

Automated Py-GCMS Workflow for the Qualitative and Quantitative Analysis of Plastics of Diverse Sizes in Environmental Samples

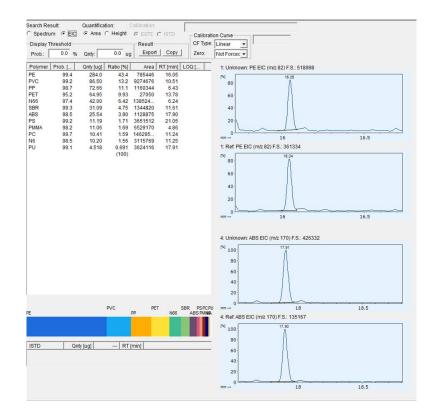
Alan Owens GCMS Product Manager

Life cycle of Plastics

- MP pollution is persistent and ubiquitous.
- MP life cycle involves the plastic break down, runoff into waterbodies, volatilization into the atmosphere, wind transport and atmospheric deposition.
- Some materials are not biodegradable and persist for along time

Goal of the Study

Automated Py-GCMS Workflow for the Qualitative and Quantitative Analysis of Plastics of Diverse Sizes in Environmental Samples


- 1. Develop qualitative method for individual unknown polymers
 - 1. Identify unique pyrolyzates of the polymers and their quant ions
 - 2. Analyze a mixed standard sample to ensure efficient separation and identification
- 2. Perform quantitative analysis on mixed standard samples
 - 1. Calibration curve creation with 5 levels
- 3. Performance evaluation of the system and method
 - 1. Demonstration of Precision
 - 2. Demonstration of Accuracy
 - 3. LOQs and IDLs

SHIMADZU

GCMS-QP2020NX with PY-3030D

Microplastics Workflow

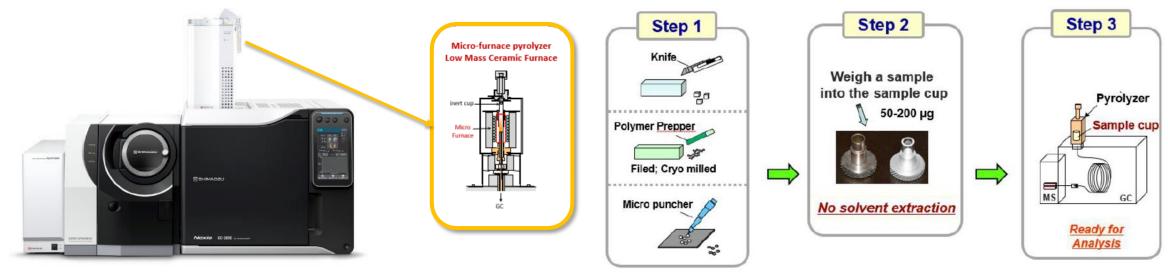
1. Polymer Preparation

- · Solid polymers are sliced or ground
- Placed into an eco cup with quartz wool

