Retain Your Spectral Fidelity: Using H₂ Carrier Gas and a Novel EI Source for EPA 8270 With GC/MS and GC-MS/MS Systems

NEMC 2022 New Organic Monitoring Techniques (Session 2)

Angela Smith Henry Anastasia Andrianova Bruce Quimby Amanda McQuay Agilent Technologies Inc.

Bill Mock Pace Analytical National Center for Testing Innovation Laboratory

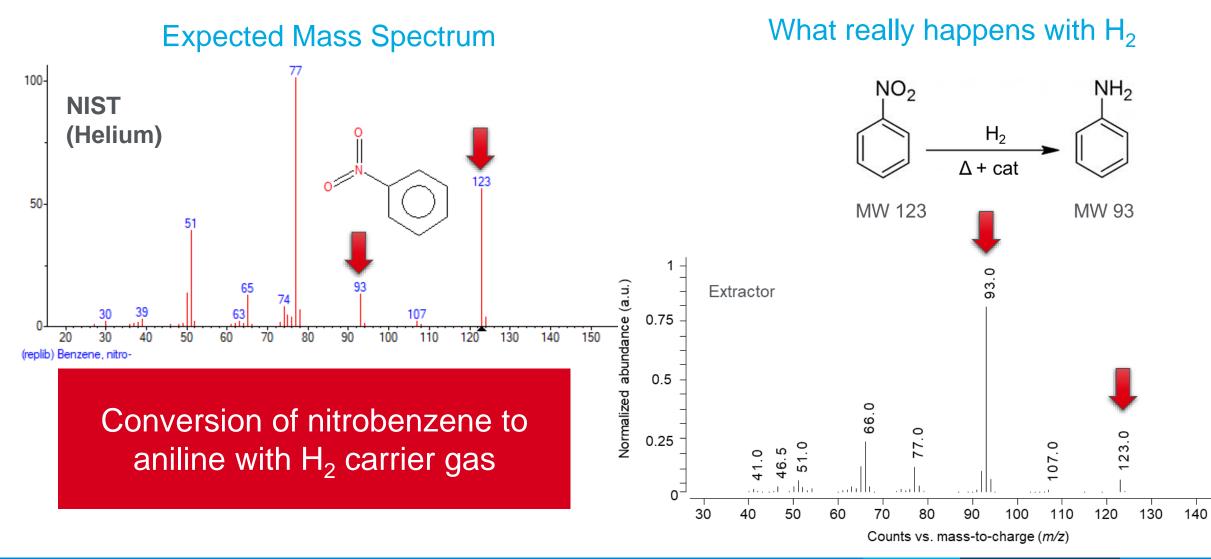
Agustin Pierri Weck Labs

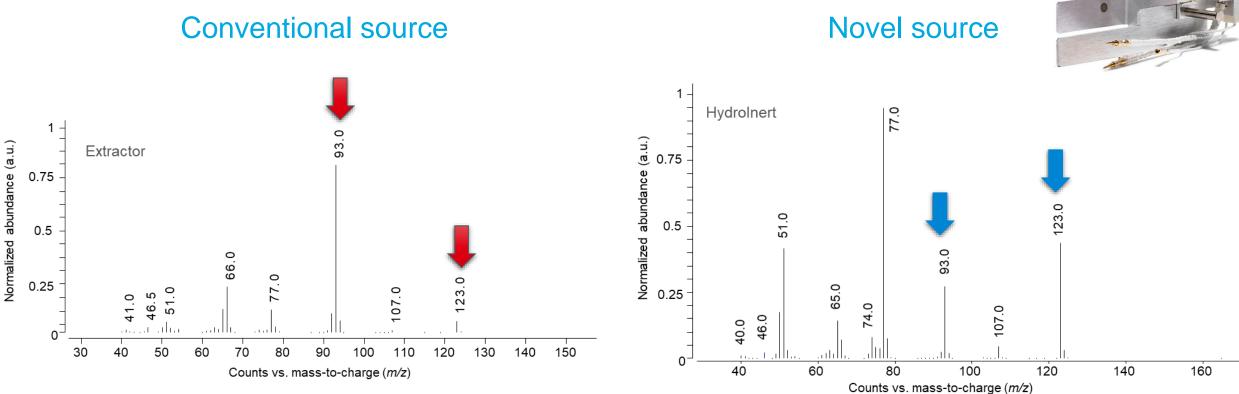
4 August 2022

DE90161208

Reasons to use Hydrogen Carrier Gas

- Readily available (H₂ already used for FID and other detectors)
- Sustainable
- Lower Cost
- Cleans source during use
- Available on-demand (H₂ generator) or by cylinder
- Faster analysis
- Lower temperature separation possible
- Move to "more efficient" columns
 - 30 m x 0.25 mm x 0.25 μ m \rightarrow 20m x 0.18 mm x 0.18 μ m




Source-Induced Problems with Hydrogen Carrier Gas: Nitrobenzene Conversion

4 August 2022 DE90161208

Back to nitrobenzene and H₂ carrier gas

The novel source prevents hydrogenation!

