Waters™

Gas Chromatography Atmospheric Pressure Chemical Ionization (GC-APCI) GC/MS/MS of Semivolatiles

Douglas Stevens

Kenneth Rosnack, Frank Dorman

Waters Corporation

Environmental Measurement Symposium

2022

Crystal City, Virginia August 1-5, 2022

Overview

- Semivolatiles Background
- Source Description and Ionization
- Semivolatiles Performance Data
 - Sensitivity
 - Linearity
 - Reproducibility
- Adapting to Nitrogen Carrier Gas
- Conclusions

Semivolatile Organic Compounds (SVOCs)

Volatile compound categories
– SVOC, VOC, VVOC (gases)

- GC/MS amenable
- SVOC = higher bp (100 600°C)

- Broad characterization of samples
- Long analyte lists with multiple compound classes
- Common, high volume analysis

GC-APCI MS/MS Conditions

TQ MS	
Source Type	GC-APCI, dual CI mode
Source Temp	150°C
Transfer Line Temp	320°C
Corona Current	2.0 µA
Auxiliary Gas	200 L/hr
Cone Gas	240 L/hr
Make Up Gas	350 mL/min
Detector Gain	0.10

GC	
Column	5% phenyl 30 x 0.25 x 0.25
Column Outlet	14 psi
Injection	SSL at 300°C, <mark>Split 100:1</mark> 4 mm id pkd liner
Carrier Gas	Helium 2.0 mL/min
Temperature Program	40°C 1min, to 120°C at 10°C/min, to 320°C at 25°C/min hold 3 min. 20min run time

Chemical Ionization Types

Munson. "CIMS: ten years later." Anal Chem (1977) Gross. Mass spectrometry. Springer (2006)

Reagent Ions, Varied Cone Gas

GC-APCI Source: Cone Gas

Horning, Analytical Chemistry 45.6 (1973) McEwen, https://doi.org/10.1016/j.jasms.2005.07.005

Response Characteristics

Response Characteristics

MRM Transition Database

Quanpedia - SVOC			
 Compound:)	
Compound	CAS	Mass	Formula
1,2 dinitrobenzene	528-29-0	168.0171	C6H4N2O4
1,2,4 trichlorobenzene	120-82-1	179.9300	C6H3CI3
1,2-dichlorobenzene	95-50-1	145.9690	C6H4Cl2
1,3 dinitrobenzene	99-65-0	168.0171	C6H4N2O4
1,3-dichlorobenzene	541-73-1	145.9690	C6H4CI2
1,4 DCB-d4	3855-82-1	149.9941	C6D4CI2
1,4 dintrobenzene	100-25-4	168.0171	C6H4N2O4
1,4-dichlorobenzene	106-46-7	145.9690	C6H4CI2
1-methylnaphthalene	90-12-0	142.0783	C11H10
2 chloronaphthalene	91-58-7	162.0236	C10H7CI
 2 methylphenol	95-48-7	108.0575	C7H8O

Quanped	Quanpedia - SVOC				
🕝 lo	Co Information				
Enter the MS acquisition information for this compound. Spectra and ion details can be entered for different ion modes.					
lon mode:	API+ •	Compound name:	1,2 dinitrobenzene		
	Precursor Mass (Da)	Product mass (Da)	Cone voltage (V)	Collision energy (V)	Spectrum
First ion:	169.05	75.05	30	20	
Second ion:	169.05	92.05	30	17	
Third ion:	169.05	152.05	30	12	
Fourth ion:					
Fifth ion:					
	Use Soft Transmissio	וכ			

Separation of Isomers PAHS: benzo[b]fluoranthene and benzo[k]fluoranthene

4-Chloroaniline, Charge Transfer Example

1,2 Dichlorobenzene, Charge Transfer Example

Azobenzene, Protonation Example

Benzyl Butyl Phthalate, Protonation Example

Perylene-d12 Ionization Stability Monitoring

Separation of Isomers Benz[a]anthracene and Chrysene, He v. N₂ Carrier

Scaled Columns Dioxins

Sensitivity Assessment N2 Carrier Gas, Pesticide

Conclusions

- Analytes compatible with both charge exchange and protonation exhibit good sensitivity, linearity and reproducibility using dual chemical ionization mode
- The two ionization modes maintain a broad and stable fixed performance ratio for extended periods allowing concurrent analysis of multiple classes of SVOCs in a single injection
- The method is adaptable to nitrogen carrier gas without loss of sensitivity
- Future work: extracted samples; N2 carrier with scaled column

GC-APCI MS/MS System APGC Xevo TQ-XS Tandem Quadrupole

Atmospheric Pressure Source

Heated Transfer Line

MS	Xevo [™] TQ-XS
Source Type	APGC [™] , dual CI mode
Source Temp	150°C
Transfer Line Temp	320°C
Corona Current	2.0 μΑ
Auxiliary Gas	200 L/hr
Cone Gas	240 L/hr
Make Up Gas	350 mL/min
Detector Gain	0.10

GC	Agilent 7890
Column	Rxi [®] -5Sil MS 30 x 0.25 x 0.25
Column Outlet	14 psi
Injection	SSL at 300°C, Split 100:1
	4 mm id pkd liner
Carrier Gas	Helium 20 mL/min
Temperature	40°C 1min, to 120°C at
Program	10°C/min, to 320°C at
	25°C/min hold 3 min.
	20min run time

Acknowledgements

- Rhys Jones
- Sarah Dowd
- Peter Hancock
- Janitha De-Alwis

O'Hair, Richard AJ. "Chemical ionization mass spectrometry: 50 Years on." Journal of The American Society for Mass Spectrometry 27.11 (2016): 1787-1788

> "And the end of all our exploring Will be to arrive where we started And know the place for the first time." T.S. Eliot