Analysis of Volatile Organic Compounds in Seawater by Purge and Trap (P&T) Concentration and Detection by Gas Chromatography/Mass Spectrometry (GC/MS)

Section 1. Introduction

npounds (VOCs), such as trihalomethanes (THMs), may be found in seawater due to natural processes and man-made sources. THMs include bromodichloromethane, chloroform, chlorodibromomethane, and bromoform. At a global scale, these VOCs are potentially significant contributors to catalytic ozone loss in the troposphere and lower stratosphere. In the open ocean, THMs may be naturally produced from algal sources (Liu et al., 2011; Liu et al., 2013).

Anthropogenic sources of THMs include water treatments. THMs are often disinfection byproducts that are formed by the chlorination process in water sources, including seawater. These contaminants can come from sources such as outfall into the ocean from treatment plants as well as desalination plants (Liu et al., 2011).

In addition to THMs, there are other VOCs of interest. Outfall from various sources mixing with seawater may be monitored to determine the general health of the seawater in regard to plant and animal life. The analysis is also useful in determining the extent of pollution from oil spills and illegal dumping.

The purpose of this poster is to show a method for determining VOCs using Purge and Trap (P&T) concentration and detection by Gas Chromatography/Mass Spectrometry (GC/MS). Also, the effect of salt concentration on recovery of volatile compounds will be explored. A typical compound list for EPA Method 8260 will be analyzed by full scan GC/MS and a subset of THMs will be analyzed by Selective Ion Monitoring (SIM). Seawater samples from the Gulf of Mexico will be analyzed.

Section 2. Instrumentation

Purge and trap (P&T) concentration was performed using an OI Analytical 4760 P&T with an OI Analytical 4100 Soil/Water Sample Processor. An Agilent 7890A/5975C GC/MS was used for chromatographic separation and detection. A column suitable for volatile organic analysis was utilized.

Figure 1. 4100, 4760, GC/MS

Section 3. Experimental

EPA Method 8260D for VOC analysis was used as a guideline for this work.³ Two instrument methods were used. A representative list of compounds typically analyzed for 8260 were analyzed using full scan GC/MS. THMs were analyzed using SIM. The P&T and 4100 parameters were basically OIA's default which have been found to work well and give consistent results for 8260. All the analyses were carried out using the 4100's soil mode in which the sample is purged in a 40 ml VOA vial rather than using the water mode where sample is transferred to the P&T's frit sparger. Purging in the soil mode is useful for samples that may tend to foam and minimize the amount of salt transferred to the P&T sample pathway. Each vial contained 5ml distilled water plus 5 ml of QC or sample.

To see if the salt content of seawater might affect compound recovery and stability, alibrations were carried out using both distilled water and then salt water to compare. he saltwater contained 32g/liter of NaCl in distilled water and was stored in amber bottles way from light. It was found that purchased distilled water contained low ppt THMs. In order to achieve part per trillion calibrations for SIM, the distilled water was boiled and purged with Nitrogen for at least three hours to remove these.