4 August 2022 DE90161208 🕂 Agilent

Agenda

EPA 8270 on GC/MS SQ with H₂

- Development Challenges
- Successful Method
- Additional Method

EPA 8270 on GC/TQ with H₂

- Development Challenges
- Successful Method

Summary

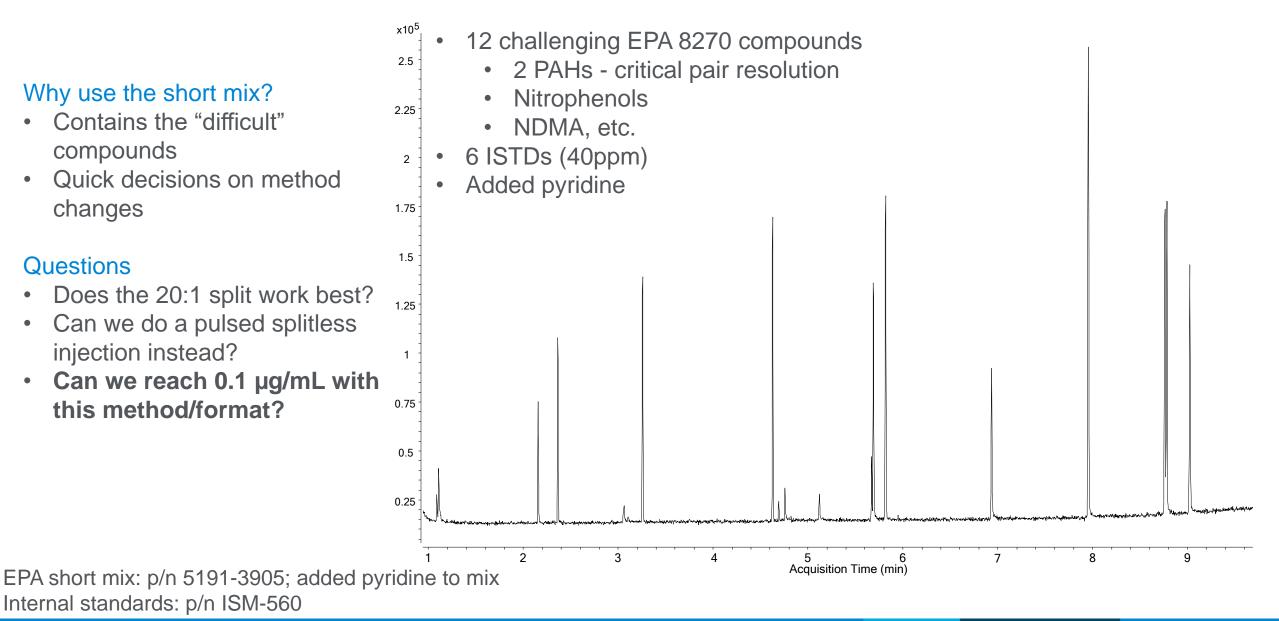
5

Challenges in method development with H₂ Where did we start?

