Thermo Fisher S C I E N T I F I C

GC-MS analysis of polycyclic aromatic hydrocarbons in multiple matrices using a single calibration curve following EPA method 8270E

Andy Fornadel, PhD

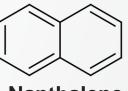
Product Marketing Manager – Americas August 4th, 2022

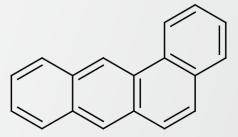
Agenda 1 Introdu

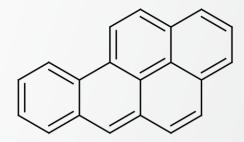
1 Introduction to polycyclic hydrocarbons

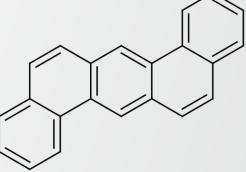
Challenges in GC-MS analysis using EPA method 8270E

3 Analysis of PAHs in water and soil


4 Conclusions


Introduction – Polycyclic Aromatic Hydrocarbons (PAHs)


- Organic compounds consisting of 2 or more aromatic rings
- Sources:
 - Naturally occurring in fossil fuels
 - Anthropogenically produced form the incomplete combustion of organic matter (i.e., fossil fuels, wood, garbage)
- Over 100 PAH compounds identified in environmental samples


Napthalene

Benz[a]anthracene

Benzo[a]pyrene

Dibenz[a,h]anthracene

Thermo Fisher

Polycyclic Aromatic Hydrocarbons (PAHs)

Wide environmental distribution

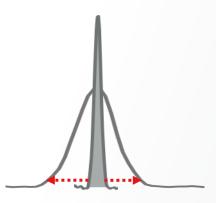
 Physical/Chemical properties allow for partitioning between various environmental media (air, water, soil)

Bioaccumulate in living organisms

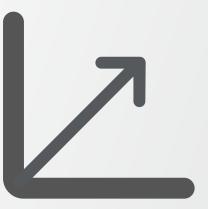
Exposure increases up the food chain

Toxic

- Carcinogenic
- Genotoxicity
- Endocrine disruptors

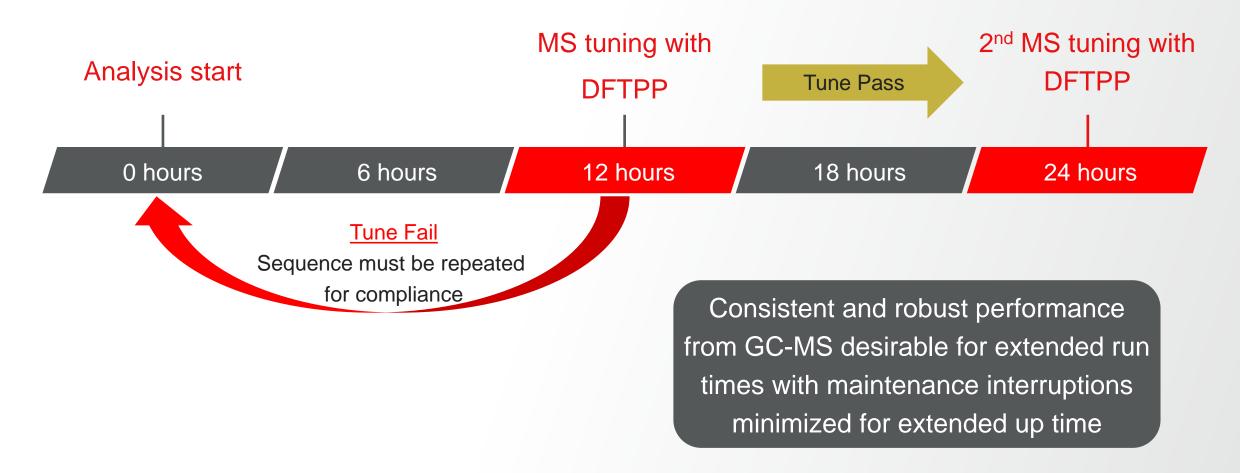

Gas Chromatography Mass spectrometry (GC-MS)

Semi-volatile nature of PAHs makes GC-MS an ideal tool for sample introduction and analysis


