Eliminating ¹/₂ Mass Corrections for REE²⁺ Interferences in Methods 200.8 and 6020 Using Multi-Quad ICP-MS

Ruth E. Wolf, Ewa Pruszkowski, Aaron Hineman, Eve Kroukamp

Rare-Earth Elements – Not So Rare After-all...

- Increasingly used in modern society
- Enter environment via disposal of obsolete devices
 - Electronics are obsolete after only 1-2 years...

Element

Au

Ag

Pb

Cu

	Source:	https://www.usgs.	gov/media/images/	/earth-mri-common-u	ses-rare-earth-elements
--	---------	-------------------	-------------------	---------------------	-------------------------

	Element	Symbol	Atomic number	Crustal abundance					
iooo		Light REEs PPN							
ices	Lanthanum	La	57	39					
	Cerium	Ce	58	66.5					
	Praseodymium	Pr	59	9.2					
	Neodymium	Nđ	60	41.5					
Crustal	Samarium	Sm	62	7.05					
Abund.	Europium	Eu	63	2.0					
(PPM)	Gadolinium	Gđ	64	6.2					
		Heavy	REEs	PPM					
0.004	Terbium	Tb	65	1.2					
0.004	Dysprosium	Dy	66	5.2					
0.075	Holmium	Ho	67	1.3					
14	Erbium	Er	68	3.5					
	Thulium	Tm	69	0.52					
60	Ytterbium	Yb	70	3.2					
	Lutetium	Lu	71	0.8					
	Yttrium	Υ	39	33					

Source: https://pubs.usgs.gov/fs/2014/3078/pdf/fs2014-3078.pdf

² REEs are less rare than the precious metals of Au and Ag...

Review of the Analytical Problem

- REE²⁺ species cause false positives for key elements
 - Recent focus on As and Se
 - EPA Region 4 (2015) by Walton and White
 - Smith, et. al., J. Anal. At. Spectrom., 2019, 34, 2094
- However, As are Se are NOT the only elements affected by M²⁺ interferences
 - Zn impacted by Ba²⁺
 - Ge and Kr impacted by REE²⁺
 - ⁷²Ge common Internal Standard

;	Element	Isotopes	M2+ Masses of Interest	Elements Affected	Crustal Abund. (PPM)	1 st IP* (kJ/mol)	2 nd IP* (kJ/mol)	
	Nd	142,143,144 ,145, 1 46 ,148,150	71, 72, 73, 75, 79	Ga, Ge, As, Br	41.5	533	1040	
	Sm	144, 147, 148, 149 , 150, 152, 154	72, 74, 75, 76, 77	Ge, As, Se	7.05	544	1070	
	Er	162, 164, 166, 167, 168, 170	81, 82, 83, 84, 85	Br, Kr, Se, Sr,	3.5	589	1150	
	Dy	156, 158, 160, 161, 162, 163, 164	78, 79, 80, 81, 82	Kr, Se, Br	5.2	573	1130	
	Gd	152, 154, 155, 156, 157, 158, 160	76, 77, 78, 79, 80	Ge, Se, Kr, Br	6.2	593	1170	
	Се	136, 138, 140, 142	68, 69, 70, 71	Zn, Ga, Ge	66.5	534	1050	
	La	138, 139	66	Zn	39	538	1067	
+	Ва	130, 132, 134, 135, 136, 137, 138	65, 66, 67, 68, 69	Cu, Zn, Ga	340	503	965	
	Ar	36, 38, 40	18, 19, 20	O, Ne	1.5	1520	2666	

3 * Source: https://en.wikipedia.org/wiki/Molar_ionization_energies_of_the_elements Isotopes in BOLD text > 10% abundance

PerkinElmer^{*}

Why Haven't We Worried About This Before?

- We did actually
- Optimization criteria for most ICP-MS systems keep particular M²⁺/M⁺ ratios below a given threshold
 - 1990's: Ba²⁺/Ba⁺ ≤ 3%
 - Some customers with Zn contamination in system/tune solution couldn't meet this specification
 - 2000's: $Ce^{2+}/Ce^{+} \le 3\%$
 - Presence of ⁷⁰Ge less likely to affect Ce²⁺/Ce⁺
- Premise was that the error due to M²⁺ interferences limited to less than 3%.
- However, these specifications are in Standard or No Gas Mode

NexION® 2000 ICP-MS

Oxide and Doubly-charged Species

Measured under identical operating conditions used to achieve sensitivity and detection-limit specifications.