Table 1. Instrument Parameters

Purge-and-Trap	Eclipse 4760 P&T Sample Concentrator						
Тгар	#10 tra	ap; Tenax® / S	ilica gel / CMS				
Purge Gas	Zero g	Zero grade Helium at 40 mL/min					
Purge Time	11 mir	11 min					
Sparge Mount Temperature	45 °C						
Sample Temperature (purge)	45 C						
Desorb Time	0.5 min						
Bake Time	5 min						
	Ambient during purge						
OI #10 Trap Temperature	180 °C during desorb pre-heat						
	190 °C	during desor	.p				
	120°C during bake						
Water Management	Ambie	ent during des	orb				
	240 °C	during bake					
Transfer Line Temperature	140 °C						
Six-port Valve Temperature	140 °C						
Autosampler	4100 \	Nater/Soil Sar	nple Processor				
System Gas	Zero a	rade nitroger					
Purge Gas	Zero g	rade helium					
I V20 Pressure	8.0 psi						
Loop-based Time Settings	Defau	t					
Mode	Soil						
Rinse Water	90 °C						
Soil Sample Transfer	150 °C						
Soil Oven	150 °C						
Soil Lift Station	45 °C						
4100 Sample Process Methods	5						
P&T Rinses	3						
Rinse Water	Hot						
Soil Pre-Heat/Purge Temp °C	45 °C						
	A .1	. 7000 4					
Gas Chromatograph	Agilen	nt 7890A					
Column	Restek	CRtx-VMS					
	50 me						
Carrier Gas	rade helium						
Inlet Temperature	240 °C						
Inlet Liner	Agilen	it Ultra Inert, 1 mm straight taper					
Column Flow Rate	_/min pr Full Scop 50 for SIM						
Oven Program	Hold a	at 40 °C for 1.5 min					
ovennogram	16 °C/1	minute to 180 °C					
	40 °C/r	minute to 220 °C					
	Hold a	t 220 °C for 4	min				
	lotal C	CRUNIS 15.25 MIN					
Mass Spectrometer		Agilent 5975	C				
Iviode		Full Scan					
Scan Range		35-300 amu					
Scans/Second		1.25 min					
Solvent Delay		1.25 mm					
Mode		Selective Ion	Monitorina				
Dwell Time		110 msec					
Resolution		Low					
SIM Compounds			1				
Group 1 Chloroform		Start 3.50	Mz 83,85				
Group 2 Dibromofluorometh	nane	Start 4.17	Mz 111,113				
Group 3 Pentafluorobenzene	2	Start 4.49	Mz 99,168				
Group 4 1,2-Dichloroethane	-d4	Start 4.59	IVIZ 65,102				
Group & Bromodichloromet		Start 5 22	M- 22 25				
Group 7 Toluene-d8	Start 5 80	Mz 98 100					
Group 8 Chlorodibromomet	Start 6 50	Mz 127 129					
Group 9 Chlorobenzene-d5		Start 7.10	Mz 82,117				
Group 10 Bromoform		Start 7.55	Mz 173,175				
Transfer Line Temperature(A	UX)	240 °C					
Source Temperature	230 °C						
Quadrupole Temperature	150 °C						
Draw Out Plate	6 mm						

Cynthia Elmore, Senior Analyst, Product Management Analytics, cynthia.elmore@xylem.com, OI Analytical, Xylem Lab Solutions Yina Liu, PhD. Department of Oceanography, Texas A&M University, College Station, Texas 77843 Jakob Woodside, Associate Product Manager, jakob.woodside@xylem.com, OI Analytical, Xylem Lab Solutions

e-heat _____

of each 12 hour sequence and 0200 acceptance cifteria

andards for full scan calibration were prepared at 1, 2 5, 10, 25, 50, 100, 150, and 200ppb for most compounds. Acrolein and m,p-xylenes were two times and ketones were at five times those concentrations. Internal tandards and Surrogates were added to all analyses by ng 5ul of 50ppm standard. Initial Demonstrations f Capability (IDOC) were run at 50ppb for most ounds and Method Detection Limit (MDL) studies were run at 0.5ppb for most compounds.

Standards for SIM calibration were prepared at 5, 10, 25, 50, 100, 250, 500, and 1000ppt. The working standard was diluted daily from a 10ppm stock to 0.05ppm. Internal Standards and Surrogates were added to all analyses by spiking 5ul of 0.25ppm standard. IDOCs were run at 250ppt and MDLs were run at 4ppt.

nples were collected in 40ml amber VOA vials. Four ab samples were taken along the shore near High ⁻our grab samples were taken along the shore in the Rockport, Texas area. Two samples were ken by Dr. Liu in Galveston Bay and one in the Houston hip Channel from aboard Texas A&M's research vessel Trident using a Niskin bottle. Surface waters (within 1 meter) were collected for this study. The samples were stored on ice, in the dark, and were then refrigerated at 4 grees C upon receipt by the lab. Samples for full scan r SIM were analyzed within 12 days. There was an 18 day and 24 day gap between sampling and analysis fc the Rockport samples. These samples had to be taken sooner because of logistical reasons and they were seful as experimental samples to validate the method