Challenges

 Sufficient chromatographic separation between PAH isomers needed to avoid isobaric interferences

 Compounds with high boiling points prone to peak broadening and carryover between injections



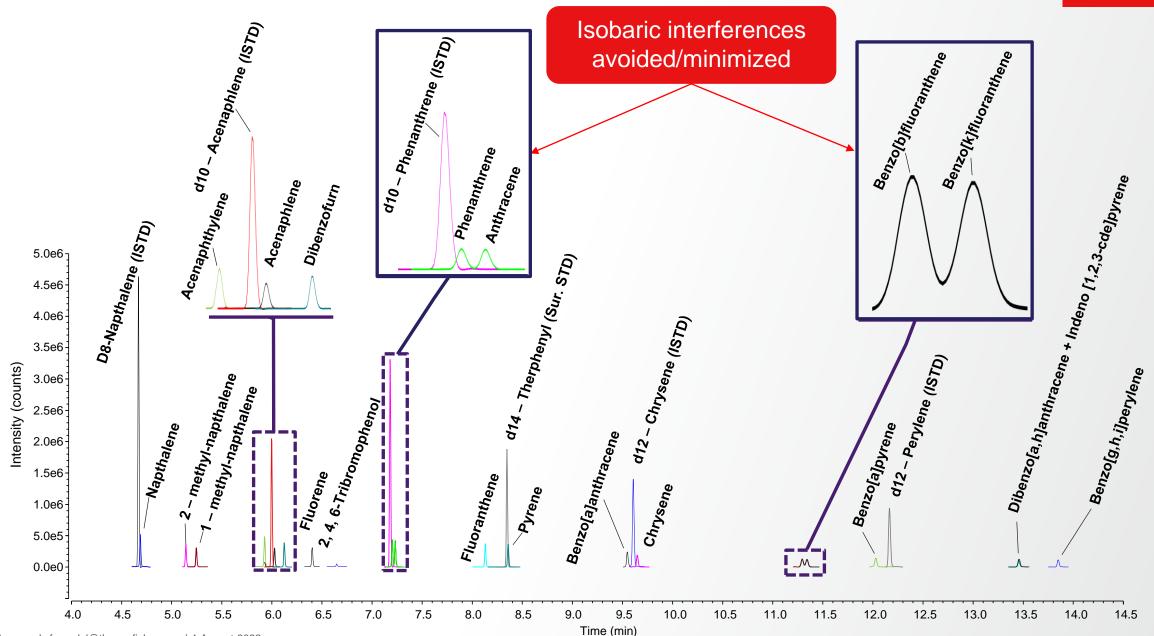
 Multiple calibration curves needed to accurately quantify concentration range present in various sample matrices

Additional challenges with EPA Method 8270E

 In sequence MS tuning with 50 ng decafluorotriphenylphosphine (DFTPP) required after every 12 hours of analysis