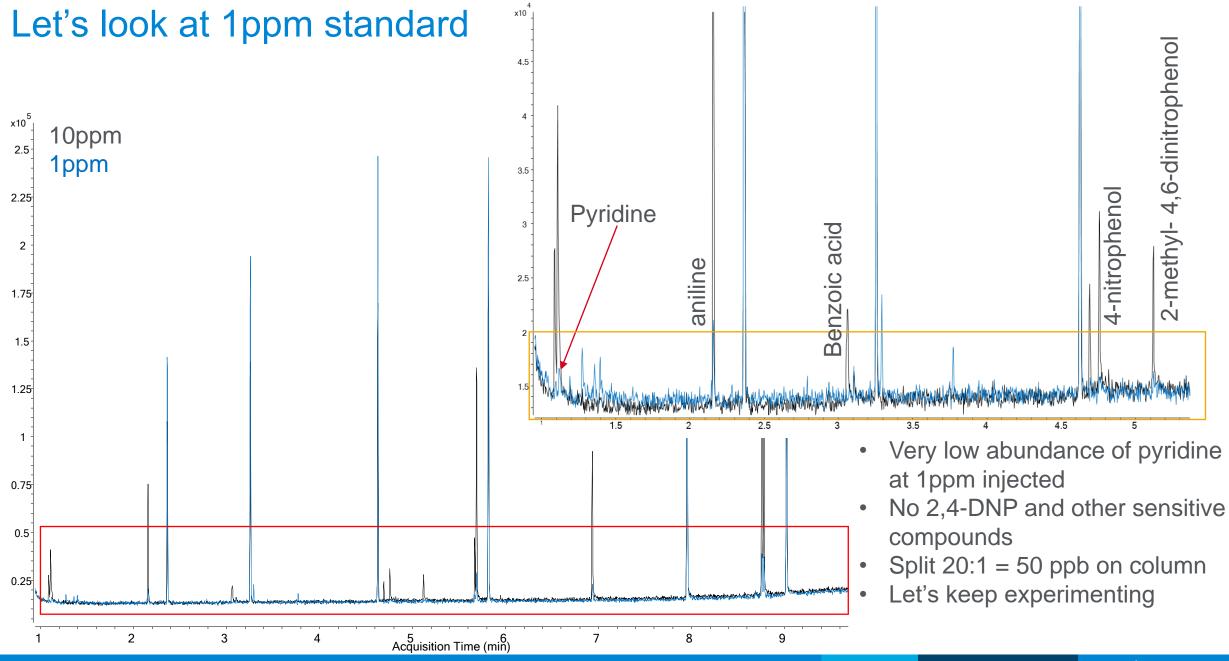
20 m x 0.18 mm x 0.18 µm

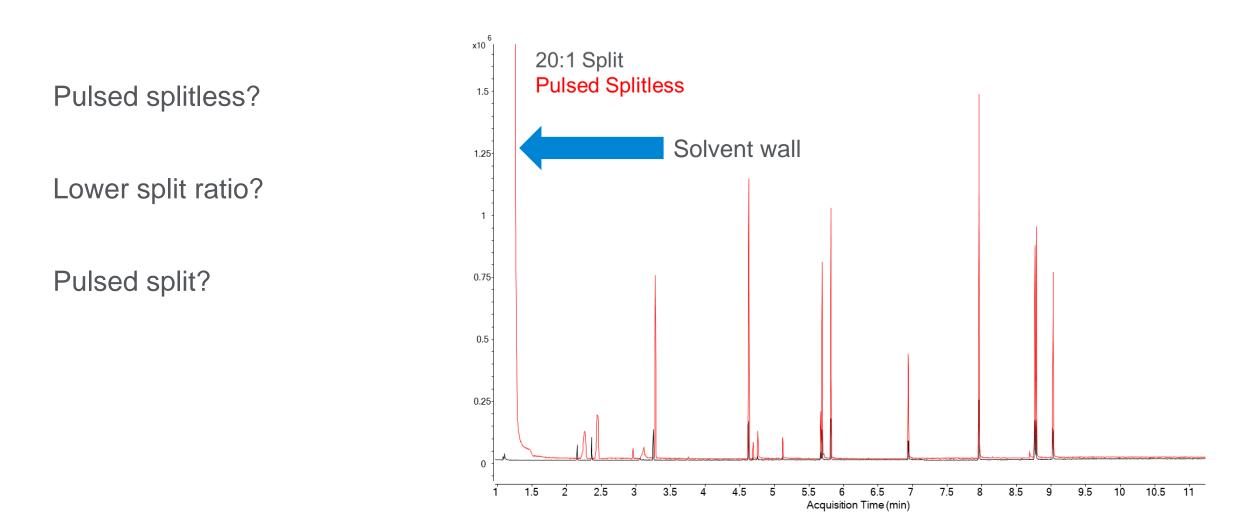
Method Parameters				
Injection Volume	1 µL			
Inlet	230 °C			
(Split-splitless Inlet)	Split 20:1			
Column	DB-5ms UI 20 m x 0.18 mm x <mark>0.18 µm</mark>			
Column Temperature	40 °C (0 min hold)			
Program	30 °C/min to 320 °C (hold 2 min)	ľ		
Carrier Gas and Flow Rate	H ₂ , 1.2 mL/min constant flow	ľ		
Transfer Line Temperature	320 °C			
Ion Source Temperature	300 °C			
Quadrupole Temperature	150 °C			
Scan	40–540 m/z			
Tune	atune.u			
Gain Factor	0.5			
Threshold	0			
A/D Samples	4			

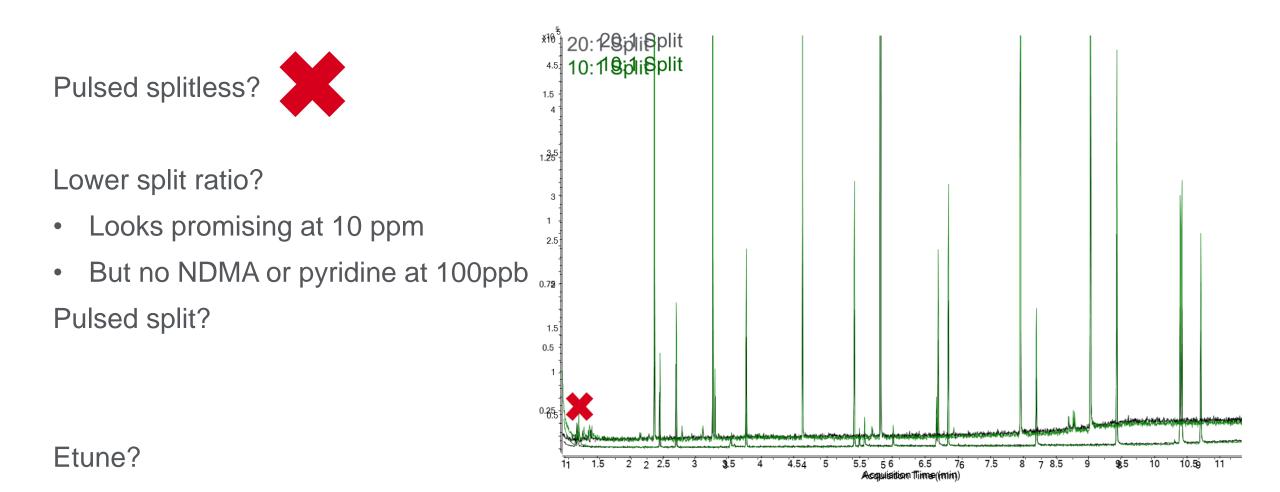
Why?


- Inlet pressure ≥ 5 psi
- Reasonable flow rate
- Existing column size/style

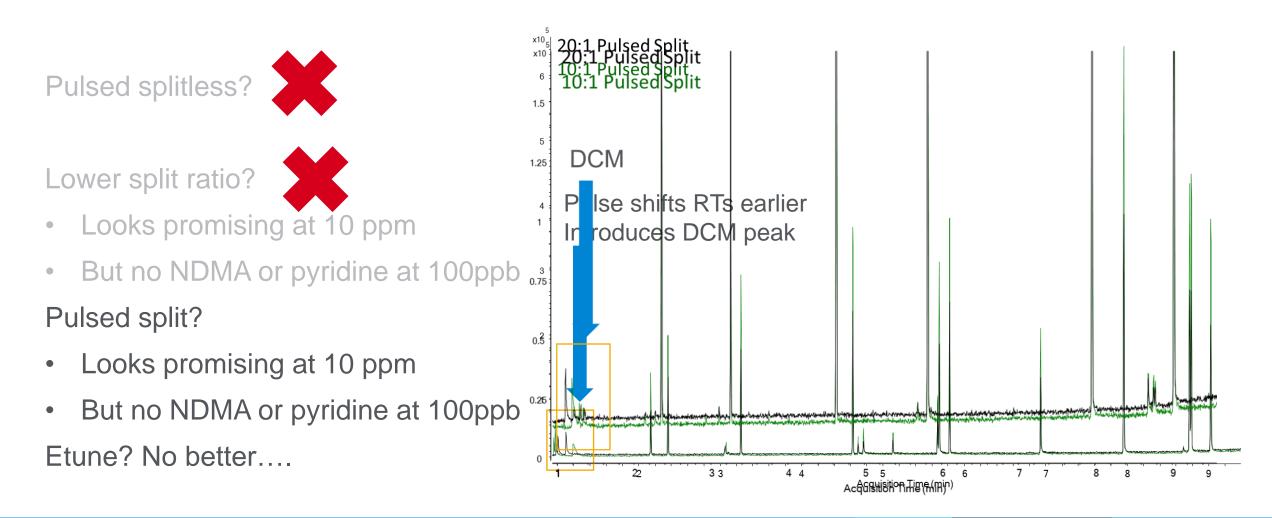
Major differences:


- Split injection to avoid overload
- Less capacity than "normal" 30 m x 0.25 mm x 0.25 µm


Evaluating methods with EPA 8270 short mix @ 10ppm



Method development: Injection parameter optimization attempts 10ppm EPA short mix: Focused on NDMA and pyridine



Method development: Injection parameter optimization attempts 10ppm EPA short mix: Focused on NDMA and pyridine

Method development: Injection parameter optimization attempts 10ppm EPA short mix: Focused on NDMA and pyridine

Transition to the 0.36 μm DB-5ms UI column

$20\ m\ x\ 0.18\ mm\ x\ 0.18\ \mu m$

Method Parameters					
Injection Volume	1 µL				
Inlet	230 °C				
(Split-splitless Inlet)	Split 20:1				
Column	DB-5ms UI 20 m x 0.18 mm x <mark>0.18</mark> µm				
Column Temperature	40 °C (0 min hold)				
Program	30 °C/min to 320 °C (hold 2 min)				
Carrier Gas and Flow Rate	H ₂ , 1.2 mL/min constant flow				
Transfer Line Temperature	320 °C				
Ion Source Temperature	300 °C				
Quadrupole Temperature	150 °C				
Scan	40–540 m/z				
Tune	atune.u				
Gain Factor	0.5				
Threshold	0				
A/D Samples	4				

20 m x 0.18 mm x 0.36 µm

Method Parameters					
Injection Volume	1 μL				
Inlet	230 °C				
(Split-splitless Inlet)	Split 10:1				
Column	DB-5ms UI 20 m x 0.18 mm x 0.36				
	μm				
Column Temperature	40 °C (0 min hold)				
Program	30 °C/min to 320 °C (hold 2 min)				
Carrier Gas and Flow Rate	H ₂ , 1.2 mL/min constant flow				
Transfer Line Temperature	320 °C				
Ion Source Temperature	300 °C				
Quadrupole Temperature	150 °C				
Scan	40–540 m/z				
Tune	etune.u				
Gain Factor	0.5				
Threshold	0				
A/D Samples	4				

Can you pass DFTPP ion ratios with etune?

Target Mass (m/z)	Ion Abundance Criteria	Measured Relative Abundance	Pass/Fail
51	*10–80% of 198 m/z	38.5 %	Pass
68	<2% of 69 m/z	1.0 %	Pass
69	Present	36.5 %	Pass
70	<2% of 69 m/z	0.4 %	Pass
127	*10–80% of 198 m/z	54.4 %	Pass
197	<2% of 198 m/z	0.0 %	Pass
198	Base peak or present *or >50% of 442 m/z	51.6 %	Pass
199	5–9% of 198 m/z	5.0 %	Pass
275	10–60% of base peak	30.4 %	Pass
365	>1% of base peak	4.9 %	Pass
441	<150% of 443 m/z	83.1%	Pass
	*present, but <24% of 442	*15.7%	
442	Base peak or present *or >50% of 198 m/z	100% (base peak)	Pass
443	15–24% of 442 m/z	18.9 %	Pass

* EPA 8270D criteria

Yes, it can pass!

What about atune?

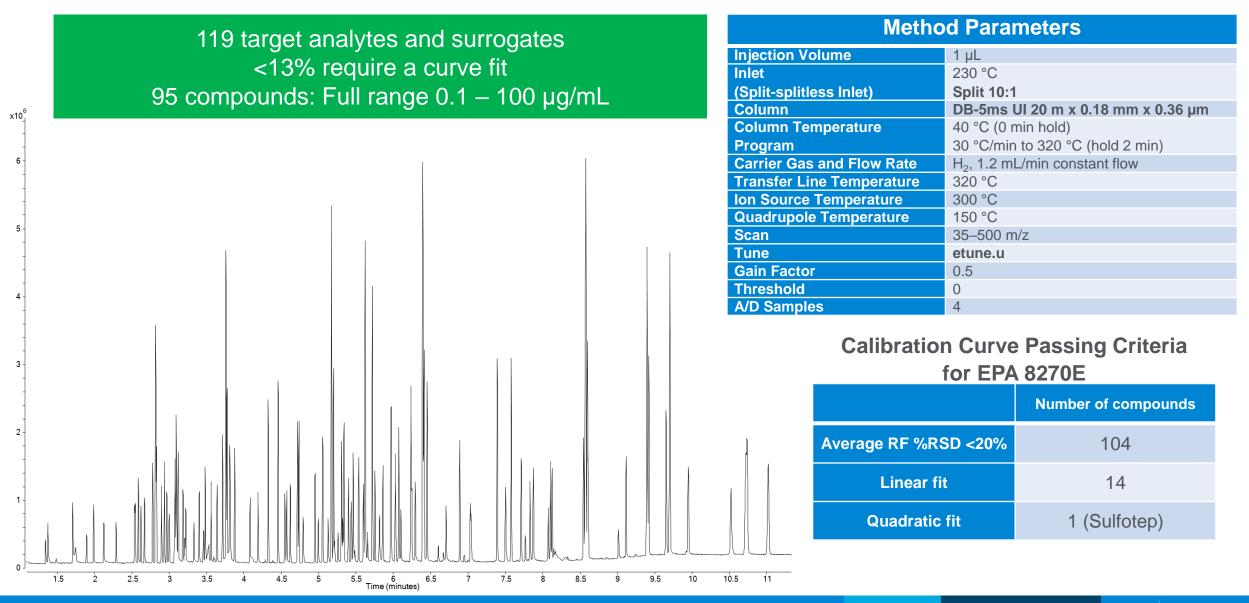
Yes, it passes, but....