2. EGA-MS Analysis

- Thermal zone established
- Optimum PY furnace temp determined for Single Shot

3. Single Shot GCMS

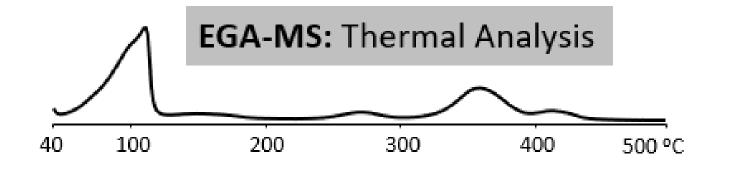

- Pyrolyzates formed by flash pyrolysis
- Pyrogram obtained

4. Data Analysis and Comparison

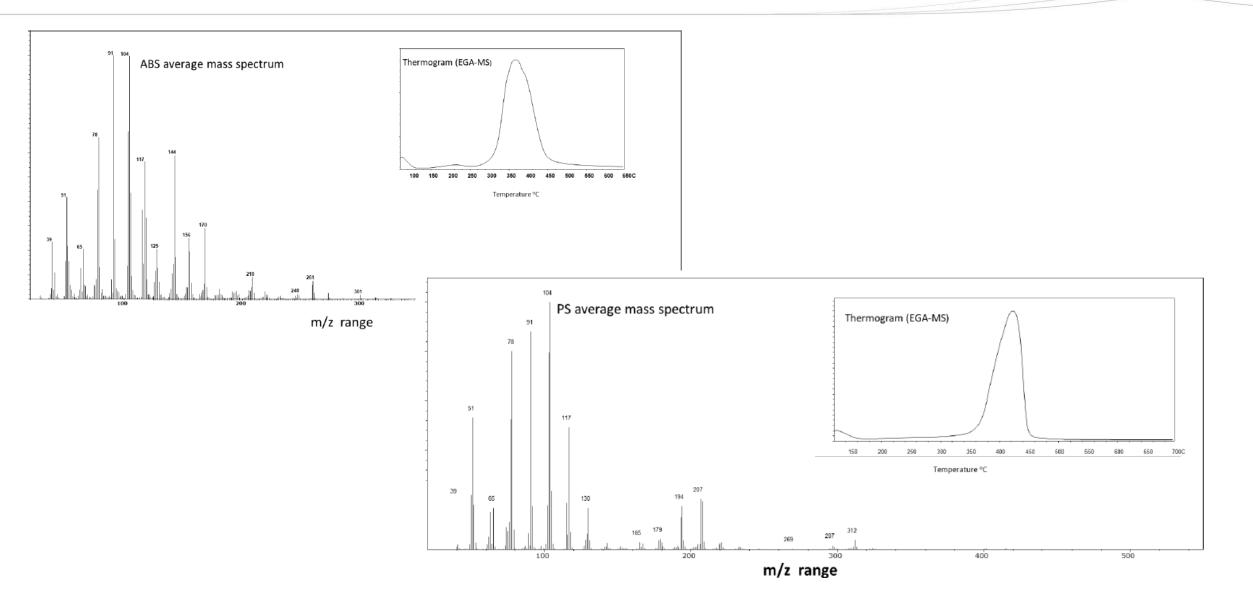
- •All pyrolyzates identified via F-Search library
- Characteristic pyrolyzate determined via data comparison

SHIMADZU

Pyrolysis – GC/MS: Polymer Preparation

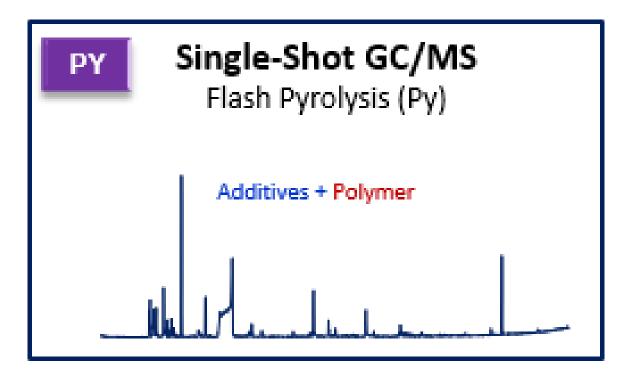


EGA/PY-3030D multi-shot pyrolyzer, AS-1020E auto-shot sampler (Frontier Laboratories Ltd.)

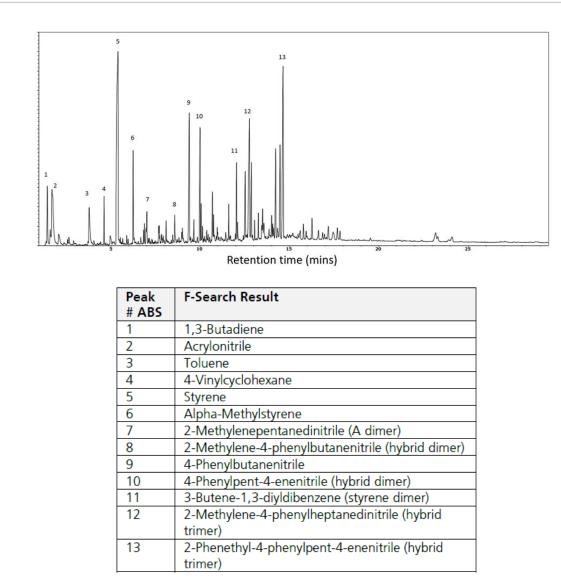

GCMS-QP™2020 NX

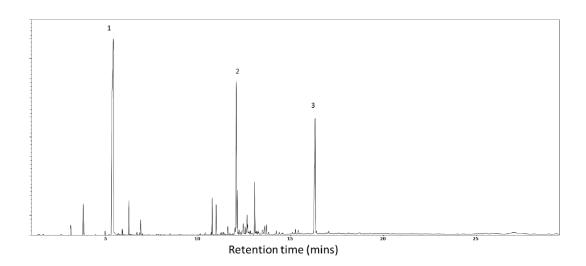
EGA Analysis

- Imperative to understand the thermal zones of the polymers in question
- Initial spectral information for specific polymers
 - Average mass spectrum can be matched against libraries
 - Thermograms can be complex requiring additional analysis
- Major m/z could be prevalent for multiple polymers
- Heated from $100^{\circ}C \rightarrow 700^{\circ}C$
- 2.5 M EGA tube