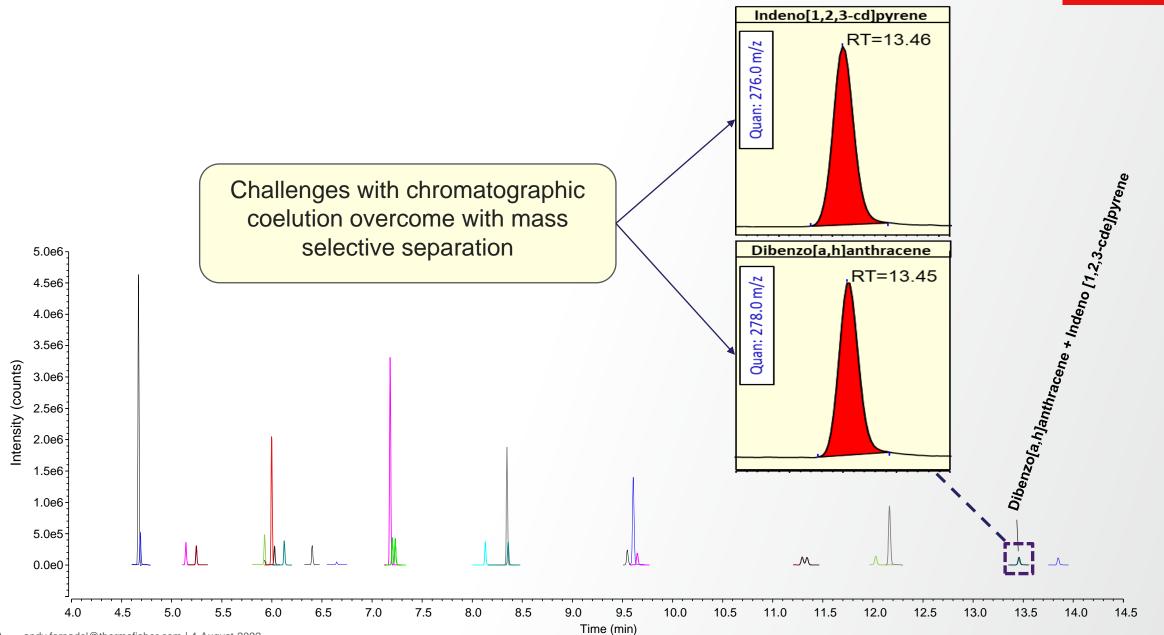
Analytical Configuration

Injection parameters			
Inlet module and mode	SSL, split		
Liner	P/N 453A1925-UI		
Liner type and size	Thermo Scientific™ LinerGOLD™, 4 mm i.d. × 78.5 mm		
Injection volume (µL)	1		
Inlet temperature (°C)	300 15		
Split flow (mL/min)			
Carrier gas, carrier flow (mL/min), carrier mode	He, 1.5, constant flow		
Split ratio	10:1		
Purge flow (mL/min)	5		
Pre-injection needle wash	5 times, with DCM		
Post-injection needle wash	10 times with DCM, 10 times with MeOH		


Chromatographic column	•			
Thermo Scientific™ TraceGOLD™ TG-PAH	P/N 26055-0470			
Column dimensions	30 m \times 0.25 mm i.d. \times 0.10 μ m			

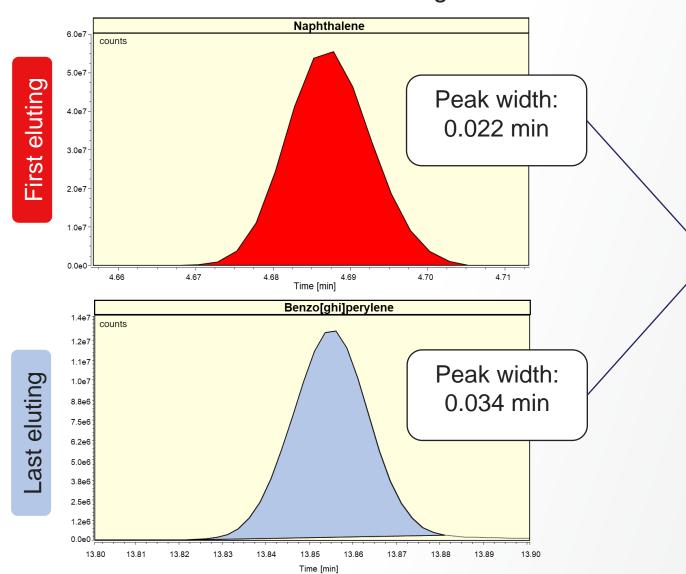
Oven temperature program	
Temperature 1 (°C)	40
Hold time (min)	1
Temperature 2 (°C)	285
Rate (°C/min)	35
Temperature 3 (°C)	295
Rate (°C/min)	3
Temperature 4 (°C)	350
Rate (°C/min)	30
Hold time (min)	2
Total GC run time (min):	15.2

MS parameters				
Ion source	ExtractaBrite			
Transfer line temperature (°C)	350			
Ion source temperature (°C)	350			
Ionization type	El			
Electron energy (eV)	70			
Emission current (µA)	10			
Acquisition mode	SIM, 2 ions/compound			