Figure 2. Texas A&M R/V Trident

-igure 3. Sampling Aboard the R/V Trident

Section 4. Results and Discussion

omomethane and Bromoform for SIM in which case linear regression was used. Calibration points for both methods were recalculated u ompounds passed the refit criteria of +/- 50% for the low level and +/- 30% for other levels. The recalculation of the 100ppt point for the SIM calibration for Chlorodibromomethane and Bromoform had much higher % deviation. Continuing calibration recoveries were well within 20% on days where samples, MDLs, and IDOCs had very good recovery and %RSD values. The MDLs were also acceptable. Please see tables 2 and 3.

Table 2. 8260 QA/QC for Full Scan

Analyte	Compound	Distilled Water Avg RF	Distilled Water %RSD	Salt Water Avg RF	Salt Water %RSD	Salt Water MDL	Salt Water IDOC % Recovery	Salt Water IDOC %RSD	Analyte	Compound	Distilled Water Avg RF	Distilled Water %RSD	Salt Water Avg RF	Salt Water %RSD	Salt Water MDL	Salt Water IDOC % Recovery	Salt Water IDOC %RSD
1	Pentafluorobenzene (IS)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	67	cis-1,4-Dichloro-2-butene	0.141	16.11	0.162	6.14	0.18	104	3.14
2	Dichlorodifluoromethane	0.366	5.09	0.324	8.52	0.25	90.6	4.13	68	1,4-Dichlorobenzene-d4 (IS)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
3	Chloromethane	0.697	9.05	0.696	6.95	0.17	93.0	2.55	69 70	4-Bromofluorobenzene (SS)	2.063	3.06	0.877	2.88 5.84	4.41	102	0.72
4	Vinyl chloride	0.387	7.45	0.369	6.30	0.14	97.0	4.77	70	Bromobemzene	0.675	4.54	0.652	5.93	0.14	99.8	1.50
5	Bromomethane	0.252	13.53	0.237	10.20	0.24	93.5	4.86	72	1,1,2,2-Tetrachloroethane	0.590	3.39	0.611	5.79	0.18	99.5	0.99
6	Chloroethane	0.290	14.53	0.266	8.69	0.15	94.8	6.13	73	2-Chlorotoluene	1.988	3.48	1.834	4.99	0.09	102	1.87
7	Trichlorofluoromethane	0.608	8.30	0.614	8.81	0.14	97.1	5.71	74	1,3,5-Trimethylbenzene	2.106	3.45	1.944	4.64	0.14	103	1.84
8	Lthyl ether	0.248	5.02	0.268	4.78	0.22	96.5	1.85	75	1,2,3-Trichloropropane	0.184	3.32	0.194	6.59	0.32	98.8	3.13
9 10	Carbon disulfide	0.379	12.93	0.342	6.43	0.13	101	7.00	76	trans-1,4-Dichloro-2-butene	0.270	6.44	0.291	11.99	0.28	105	2.72
11	1.1.2-Trichloro-	0.770	10.54	0.705	0.00	0.20	100	5.77	77	4-Chlorotoluene	1.808	3.47	1.707	5.77	0.16	99.9	2.09
	1,2,2-trifluoroethane	0.359	4.96	0.338	8.87	0.19	95.6	5.80	/8	tert-Butylbenzene	1.854	3.74	1.698	5.00	0.08	103	1.82
12	Methyl iodide	0.771	8.02	0.725	6.31	0.18	97.7	2.76	80	1,2,4-Inmethylbenzene	2.145	3.24	2 / 29	5.15 // 30	0.06	102	1.77
13	Acrolein(2x)	0.105	6.52	0.110	11.10	0.71	94.2	3.19	81		2.035	2.81	2.427	4.30	0.13	102	2 30
14	Allyl chloride	0.249	5.13	0.244	7.11	0.21	96.3	2.58	82	1,3-Dichlorobenzene	1.303	3.20	1.242	7.05	0.13	96.8	1.91