 Calibration range for majority of compounds would be ≥0.2 – 100 µg/mL

What about atune with the 0.36 μm or other split ratios? What did we try?

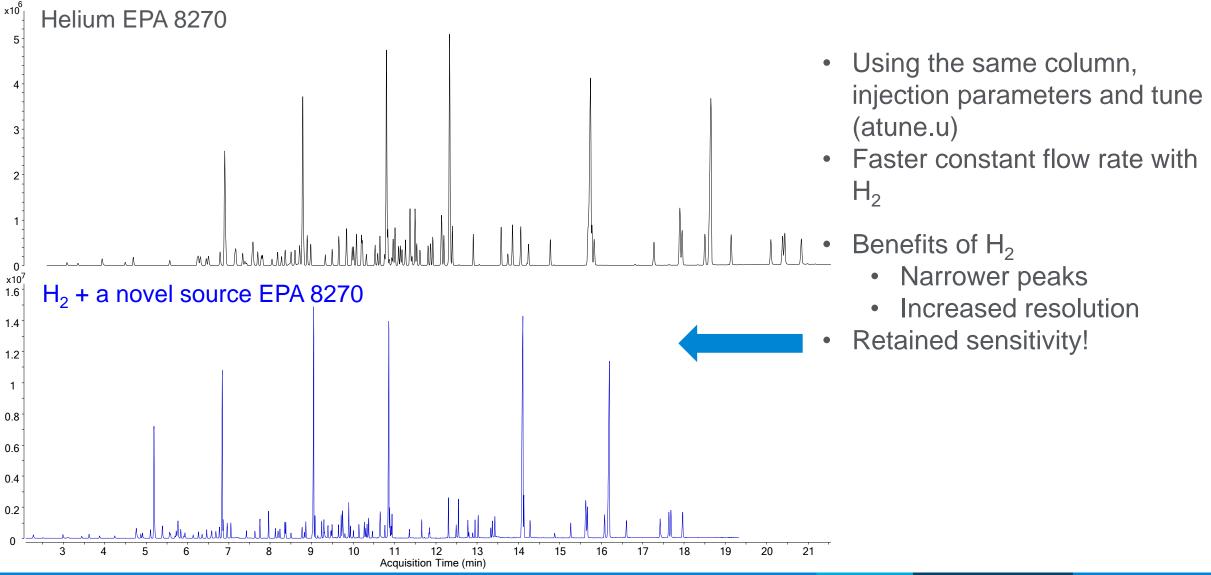
66 33

Atune

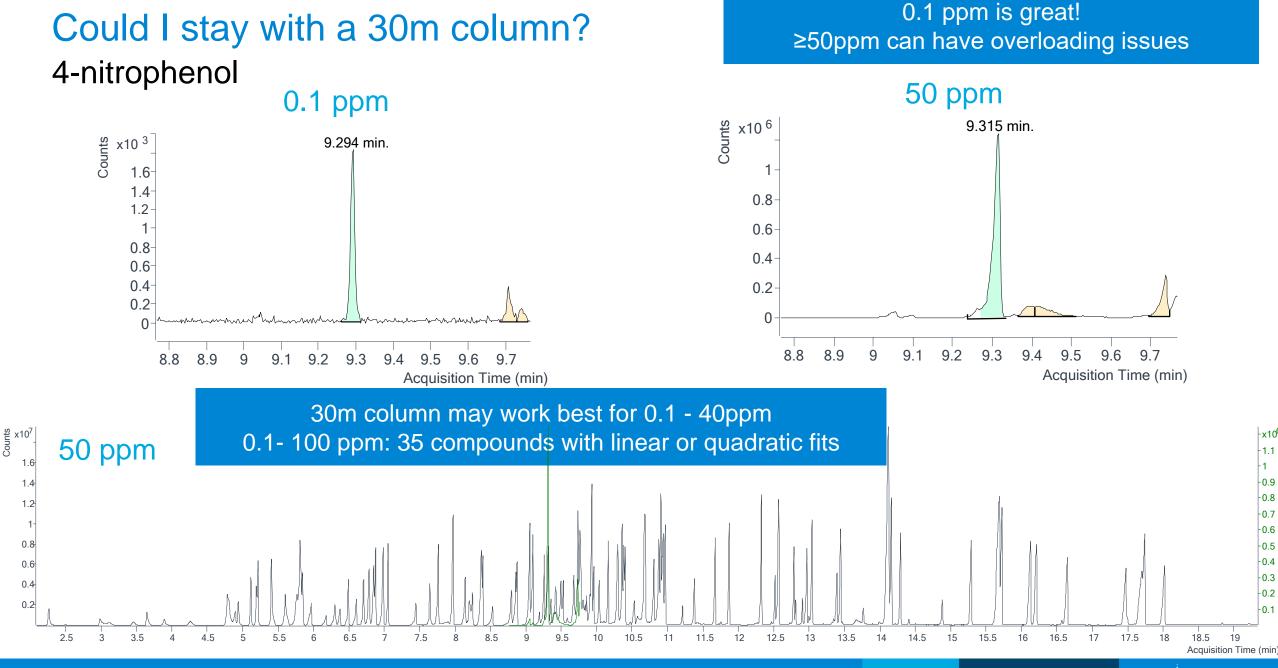

- Split 20:1 \rightarrow Issues < 1ppm for NDMA, pyridine, 2,4-DNP, etc.
- Split 10:1 → Issues < 1ppm for "" "" ""
- Split 5:1 → Issues < 1ppm for "" ""
- Pulsed Split 10:1 \rightarrow Issues \leq 0.5 ppm
- Pulsed Split 5:1 \rightarrow Issues ≤ 0.5 ppm