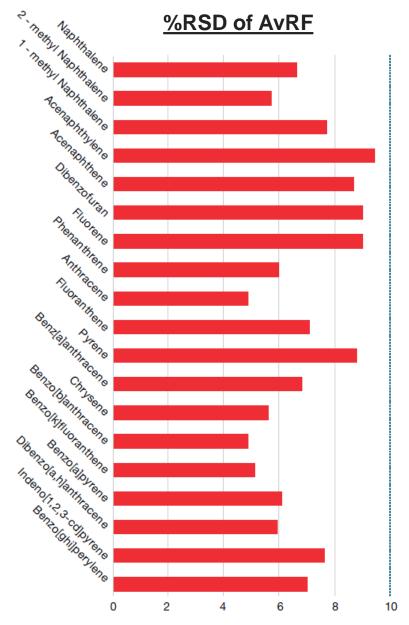

	_		
Compound name	Rt (min)	MS quantifier ion (<i>m/z</i>)	MS confirmatory ion (<i>m/z</i>)
Naphthalene-d ₈	4.7	136	108
Naphthalene	4.8	128	129
2 - methyl Naphthalene	5.2	142	141
1 - methyl Naphthalene	5.3	142	141
Acenaphthylene	5.9	152	151
Acenaphthene	6.0	153	154
Acenaphthene-d ₁₀	6.0	162	164
Dibenzofuran	6.1	168	139
Fluorene	6.4	165	166
Phenanthrene-d ₁₀	7.2	188	184
Phenanthrene	7.2	178	176
Anthracene	7.2	178	176
Fluoranthene	8.1	202	200
Terphenyl-d ₁₄	8.3	244	122
Pyrene	8.4	202	200
Benz[a]anthracene	9.5	228	226
Chrysene-d ₁₂	9.7	240	236
Chrysene	9.7	228	226
Benzo[b]fluoranthene	11.3	252	250
Benzo[k]fluoranthene	11.4	252	250
Benzo[a]pyrene	12.1	252	250
Perylene-d ₁₂	12.2	264	260
Dibenzo[a,h]anthracene	13.5	278	139
Indeno[1,2,3-cd]pyrene	13.5	276	138
Benzo[g,h,i]perylene	13.9	276	138

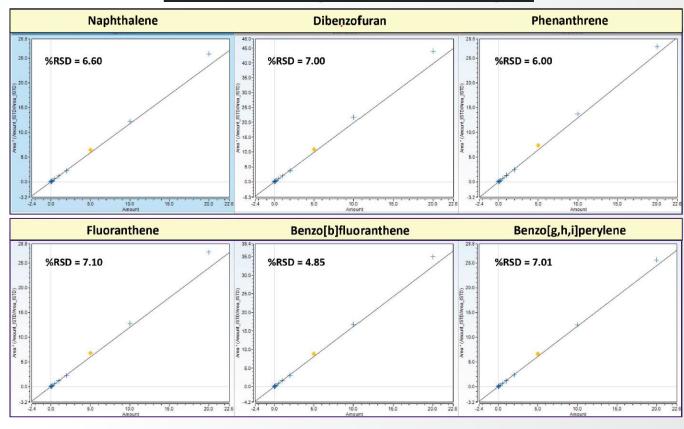
Chromatographic separation and isomer resolution