15	Methylene chloride	0.456*	8.08	0.456*	11.61	0.64	96.3	2.29	83	1,4-Dichlorobenzene	1.389	12.29	1.305	12.67	0.20	93.8	1.73
10	trans_1 2-Dichloroethene	0.062*	0.42	0.071*	8.17	4.73	94.7 95 Л	1.69	84	n-Butylbenzene	2.053	3.39	1.898	6.28	0.12	101	2.64
18	Methyl tert-butyl ether	1.308	5.53	1.394	3.81	0.12	97.9	2.29	85	1,2-Dichlorobenzene	1.216	6.59	1.165	5.54	0.14	97.5	1.88
20	Chloroprene	1.216	4.18	1.208	4.10	0.080	99.8	1.14	86	1,2-Dibromo-3-chloropropane	0.124	10.78	0.138	6.27	0.26	98.0	4.09
21	1,1-Dichloroethane	1.060	5.69	1.051	3.89	0.12	98.4	1.54	87	Hexachlorobutadiene	0.278	6.59	0.250	8.18	0.21	97.4	2.18
22	Acrylonitrile	0.215	6.60	0.233	8.34	0.21	99.4	3.56	88	1,2,4-Trichlorobenzene	0.614	7.09	0.579	9.01	0.18	94.7	3.18
23	cis-1,2-Dichloroethene	0.528	6.00	0.520	3.89	0.15	98.1	2.18	89	Naphthalene	1.658	/.93	1./13	7.04	0.18	95.5	3.08
24	2,2-Dichloropropane	0.537	8.53	0.499	10.45	0.18	98.0	2.26	90	1,2,3-Irichlorobenzene	0.535	0.80	0.512	5.14	0.19	99.8	8.29
25	Bromochloromethane	0.293	5.45	0.303	5.13	0.15	97.9	1.71	Table	3 . 8260 QA/QC for	r Sim						
26	Chloroform	0.910	4.25	0.913	6.53	0.11	97.3	1.60									
27	Methyl acrylate	0.549	7.10	0.622	7.88	0.14	104	1.90	Analuta	Compound	Distilled Water	Distilled Water	Salt Water	Salt Water	Salt Water	Walt Water	Salt Water IDOC
20	Tetrahydrofuran	0.784	4.23	0.730	13.60	0.16	97.1	4.87	Analyte	Compound	Avg RF	%RSD	Avg RF	%RSD	MDL	IDOC % Recovery	%RSD
30	Dibromofluoromethane (SS)	0.684	1.88	0.709	2.68	5.13	98.3	1.78	1	Pentafluorobenzene (IS)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
31	1,1,1-Trichloroethane	0.785	6.35	0.762	8.87	0.16	97.6	1.53	2	Chloroform	1.021	13.18	0.997	11.24	1.89	92.8	2.87
32	2-Butanone(5x)	0.050	8.12	0.058	11.22	1.31	95.9	3.64	3	Dibromofluoromethane (SS)	0.540	4.31	0.539	2.46	20.2	102	3.20
33	1,1-Dichloropropene	0.615	4.76	0.595	4.41	0.20	100	1.55	4	1,4-Difluorobenzene (IS)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
34	1,4-Difluorobenzene (IS)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	1,2-Dichloroethane-d4 (SS)	0.329	1.73	0.337	1.86	11.8	101	1.49
35	Benzene	0.879	3.98	0.862	4.08	0.10	98.2	1.63	6	Bromodichloromethane	0.433	12.69	0.429	12.56	1.08	95.2	1.95
36	Methacrylonitrile	0.236	5.16	0.264	6.00	0.15	99.9	1.52	7	Chlorobenzene-d5 (IS)		N/A	N/A	N/A	N/A	N/A	N/A
3/	1,2-Dichloroethane-d4 (SS)	0.070	2.59	0.072	2.62	4.34	100	1.53	8	Ioluene-d8(SS)	1.055	0.60	1.045	0.69	3.67	98.6	0.63
30	Trichloroethene	0.425	6.39	0.440	<u> </u>	0.10	97.0 97.4	1.40	9	Chlorodibromomethane	0.444	18.63	0.429	21.12 $R^2=0.995$	1.10	104	4.96
40	Dibromomethane	0.162	3.43	0.172	3.67	0.21	98.6	1.39									
41	1,2-Dichloropropane	0.282	3.89	0.282	4.66	0.12	100	1.87	10	Bromoform	0.262	18.79	0.251	Z3.33 R ² =0.994	1.18	108	7.08