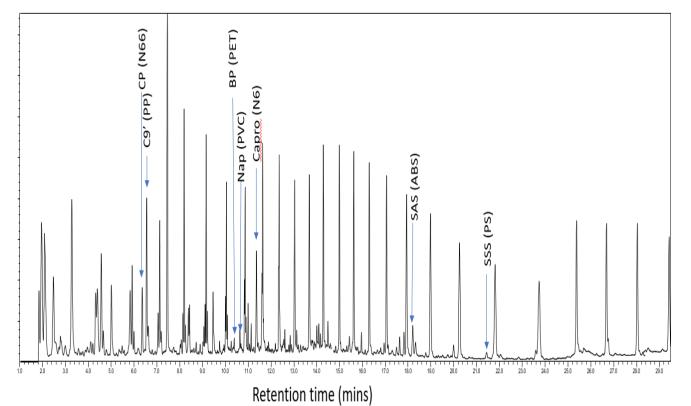


EGA Analysis



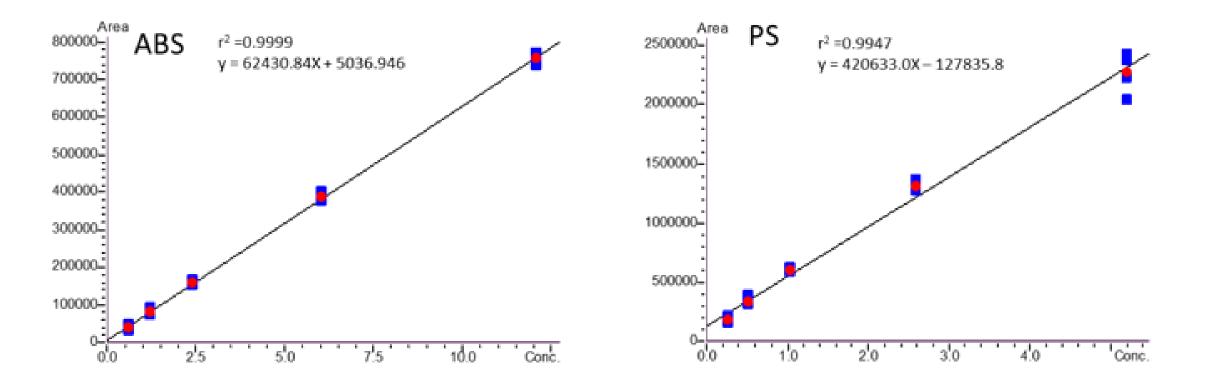

Single Shot Analysis

- Flash pyrolysis temperature determined from EGA analysis
- Identify compounds unique to each individual polymer (pyrolyzates)
- Plastics analysis creates complications due to the fact several major components are shared amongst polymers
- Flash Pyrolysis temperature was set to 600 °C
- UAMP Column 30 M with 2 M pre column


Single Shot Analysis

Peak # PS	F-Search Result
1	Styrene
2	3-Butene-1,3-diyldibenzene (styrene dimer)
3	5-Hexene-1,3,5-triyltribenzene (styrene trimer)

Mixed Polymer Standard


Compound name	Characteristic pyrolyzate	Quant ion	Qual ion	
ABS	2-Penyl-4-phenylpent-4-enenitrile (SAS)	170	91,115,118	
Nylon 6	ε -Caprolactam (Capro)	113	30,55,85	
Nylon 6,6	Cyclopentanone (CP)	84	39,55,56	
PET	Benzophenone (BP)	182	51,77,105	
РР	2,4-Diemethyl-1-heptene (C9')	126	43,55,70	
PS	Styrene trimer (SSS)	91	117,207,312	
PVC	Naphthalene (Nap)	128	102	