Etune

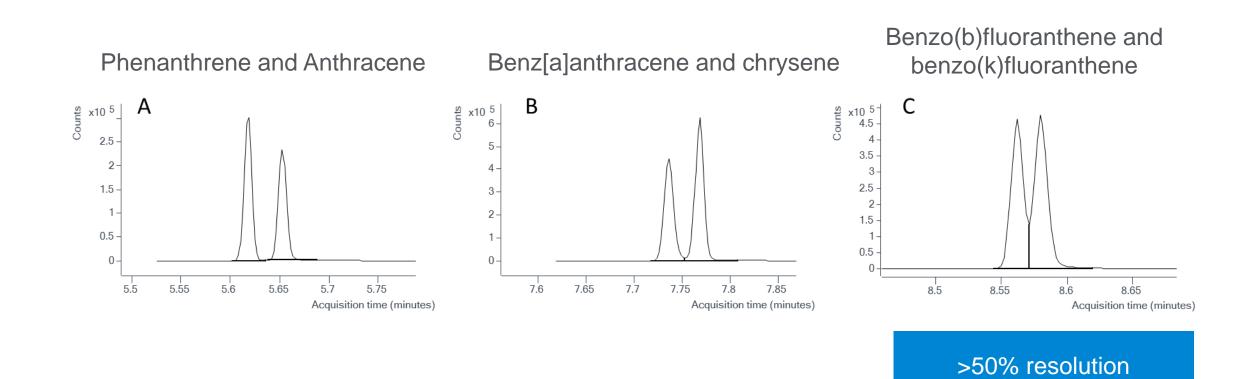
- Split 20:1 \rightarrow Issues \leq 0.5ppm
- Split 5:1 \rightarrow Saturation issues at higher concentrations
- Pulsed Split 10:1 → Cal curve results not as good as Split 10:1



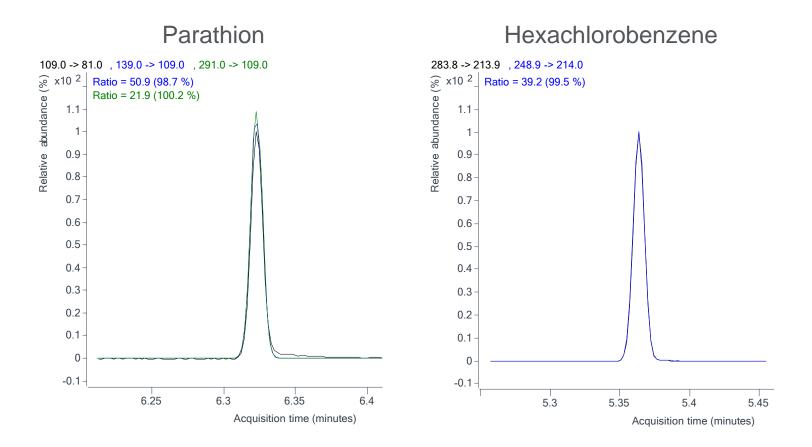
EPA 8270 GC/MS (Single Quad) Method Parameters: H₂ and a novel source



Do I have similar responses between "normal" helium data and H₂ source data?



$\begin{array}{c} \textbf{GC-TQ EPA 8270E} \\ \textbf{With } \textbf{H}_2 \text{ carrier gas} \end{array}$


Retain resolution of critical PAH pairs with H₂ for GC/TQ

Retain your MRM transitions with H₂ and a novel source

MRM transitions are from helium generated data!

Remember to update/optimize collision energies!

Inlet method development with GC/TQ

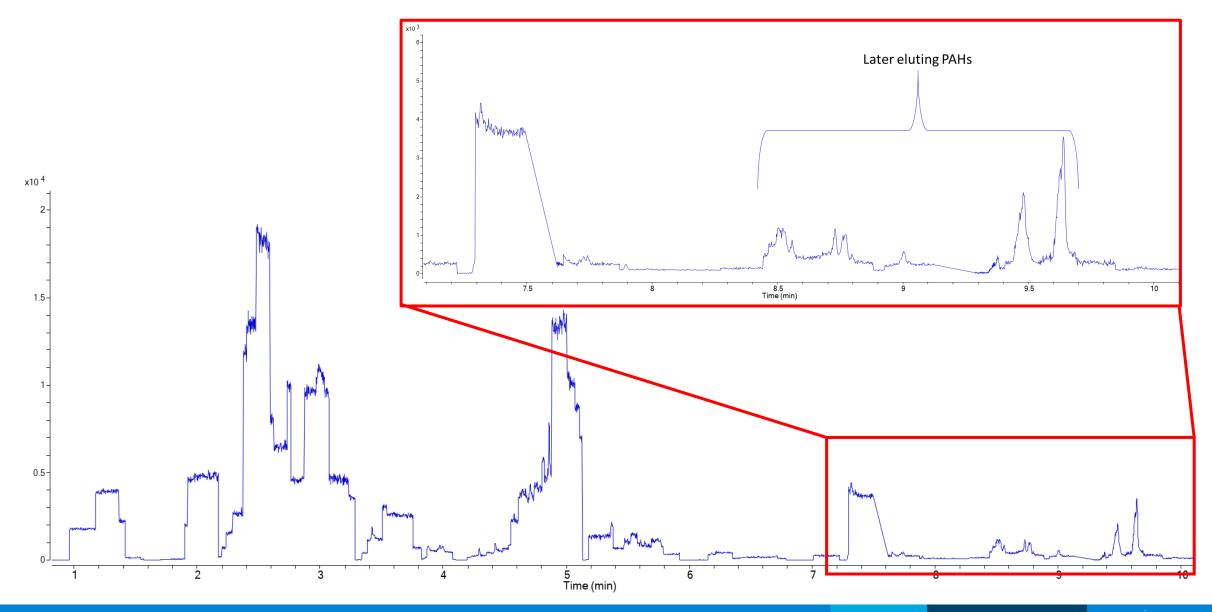
Should we use split/splitless or temperature programmable inlet?