42	Bromodichloromethane	0.339	4.85	0.350	4.07	0.17	100	1.63									
43	Methyl methacrylate	0.136	9.12	0.154	7.49	0.14	104	3.20	RFR ar	nd Continuing Calibration	n Verifications	sworo analyzo	d before fie	Id and OC	samples and	mot BEB tuno	critoria and
44	2-Chloroethyl-vinyl-ether	0.104	13.29	0.119	11.09	0.20	109	3.27	the +/-	- 20% recovery criteria fo	r targets Inte	rnal Standard	criteria of 5	$0_200\%$ of t	the mid-noir	t of the initial ca	alibration and
45	cis-1,3-Dichloropropene	0.358	6.29	0.358	5.54	0.09	104	2.36	a defai	ult surrogate recovery of	70-130% wei	re met for all s	amples and	associated	I OC As a pr	ecaution a disti	lled water
46	Chlorobenzene-d5 (IS)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	blank	was run after two analytic	cal runs in ord	ler to minimize	e salt build i	. Runninc	i several clea	n up blanks at t	he end of the
4/		1.1/5 0 680	I.∠/ 8./7	1.14ð 0 453	Т.UУ 11 Л7	0.74	77.U 05 Q	0.71	seque	nce is recommended.				1			
40	2-Nitropropane	0.130	12 61	0.033	10.67	0.21	96.2	0.80	Abundance				Abundance	~			
50	4-Methyl-2-pentanone(5x)	0.038	5.90	0.042	7.71	0.90	102	1.91	2600000-				34000- 32000-	e SS3 ane	m		
51	Tetrachloroethene	0.228	2.74	0.215	7.70	0.16	99.5	2.90	2200000-				30000-	52 ethan			
52	trans-1,3-Dichloropropene	0.357	6.85	0.359	6.61	0.04	104	1.70	2000000-				26000-	orom orom			
53	Ethyl methacrylate	0.271	7.19	0.290	7.94	0.15	105	3.03	1600000-				22000 E S	rodib			
54	1,1,2-Trichloroethane	0.187	3.52	0.192	6.89	0.23	9.5	2.37	1400000-				18000 16000	Chlo	F		
55	Chlorodibromomethane	0.334	5.18	0.335	5.79	0.11	102	2.03	1000000-				14000 12000		nofor		
56	1,3-Dichloropropane	0.345	3.41	0.350	5.95	0.09	102	2.47	800000-				10000-	SS2	Bron		
57	1,2-Dibromoethane	0.243	5.38	0.246	8.06	0.1/	103	1.88	400000-				6000-				
50 50	Chlorobenzeno	0.203	0.70 2.45	0.317	0.03	0.42	00 5	2.07	200000 MMM				2000-				·····
60	Ethylbenzene	1,280	2.03 4 06	1,213	6.21	0.13	99.4	2.52	Time> 2.00				Time-> 4.00				13.00 14.00
61	1,1,1,2-Tetrachloroethane	0.332	4.72	0.319	4.84	0.12	99.9	1.25	rigure	4. Juppo Standard – Fu	n scan Chron	lalogram	rigure :	J. ZOUPPT S	ianuara - 51	ivi Chromatogra	1111
62	m,p-Xylenes(2x)	0.499	3.16	0.467	4.62	0.22	101	2.49	There	were no significant findir	ngs for the ful	l scan samples	. All had an	proximatel	v 1pph Meth	vlene Chloride	and 3nnh
63	o-Xylene	0.507	4.54	0.476	6.50	0.14	99.0	1.76	Acetor	ne due to lab contaminat	tion. The A&M	I samples also	had Tetrahy	/drofuran a	t low levels.		
64	Styrene	0.791	3.26	0.754	4.89	0.10	103	2.49									
65	Bromoform	0.182	6.61	0.189	7.98	0.10	103	2.44	Statior	11 = 1.15ppb Stati	on 13 = 0.25	opb St	ation $20 = ($).22ppb			
66	Isopropylbenzene	1.285	4.03	1.196	5.01	0.08	102	2.25		-							

