDL), Laboratory Control Spike (LCS), and MS extracts, perform a florisil cleanup.

12. Analyze by GC/ECD.



© Copyright 2023 Biotage. All rights reserved. All trademarks are the property of their respective companies. www.biotage.com

| Table 1. Biotage® Horizon 5000 Extraction Method. |          |        |        |       |      |          |      |   |  |  |
|---------------------------------------------------|----------|--------|--------|-------|------|----------|------|---|--|--|
| C+                                                | Deserved | Column | Volume | Purge | Pump | Saturate | Soak | D |  |  |

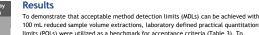
| Jucp | beschption                | Solution              | (mL) | (s) | Speed | (s) | (s) | (s) | (s) |
|------|---------------------------|-----------------------|------|-----|-------|-----|-----|-----|-----|
| 1    | Condition<br>SPE Disk     | Methylene<br>Chloride | 20   | 60  | 4     | 1   | 60  | 60  |     |
| 2    | Condition<br>SPE Disk     | Acetone               | 20   | 60  | 2     | 1   | 60  | 30  |     |
| 3    | Condition<br>SPE Disk     | Methanol              | 20   | 60  | 2     | 2   | 60  | 10  |     |
| 4    | Condition<br>SPE Disk     | Reagent<br>Water      | 20   | 60  | 2     | 1   | 45  | 10  |     |
| 5    | Load Sample               |                       |      |     | 2     |     |     |     | 45  |
| 6    | Wash Sample<br>Container  | Reagent<br>Water      | 15   | 60  | 6     | 2   | 20  | 30  |     |
| 7    | Air Dry                   |                       |      |     | 6     |     |     | 360 |     |
| 8    | Elute Sample<br>Container | Acetone               | 3    | 15  | 2     | 1   | 60  | 45  |     |
| 9    | Elute Sample<br>Container | Methylene<br>Chloride | 5    | 15  | 2     | 1   | 60  | 45  |     |
| 10   | Elute Sample<br>Container | Methylene<br>Chloride | 5    | 15  | 6     | 1   | 60  | 60  |     |
|      |                           |                       |      |     |       |     |     |     |     |

Table 2. TurboVap® II Concentration Parameters. EP = End-Point

| Settings    |                                         |            |                                                            |              |            |  |
|-------------|-----------------------------------------|------------|------------------------------------------------------------|--------------|------------|--|
| Methylene C | hloride Concentratio<br>Solvent Exchang |            | Hexane Concentration Parameters<br>(Post-Solvent Exchange) |              |            |  |
| Gradient    | EP Detection                            | Bath Temp  | Gradient                                                   | EP Detection | Bath Temp  |  |
| Ramp        | On                                      | 60 °C      | Ramp                                                       | On           | 60 °C      |  |
| Method      | Flow (L/min)                            | Time (min) | Method                                                     | Flow (L/min) | Time (min) |  |
| Step 1      | 3.0                                     | 9          | Step 1                                                     | 4.2          | 2          |  |
| Step 2      | 5.0                                     | 1          | Step 2                                                     | 5.0          | 1          |  |

### GC Conditions

GC: 6890 HP Dual GC (Agilent Technologies Inc.) Column 1: Restek Rtx-CLPesticides, 30 m, 0.32 mm ID, 0.32 µm film thickness


Column 2: Restek Rtx-CLPesticides2, 30 m, 0.32 mm ID, 0.32 um film thickness Carrier Gas: Helium 4.9 mL/min (constant flow) Inlet: 50 °C, Pulsed Splitless, Pulse Pressure: 28.0 psi; Pulse Time: 1.0 min;

- Purge Flow: 60.4 mL/min at 0.75 min Injection volume: 1 µL (Pesticides); 4 µL (PCB)
- Oven conditions: Initial temperature 125 °C, hold for 0.5 minute. Ramp 45 °C/min to 200 °C hold for 0 minutes, 12.5 °C/min to 230 °C hold for 0 minutes, 30 °C/min to 300 °C hold for 1.5 minutes.