0.4 0.3 0.2 0.2

GC/TQ Method Parameters					
Injection Volume	1 µL				
Inlet	Split 20:1				
Column	DB-5ms UI 20 m x 0.18 mm x 0.18				
	μm				
Column Temperature	40 °C (hold 0 min), 30 °C/min to 320				
Program	°C (hold 2-2.7 min*)				
	Post run: 320 °C hold for 2 min				
Carrier Gas and Flow Rate	H ₂ at 1.2 mL/min**, constant flow				
Transfer Line Temperature	320 °C				
Ion Source Temperature	300 °C				
Quadrupole Temperature	150 °C				
Collision Gas and Flow Rate	Nitrogen, 1.5 mL/min				
Quench Gas	No quench gas is used with H ₂				
	carrier gas				
EMV Mode	Gain factor				
Gain Factor	1 (optimized for each system)				
Scan Type	dMRM				

Similar run time to He GC/TQ method

- Start with split/splitless inlet
- 230 °C temperature


20 ppm EPA mixture (40ppm ISTDs)

6

Time (min)

DCM blank run after 20ppm EPA mixture run

Can we remove carryover...and still reach our 20 ppb extended range?

What can we try to optimize?

Liner

- Low pressure drop liner with wool
- Mid-frit liner

Agilent 5190-5105

Inlet temperature

Pulsed Split injection

Split ratio

Results

When we changed liners....

Carry over

Carry over

When we tried 250 °C? Carry over When we tried pulsed split injections? Carry over When we tried 50:1 split ratio?

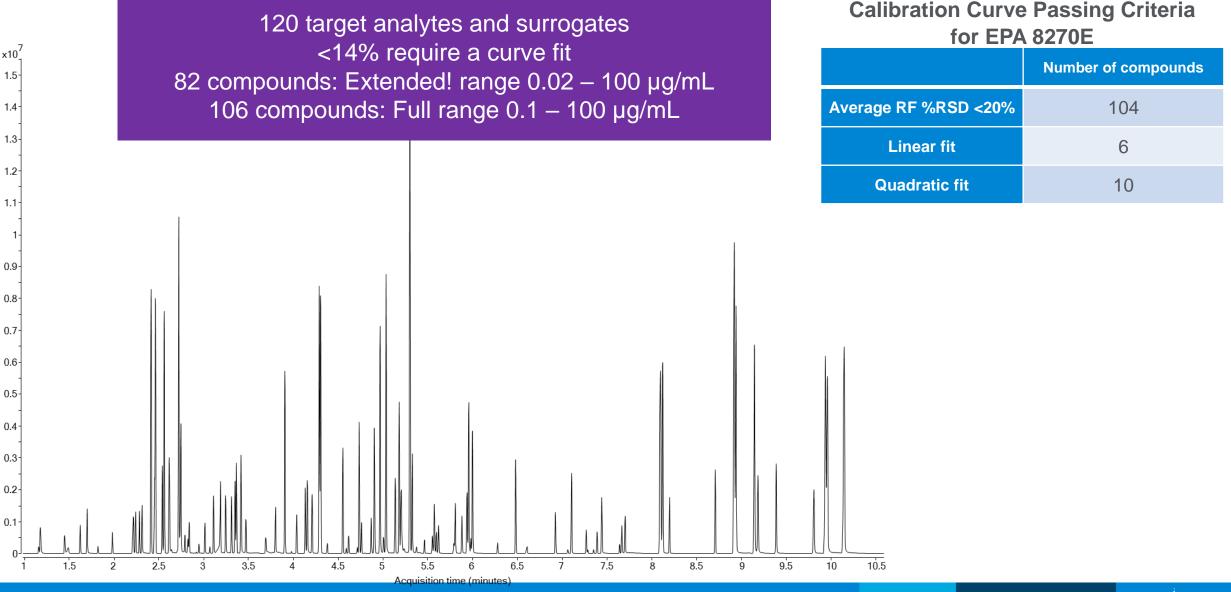
- No carryover!
- Could work for 0.1 100ppm, but we want the extended range

Switch to the Multimode Inlet

GC/TQ Method Parameters					
Injection Volume	1 μL				
Multimode Inlet	250 °C (hold 0.3 min) ramp 200 °C/min to 350 °C (hold for run length) Postrun: 350 °C/min with 100 mL/min split flow Split 20:1				
Column	DB-5ms UI 20 m x 0.18 mm x 0.18 µm				
Column Temperature Program	40 °C (hold 0 min), 30 °C/min to 320 °C (hold 2- 2.7 min*) Post run: 320 °C hold for 2 min				
Carrier Gas and Flow Rate	H_2 at 1.2 mL/min**, constant flow				
Transfer Line Temperature	320 °C				
Ion Source Temperature	300 °C				
Quadrupole Temperature	150 °C				
Collision Gas and Flow Rate	Nitrogen, 1.5 mL/min				
Quench Gas	No quench gas is used with H ₂ carrier gas				
EMV Mode	Gain factor				
Gain Factor	1 (optimized for each system)				
Scan Type	dMRM				

