

Introduction

1

Detection of Microplastics

- Microscopy, ATR-FT-IR
- Detect & identify composition of microplastics
- Limited sample throughput

Increasing Sample Throughput with SP-ICP-MS - Minimal sample preparation

- Just dilute the sample, if necessary
- High sample throughput
- Ability to detect thousands of particles per minute
- Particle size & number concentration information

Microplastic Detection with SP-ICP-MS Challenges

- - Must be able to reliably detect carbon
 - High background due to CO₂ in the Ar used to generate the plasma & presence as impurity in reagents
- - High ionization potential (11.3 eV)

Overcoming the Challenges

- Shorten measurement times by using microsecond dwell times
 - Lowers the background, but overall signal from particles is unaffected
- Monitor C13 (1.1% abundance)
 - Much lower background that C12

Goal

Use SP-ICP-MS as a Rapid Screening Tool for Microplastic Detection

2 Analyses

- NexION ICP-MS
 Rapid data acquisition
- Short dwell times

Syngistix Nano

- Application Module
- Rapidly measures particles
- Provides particle size & concentration information
- Real-time histograms of data

Transport of Microplastics to the Plasma

Conventional spray chambers are best for small particles/aerosols

- Larger particles/droplets are filtered out
- Micron-size particles will not reach the plasma

Detection of Microplastics in Consumer Products with Single-Particle ICP-MS

Francisco Laborda¹, Celia Trujillo¹, Ryszard Lobinski², Mollie Cyr³ ¹University of Zaragoza, Zaragoza, Spain; ²Université de Pau et des Pays de L'Adour, Pau, France; ³PerkinElmer Inc., Shelton, CT, USA

Evaluating Accuracy for Different Size Spheres				
Particle Standard	Certified Diameter (µm)	Measured Diameter (µm)	% Bias	
1	1.04 <u>+</u> 0.03	1.69 <u>+</u> 0.07	140	
2	1.98 <u>+</u> 0.01	1.83 <u>+</u> 0.01	93	
3	2.02 <u>+</u> 0.02	1.93 <u>+</u> 0.01	96	
4	2.22 <u>+</u> 0.01	2.10 <u>+</u> 0.02	94	
5	3.03 <u>+</u> 0.09	2.74 <u>+</u> 0.01	91	
6	4.00 <u>+</u> 0.04	3.56 <u>+</u> 0.06	91	
7	5.00 <u>+</u> 0.04	4.55 <u>+</u> 0.05	92	

Accurate Size Measurements from 2- 5 µm

6 Detection of Microplastics in Exfoliants

Samples & Sample Preparation

- Plastic microparticles are added to exfoliants as abrasives
- 3 consumer exfoliants were purchased
- Samples were mixed with water, sonicated, & filtered through 10 μm filters
- Samples were diluted so the particle concentration was $<\approx$ 250,000 particles/mL
 - Dilutions were done iteratively after the samples were run & the particle concentrations were determined
 At higher concentrations, the chances of multiple
 - particles being ionized simultaneously increase
 - Inaccurate results if more than one particle is ionized at a time

Time Scans & Size Distribution Plots of 3 Different Exfoliants

Carbon-Containing Particle Results from Exfoliants

Sample	Mean Diameter (µm)	Particle Concentration (g ⁻¹)
Blank		
Exfoliant 1	2.89	3.6 x 10 ⁷
Exfoliant 2	3.08	3.1 x 10 ¹¹
Exfoliant 3	2.11	4.4 x 10 ¹⁰

Summary

- Size distribution & number of particles vary between the samples
- Exfoliant 1 has the broadest size distribution
- Exfoliant 2 contains the most particles
- Exfoliant 3 has the smallest particle sizes

Detection of Microplastics in Plastic Tea Bags

Samples & Sample Preparation

- 3 brands of tea in plastic tea bags were purchased
- The contents of each tea bag were removed
- The tea bags were then washed & dried
- Each tea bag was placed in 100°C water for 5 minutes to
- replicate the tea brewing process, then removed
- The water was cooled & analyzed by SP-ICP-MS

Carbon-Containing Particle Results from Plastic Tea Bags

Sample	Mean Diameter (µm)	Particle Concentration (g ⁻¹)
Blank		
Tea Bag 1	2.70	2.2 x 10 ⁴
Tea Bag 2	2.18	5.5 x 10 ⁴
Tea Bag 3	2.26	1.9 x 10 ⁴

Summary

- All samples contain about the same size & number of carbon-containing particles
- Particles most likely originate from leach leaching and/or the break down of tea bags
- Significantly fewer particles than from the exfoliants

8 Summary

SP-ICP-MS can be used as a complementary screening technique for microplastic detection. Since SP-ICP-MS cannot identify the composition of the carboncontaining particle, other techniques (such as microscopy & ATR-FT-IR) must be used to characterize & identify the composition of the particles.

Nevertheless, because of its analytical speed & low C13 background, SP-ICP-MS can rapidly detect & count large numbers of microplastic particles down to 2 μ m. Used in conjunction with techniques which can identify the composition of microplastics, SP-ICP-MS can be a valuable tool in determining the presence of microplastics in consumer & environmental samples.