

New ASTM Test Method for Determination of Microplastics Particle and Fiber Size, Distribution, Shape and Concentration in Waters with High to Low Suspended Solids Using a Dynamic Image Particle Size and Shape Analyzer

> William Lipps Shimadzu Scientific Instruments, Inc. August 2022

ASTM D19 has developed and is developing several guides, practices, and methods for microplastics in water

The methods (in development) reference and rely on the existing practices

SHIMADZU

Sample collection by D8332

D8332 Sampling can be adapted to river sampling, storm water, or even a boat

SHIMADZU

Sample preparation by D8333

• H_2O_2
Ammonium Hydroxide 5 minutes
• Buffer
Protease, buffer, lipase React 20 hours
Final sample = plastics suspended in methanol

SHIMADZU

Further prep may be needed after D8333, depending on the method

Once final sample is prepared it is ready for measurement

Smaller particles are harder and more time consuming for an analyst to count in IR method

High Contrast

IR Objective

Why have a DIA method? An instrument rather than a person counts particles.

Can you count 1500 particles per slide?									
Number of Frames 4800	Number of Particles	1506 Concentration(count/mL)	1560.133						
		Median Value(µm)	50.906						
		¹ Modal Value(μm)	51.082						
0.9		۵.۹ Mean Value(µm)	49.612						
0.8		^{0.8} Standard Deviation	7.166						
0.7		0.7 CV	0.144						
0.6		0.6 Value of Cumulative	Value of Cumulative %(µm)						
tt 0.5		0.000%	0.000						
		0.000%	0.000						
		0.000%	0.000						
		0.3 0.000%	0.000						
0.2		0.2 0.000%	0.000						
0.1		0.1 0.000%	0.000						
	50 10	0.000%	0.000						
Area	0.000%	0.000							

Preparing a sample for the DIA method, after D8333

Method optimization – Standard materials used

	μm	Particles/mL
(sigmaaldrich_72986)Micro Particle, PS based,	10.000	1.82E+08
(sigmaaldrich_74491)Micro Particle, PS based,	20.000	2.27E+07
(sigmaaldrich_74161)Micro Particle, Polymethacrylate based,	50.000	1.25E+06
(sigmaaldrich_59336)Micro Particle, PS based, monodispersed,	100.000	3.64E+04

Measuring 20-micron beads

•The D8333 final solvent is methanol, however methanol does not work •Water works better, but requires an exchange •High viscosity glycerin works and methanolic sample can be added

Measuring 100-micron beads

- Methanol or water do not work
- High viscosity glycerin works and methanolic sample can be added

Experiments to determine the best ratio of glycerin and methanol

15

SHIMADZU

50% glycerin selected; slightly low bias assumed due to sub sampling

+MeOH 70wt%

Fig. Sedimentation of PSL 100µm in each solvent

Determination of linearity detected a contamination problem 100- micron

Determination of linearity detected a contamination problem 50 micron

Blank evaluation showed some particles but not enough to affect linearity

seven separate blanks were analyzed, according to the method, to find an average of 5.8 particles with a standard deviation of 4.6

MDL ~ 15 particles /mL

The shape of the smaller particles was not spherical

We assume the smaller particles are contamination in the standards and not introduced by our process or solvents \rightarrow low blank

To measure <u>standard</u> beads correctly, we reject the smaller particles in the count

Preliminary precision statement

Particle Size, μΜ	Theoretical Concentration, counts/mL	n	Found Concentration, counts/mL	Standard Deviation	% RSD
100	1700	4	1700	166	9.8
	170	4	168	24.9	14.8
	34	7	34	8.5	25.3
	17	4	24	9.6	39.8
50	1460	4	1460	78.1	5.3
	146	4	152	10.5	6.9
	29	7	43	13	30.3
	15	4	30	2.5	8.4
20	2240	4	2240	104.7	4.7
	224	4	223	12.6	5.7
	45	7	42	8.5	20
	22	4	26	1.6	6
10	1960	4	1960	28.5	1.4
	196	4	197	36.6	18.6
	39	7	31	2.4	7.6
	20	4	20	6.3	31.1

Next steps for draft method

- Work item tied to IR and PY-GCMS work items (remove this dependency?)
- Passed Subcommittee balloting except for bullet item above (1 negative)
- Test non-spherical particles
- Test real matrices prepared by D8333
- Reballot for successful sub
- Ballot at main with single laboratory repeatability statement

Questions?

wclipps@shimadzu.com