Tested different:

• Starting inlet temps


• Final inlet temp

Best conditions

- Start at 250 °C, ramp to 350 °C and hold for run length
- Sample prep MUST include water removal step with the elevated inlet temp

EPA 8270 GC/TQ Method Parameters: H₂ and a novel source

x10

0.7

0.4

0.1

Summary

- Retained mass spectral fidelity with H₂ carrier
- Demonstrated viable methods for EPA 8270E on GC/MS and GC/TQ with H₂ carrier gas and a novel source
- Passed DFTPP (injected sample) check on both GC/MS AND GC/TQ
- Full calibration range for GC/MS (0.1 100 ppm)
- Extended calibration range for GC/TQ (0.02 100 ppm)
- Sample prep is critical with H_2 and DCM \rightarrow Requires water removal "drying" step

Method translation and development takes time; plan accordingly!

Determine:

- Critical compounds to see
- Preferred calibration range (full, extended or smaller than EPA 8270 method?)
- How much or is any carryover ok?

Acknowledgements

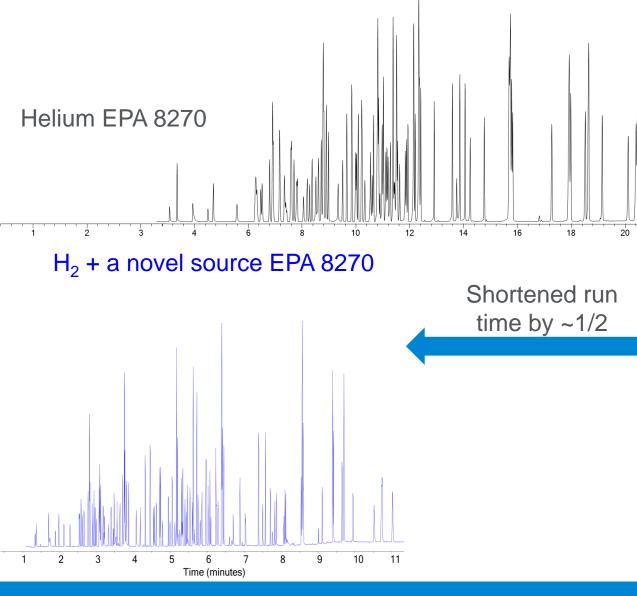
Thanks to:

Bill Mock at Pace Analytical National Center for Testing Innovation Laboratory Agustin Pierri at Weck Labs

Thank you!

Any Questions?

Appendix


Agilent HydroInert Source for Hydrogen Carrier Gas on GC/MS

- Allows for the use of Hydrogen Carrier Gas with better supply and reduced cost
- Faster, shorter Separations
- Reduces loss of sensitivity and spectral anomalies
- Reduced source cleanings and maintenance

Comparing Helium and H₂ results

Compound	Response Factor (RF) from EPA Method 8270E	RF He GC/MS	RF H ₂ Hydrolnert GC/MS		
Acenaphthene	0.9	1.3	1.1		
Acenaphthylene	0.9	1.9	1.4		
Acetophenone	0.01	1.2	0.4		
Anthracene	0.7	1.1	1.0		
Benzo(a)anthracene	0.8	1.4	1.5		
Benzo(a)pyrene	0.7	1.2	0.9		
Benzo(b)fluoranthene	0.7	1.4	1.2		
Benzo(g,h,i)perylene	0.5	1.1	1.0		
Benzo(k)fluoranthene	0.7	1.2	1.2		
Bis(2- chloroethoxy)methane	0.3	0.4	0.3		
62 compounds		3% low	11% low		
Majority of RFs match to EPA 8270 RF guidelines					

min

HydroInert + H₂ results for response factors

Compound	Response Factor (RF) from EPA Method 8270E	RF He GC/MS	RF H ₂ Hydrolnert GC/MS	RF H ₂ Hydrolnert GC/MS/MS	Compound	Response Factor (RF) from EPA Method 8270E	RF He GC/MS	RF H ₂ Hydrolnert GC/MS	RF H₂ Hydrolnert GC/MS/MS
Acenaphthene	0.9	1.3	1.1	0.2	Diethyl phthalate	0.01	1.4	1.0	0.6
Acenaphthylene	0.9	1.9	1.4	0.1	4-Nitroaniline	0.01	0.3	0.21	0.13
Acetophenone	0.01	1.2	0.4	1.0	Nitrobenzene	0.2	0.3	0.2	0.3
Anthracene	0.7	1.1	1.0	0.9	2,6-Dinitrotoluene	0.2	0.3	0.2	0.03
Benzo(a)anthracene	0.8	1.4	1.5	1.0	2,4-Dinitrophenol	0.01	0.2	0.1	0.02
Benzo(a)pyrene	0.7	1.2	0.9	0.9	4-Nitrophenol	0.01	0.2	0.14	0.05
Benzo(b)fluoranthene	0.7	1.4	1.2	1.2	N-Nitroso-di-n- propylamine	0.5	0.4	0.4	0.03
Benzo(g,h,i)perylene	0.5	1.1	1.0	1.3	N- Nitrosodiphenylamine	0.01	2.05	0.9	2.3
Benzo(k)fluoranthene	0.7	1.2	1.2	1.3	Pentachlorophenol	0.05	0.18	0.1	0.1
Bis(2- chloroethoxy)methane	0.3	0.4	0.3	0.7	2,3,4,6- Tetrachlorophenol	0.01	0.36	0.17	0.07
62 compounds	62 compounds 3% low 11% low 19% low Majority of RFs match to EPA 8270 RF guidelines						delines		