Oven Post Temperature: 120 °C

## **Micro ECD Conditions**

ECD: Micro ECD (Agilent Technologies Inc.) Micro ECD 1 and 2 Temperature: 350 °C Micro ECD 1 Makeup Flow Setpoint: 150.0 mL/min Micro ECD 2 Makeup Flow Setpoint: 105.0 ml /min Makeup Flow Gas Type: Nitrogen



Drain Delay

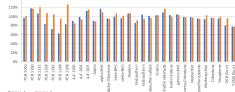
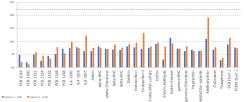
limits (PQLs) were utilized as a benchmark for acceptance criteria (Table 3). To determine the accuracy and precision of the sample preparation process, four samples were prepared at mid to high level concentrations. Due to the varying recovery values of EPA method acceptance criteria for each analyte, the interim acceptance criteria of 60-140% (Section 8.4.5) was used as the limits on Figure 1 for ease of observation. In addition, the lowest percent standard deviation %SD limit within EPA method 608.3 is 22%. This percent was used as the limit on Figure 2 for ease of observation.

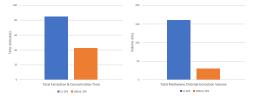
To demonstrate that acceptable method detection limits (MDLs) can be achieved with

Table 3 Method Detection Limits (n=7)

| Analyte            | Spike Amount (ng/L) | Column 1 - MDL (ng/L) | Column 2 - MDL (ng/L) | Maximum PQL (ng/L) | Acceptance Criteria |
|--------------------|---------------------|-----------------------|-----------------------|--------------------|---------------------|
| PCB 1016           | 100                 | 32                    | 60                    | 65                 | PASS                |
| PCB 1260           | 100                 | 42                    | 39                    | 65                 | PASS                |
| PCB 1221           | 200                 | 68                    | 116                   | 130                | PASS                |
| PCB 1254           | 100                 | 16                    | 22                    | 65                 | PASS                |
| PCB 1242           | 100                 | 22                    | 29                    | 65                 | PASS                |
| PCB 1248           | 100                 | 12                    | 12                    | 65                 | PASS                |
| PCB 1268           | 100                 | 19                    | 23                    | 65                 | PASS                |
| 4,4'-DDD           | 100                 | 14                    | 29                    | 100                | PASS                |
| 4,4'-DDE           | 100                 | 13                    | 17                    | 100                | PASS                |
| 4,4'-DDT           | 100                 | 26                    | 21                    | 100                | PASS                |
| Aldrin             | 100                 | 14                    | 12                    | 50                 | PASS                |
| alpha-BHC          | 100                 | 35                    | 14                    | 50                 | PASS                |
| alpha-Chlordane    | 100                 | 23                    | 14                    | 50                 | PASS                |
| beta-BHC           | 100                 | 33                    | 29                    | 50                 | PASS                |
| delta-BHC          | 100                 | 11                    | 30                    | 50                 | PASS                |
| Dieldrin           | 100                 | 13                    | 11                    | 100                | PASS                |
| Endosulfan I       | 100                 | 10                    | 10                    | 50                 | PASS                |
| Endosulfan II      | 100                 | 22                    | 20                    | 100                | PASS                |
| Endosulfan sulfate | 100                 | 28                    | 13                    | 100                | PASS                |
| Endrin             | 100                 | 29                    | 13                    | 100                | PASS                |
| Endrin aldehyde    | 100                 | 37                    | 31                    | 100                | PASS                |
| Endrin Ketone      | 100                 | 64                    | 11                    | 100                | PASS                |
| gamma-BHC          | 100                 | 17                    | 15                    | 50                 | PASS                |
| gamma-Chlordane    | 100                 | 14                    | 36                    | 50                 | PASS                |
| Heptachlor         | 100                 | 21                    | 15                    | 50                 | PASS                |
| Heptachlor epoxide | 100                 | 19                    | 10                    | 50                 | PASS                |
| Methoxychlor       | 100                 | 47                    | 31                    | 500                | PASS                |
| Chlordane          | 200                 | 32                    | 44                    | 50                 | PASS                |
| Townshoos          | 1000                | 281                   | 272                   | 1000               | PASS                |

Figure 1. Initial Demonstration of Accuracy (n=4)



Figure 2. Initial Demonstration of Precision (n=4)



Biotage

#### **Reduced Sample Volume Benefits**

When reducing sample volumes from 1 L to 100 mL, the extraction, concentration time and solvent volumes were significantly reduced. Figure 3 illustrates the differences in time and volume between extracting 1 L and 100 mL samples. Figure 3. Processing Time and Solvent Consumption



## Conclusion

This work demonstrates the ability to extract concentrate and analyze 100 mL samples while meeting the requirements of EPA Method 608.3. Precision & Accuracy achieved at reduced sample volumes far exceeded the acceptance criteria found within EPA method 608.3. The Biotage® Horizon 5000 system provides automated disk based solid phase extraction for challenging matrices. The reduction of sample volume further improves automated extractions with decreased sample processing time as well as solvent usage.







NEMC 2023 Minneapolis, MN