Thermo Fisher


Chromatographic separation and isomer resolution

Chromatography


EPA Method 8270E criteria – Peak broadening


Minimal peak broadening observed between early and late eluting compounds

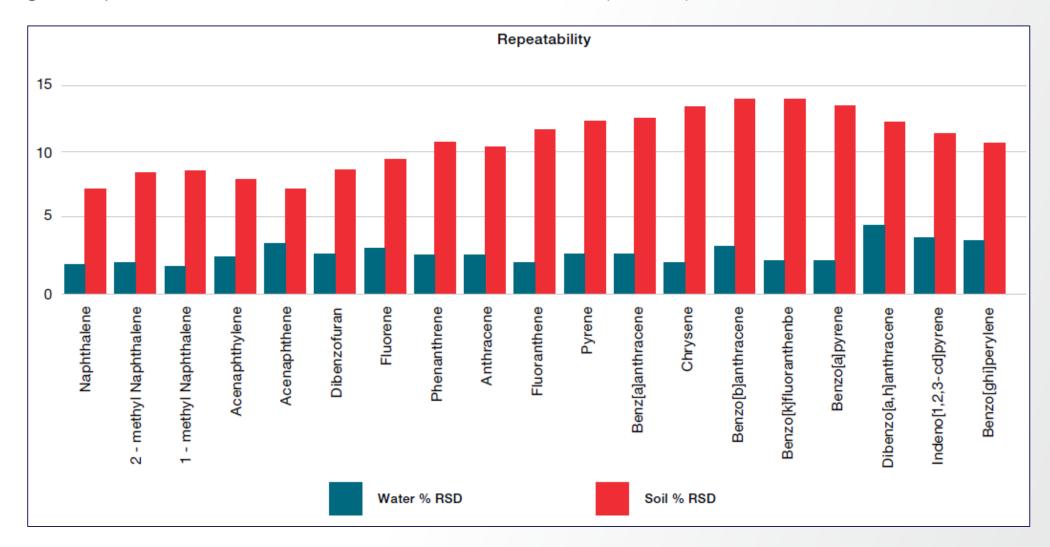
Response linearity

Calibration range: 2.5 – 20,000 ng/ml

- Average relative response factor (AvRF) calibration variation below EPA Method 8270E criteria (%RSD < 15%)
- Quantitation possible at trace levels and high contamination levels with single calibration curve

Performance towards PAH analysis in water and soil

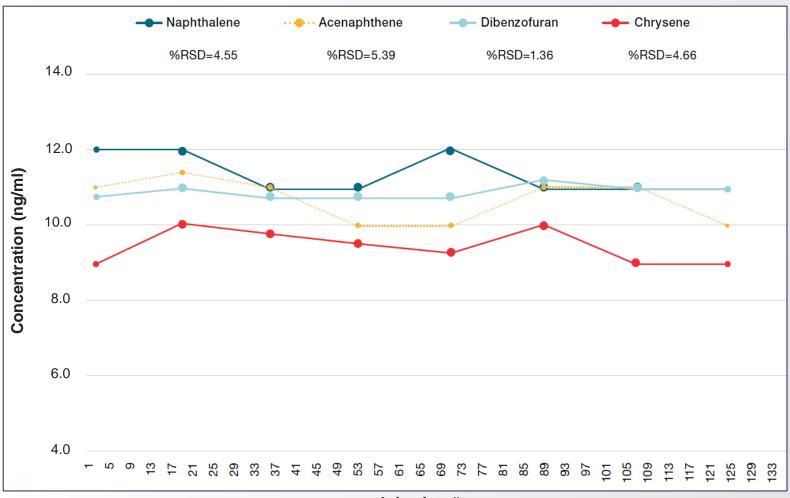
1 Repeatability in sample matrices


Instrument robustness using EPA method 8270E

In sequencing tune and calibration checks

Repeatability

20 ng/mL spiked in blank water and soil QC matrices (n = 10)

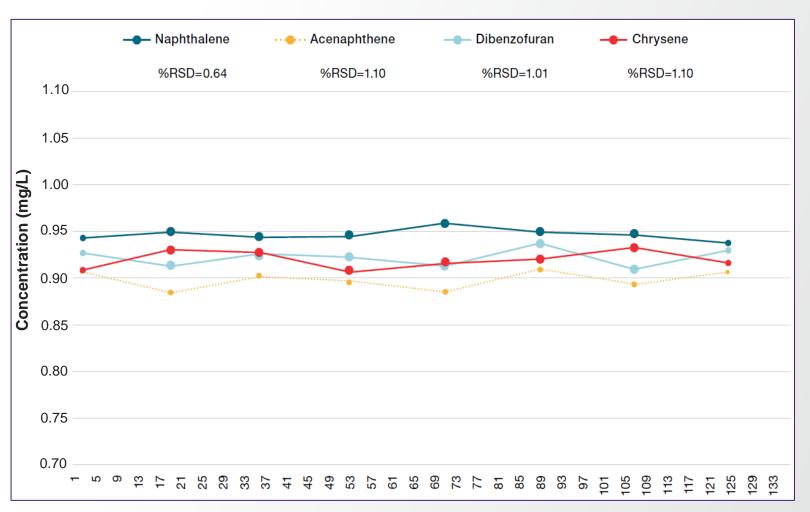

Reproducibility – Water analysis

Water QC sample at 10 ng/ml

%RSD < 10% after 133 consecutive injections (52 hours) without any GC or MS maintenance:

- Liner change
- Column trimming
- MS cleaning

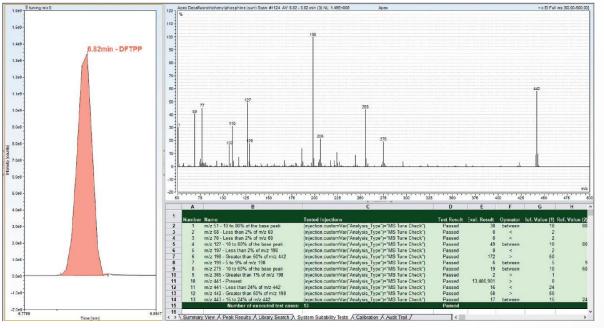
Injection #


Reproducibility – Soil analysis

Soil QC sample at 1.0 mg/L

%RSD < 10% after 133 consecutive injections (52 hours) without any GC or MS maintenance:

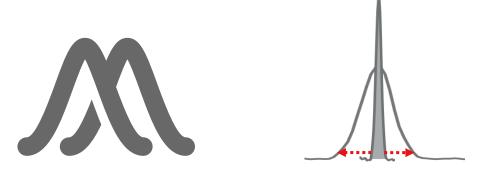
- Liner change
- Column trimming
- MS cleaning



Injection #

In sequence tuning, calibration and QC checks

MS tuning verification every 6 hours with DFTPP in full scan with report automatically generated


=	TIC	⊦ Na	me	Туре	Position	Instrument Method	Status	*Analysis_Type
1		8	DCM	Unknown	54	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
2	Li	8	tuning mix 1	Unknown	53	PAHs SIM - 10uA - SPLIT 10to1 - FS	Finished	Field Sample
3		2	QC low water	Unknown	1	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
4		3	QC low soil	Unknown	2	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
5		3	QC middle water	Unknown	3	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
6		3	QC middle soil	Unknown	4	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
7		2	QC high water	Unknown	5	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
8		7	QC high soil	Unknown	6	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
9		2	Cali check 0.0025	Unknown	10	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
10		2	s1	Unknown	55	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
11		7	s2	Unknown	56	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
12		2	s3	Unknown	57	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
13		7	s4	Unknown	58	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
14	702 N. S.	(2)	s5	Unknown	59	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
15		2	s6	Unknown	60	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
16		3	s7	Unknown	61	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
17		17	s8	Unknown	62	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
18		100	cQ .	Unknown	63	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
19	- 11	2	tuning mix 2	Unknown	53	PAHs SIM - 10uA - SPLIT 10to1 - FS	Finished	Field Sample
20		_ (3	Call check 0.005	Unknown	11	PAHS 51M - 10uA - 5PLTT 10to1	Finished	Fiera Sample
21		3	QC low water 2	Unknown	1	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
22		2	QC low soil 2	Unknown	2	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
23		2	QC middle water 2	Unknown	3	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
24		7	QC middle soil 2	Unknown	4	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
25		2	QC high water 2	Unknown	5	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
26		_ 2	QC high soil 2	Unknown	6	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
ZI		(2)	s10	Unknown	04	AHS 3IM - 10uA - SPEIT 10to1	Finisheu	Field Sample
20		3	e11	Linknown	65	ΔHc SIM - 10μΔ - SPI IT 10to1	Finished	Field Sample

Routine calibration and sample QC checks at different concentrations to ensure analysis accuracy

- Calibration accuracy: ± 10%
- Spiked recovery: 80 120 %

Thermo Fisher SCIENTIFIC

Conclusions

Efficient chromatographic separation within 14.5 min with minimal peak broadening by late eluting compounds and isobaric interferences avoided

Robust analysis of PAHs was demonstrated with %RSD < 10% for sample QCs after 133 consecutive injections with no GC or MS maintenance

Spike recoveries of sample QC range from 80-120% with method detection limits ranging from 0.5 – 7.6 pg on column

Linear dynamic range over 4 orders of magnitude allowing multiple sample types to be analyzed on a single calibration curve.

In sequence tuning and report generation automatically provides compliance requirements for EPA method 8270E and allowing for maximum instrument up time

Thank you

The line has been unmuted for questions.