Results for THMs by SIM make sense considering the sample locations. Please see Table 4. The A&M sample at Station 20 had significantly higher results than other samples. This sample was taken in a highly urbanized location in the Houston Ship Channel so higher results were not unexpected.

Table 4. 8260 Results for THMs by SIM

Sample	Chloroform (ppt)	Bromodichloromethane (ppt)	Chlorodibromomethane (ppt)	Bromoform (ppt)
1. A&M Station 11 - Galveston Bay	3.54*	1.76*	3.24*	8.02
2. A&M Station 13 - Galveston Bay	4.34*	1.82*	1.88*	5.54
3. A&M Station 20 - Ship Channel	187	50.2	35.5	205
4. Rockport Area - Little Bay	5.24	3.58*	4.64*	8.04
5. Rockport Area - Aransas Bay	<5	<5	1.40*	5.59
6. Rockport Area - St. Charles Bay	2.57*	<5	1.78*	24.9
7. Rockport Area - Capano Bridge	2.68*	1.29*	2.50*	17.2
8. High Island	<5	<5	<5	7.28
9. High Island	<5	<5	1.50*	7.88
10. High Island	<5	<5	1.82*	7.59
11. High Island	2.32*	<5	1.63*	7.83

* The value reported is between the MDL and the reporting limit.

Figure 6. A&M Station 20 – Full Scan Chromatogram Figure 7. A&M Station 20 – SIM Chromatogram

N/A _____ _____ 1.95 N/A

Section 5. Conclusions

A N/A The two methods have demonstrated the ability to monitor seawater on a regular basis. ¹ 1.49 Since the P&T and GC parameters are the same, the lab can easily switch from full scan to SIM. Cleaning blanks should be added throughout the sequence and at the end to minimize salt

Section 6. References

- 1. Liu, Y., Yvon Y., Yvon-Lewis, S. A., Hu, L., Salisbury, J. E., & O'Hern, J. E. (2011). CHBr₃, CH2Br₂, and CHCIBr, in U.S. coastal waters during the Gulf of Mexico and East Coast Carbon cruise. Journal of Geophysical Research: Oceans, 116(C10). https://doi.org/10.1029/2010JC006729. doi:https://doi. org/10.1029/2010JC006729
- 2. Liu, Y., Yvon-Lewis, S. A., Thornton, D. C. O., Butler, J. H., Bianchi, T. S., Campbell, L., et al. (2013). Spatial and temporal distributions of bromoform and dibromomethane in the Atlantic Ocean and their relationship with photosynthetic biomass. Journal of Geophysical Research: Oceans, 118(8), 3950-3965. doi:doi:10.1002/jgrc.2029
- 3. USEPA Method 8260D: Volatile Organic Compounds by Gas Chromatography / Mass Spectrometry (GC/MS) Rev. 4 June 2018

Section 7. Acknowledgements

Thank you to Neal Bauman for taking the Rockport samples and Noel Bauman for sample transport. Thank you to Jason Mote for taking the High Island samples.