Quantitative Analysis

- Imperative to understand the thermal zones of the polymers in question
- Initial spectral information for specific polymers
 - Average mass spectrum can be matched against libraries
 - Thermograms can be complex requiring additional analysis
- Major m/z could be prevalent for multiple polymers

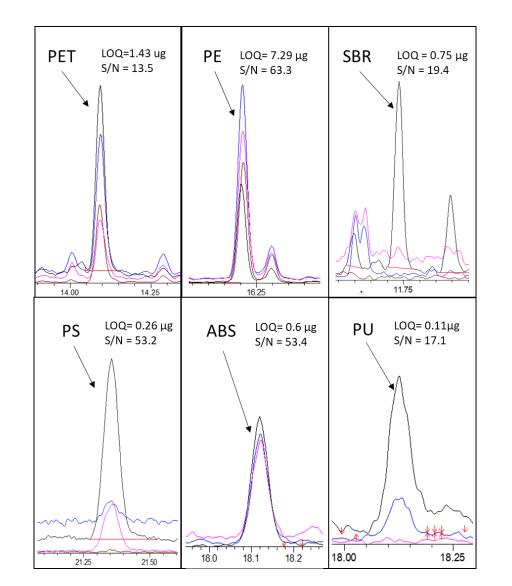
- Calibration curve consisted of five points: 0.2, 0.4, 0.8, 2.0 and 4.0 mg of a Frontier MPs-CaCO3 standard
- 2 mg of quartz wool was used to prevent contamination

Calibration Results

Statistical Analysis of Calibration Curves

Microplastic polymer	Characteristic Pyrolyzates	Linear range (µg)	Linearity (r ²)	Polymer mass in 4mg sample weight
PE	1,20-Heneicosadiene	7.29 -145.8	0.9999	145.8
РР	2,4-Dimethyl-1- heptene	1.79-35.7	0.9999	35.7
PS	Styrene trimer	0.26-5.2	0.9947	5.2
ABS	2-Phenethyl-4- phenylpent-enenitrile	0.60-12.1	0.9999	12.1
SBR	4-Vinylcyclohexene	0.75-15.0	0.9997	15.0
PMMA	Methyl methacrylate	0.27-5.3	0.9985	5.3
PC	4-Isopropenylphenol	0.26-5.1	0.9999	5.1
PVC	Naphthalene	2.12-42.4	0.9997	42.4
PU	4,4'- Methylenediabiline	0.11-2.1	0.9972	2.1
PET	Benzophenone	1.43-28.6	0.9995	28.6
N6	ε-Caprolactam	0.25-4.9	0.9998	4.9
N66	Cyclopentanone	1.03-20.7	1.0000	20.7

```
SHIMADZU
```


Precision Test

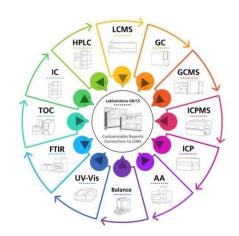
Polymer	Inter day prec (%) (n=7)	ision test RSD	Recovery % (n=7)		Retention Time	LOQ (µg)	% Drift (0.8mg)
	3 mg	0.2 mg	3 mg	0.2 mg	(min)	11-67	(0.0.0.8)
PE	3.6	9.7	99.0	99.9	16.2	7.3	-16.6
PP	2.5	9.2	99.6	111.2	6.6	1.8	-7.3
PS	12.1	23.6	92.2	66.4	21.3	0.3	-4.1
ABS	3.3	7.8	92.9	107.3	18.1	0.6	-18.1
SBR	2.3	6.8	96.0	121.8	11.7	0.8	-10.3
PMMA	2.5	8.5	102.8	103.6	5.0	0.3	-3.5
РС	2.8	7.1	97.2	123.0	11.4	0.3	-11.0
PVC	5.9	9.3	97.5	114.1	10.6	2.1	-11.6
PU	5.9	3.6	94.9	145.1	18.1	0.1	-20.5
PET	4.0	12.7	95.0	126.7	14.1	1.4	-20.4
N6	2.9	10.9	100.1	112.0	11.4	0.3	-10.0
N66	2.5	8.1	100.8	121.5	6.4	1.0	-7.4

SHIMADZU

Limits of Quantitation

- Lowest calibration point of 0.2mg was used for LOQ
- Goal of s/n of 10 or greater required
- LOQs ranged from 0.1 7.29ug

Where Do We Go From Here?



Alan Owens amowens@shimadzu.com

Visit OneLabOneEarth.com