	CeO+/Ce+	< (< 0.025		
	Ce++/Ce+	<	0.03		
L	Sp	ecification (units)	Element/Ratio	7900 ICP-MS	
	Se	nsitivity (Mcps/ppm)	Li (7) Y (89) TI (205)	55 320 250	
	Ва	ckground (cps)	No gas (9 u)	1	
	Ox	ide ratio (%)	CeO/Ce CeO/Ce (HMI-2	1.5 5) 0.5	
	Do	ubly-charged ratio (%)	Ce ²⁺ /Ce	3	
Specificatio	n	ICAP Q ICP	-MS Series		
STD Mode	iCAP Q	a iCA	P Qc	iCAP Qs	
Oxides (%)					
CeO/Ce ^b	<2		<2	<2	
Double Cha	rged (%)				
Ba++/Ba+b	<3		<3	<3	

Should Method 200.8 Update Include 1/2 Mass Corrections for REE²⁺?

- Requires increased resolution to ≤0.5 amu so can see ½ mass peaks resolved
- NexIONs allow custom resolution for a specific mass range (e.g. 70-82)
 - Sensitivity at other masses not impacted
- Overlay of 10 ppb Sm with 1% nitric acid
 - Can see Sm²⁺ peaks at 73.5, 74, 74.5, 75

≡		Analyte	Mass (amu)	Measured Mass (amu)	Mass Calibration DAC Value	Resolution DAC Value	Measured Peak Width (amu)	Custom Resolution
2	*	Mg	23.985	23.975	4625	2059	0.689761	
3	*	Ge72	71.922	71.925	14223	2085	0.435699	~
4	*	Ge73	72.923	72.925	14423	2084	0.455552	~
5	*	Ge74	73.922	73.925	14623	2084	0.459955	V
6	*	As	74.922	74.925	14824	2084	0.454591	~
7	*	Se77	76.92	76.925	15226	2084	0.445832	2
8	*	Se78	77.917	77.925	15434	2085	0.437878	Z
9	*	Ar2H	80.933	80.925	16024	2085	0.444775	Z
10	*	Se82	81.917	81.925	16228	2084	0.504999	Z
11	**	In	11/ 90/	11/1 875	2280/	2065	0 7122/16	

5 Should have verification protocol for mass calibration and equations...

What is the Extent of the Analytical Problem?

- NexION 2000 Single Quad
 - Standard Mode: Ce++/Ce = 2.14%
 - He Collision Mode: $Ce^{++}/Ce = 2.67\%$
- Single element and REE mix
 - Single source
 - Could be contamination present
- More significant as As/Se < 10 ppb
 3% error 10 ppb As or Se signal = 0.3 ppb
 - 3% error 1 ppb As or Se signal = 0.03 ppb

Standard Mode (0.45 amu)	Apparent As (ppb)	Apparent ⁷⁸ Se (ppb)	Apparent ⁸² Se (ppb)
10 ppb Nd	0.059	0.048	0.018
10 ppb Sm	0.038	0.057	0.047
10 ppb Gd		0.230	0.043
10 ppb Dy			0.60

He Collision (0.45 amu)	Apparent As (ppb)	Apparent ⁷⁸ Se (ppb)	Apparent ⁸² Se (ppb)
10 ppb Nd	0.24		
10 ppb Sm	0.147		
10 ppb Gd		2.15	0.013
10 ppb Dy			6.4

NexION 2000 – Single Quad Data

6 More significant if As and/or Se << REE concentration...

Understanding the Extent of the Interference

- Recent studies compare apparent concentrations As and Se
 - Smith, et. al, J. Anal. At. Spectrom., 2019, 34, 2094
 - Only used Nd, Sm, Gd
 - Walton and White, EPA Region 4 (2015)
 - Looked at Nd, Sm, Gd, Dy, Eu, Er
 - Used empirical IEC type corrections (as in ICP-OES)
- In reality, single REE generally not present, nor will all REEs be at same concentration
 - Concentrations and REEs source dependent
 - Geologic/Environmental
 - Groundwater sources expected to follow REE present in underlying bedrock/geology
 - Dependent upon leaching conditions
 - Industrial waste
 - Source material dependent
 - Sample preparation method dependent
 - 7 Figure from: Bern, et.al, Environ. Sci.: Processes Impacts, 2021, 23, 1198

Ground and Surface Waters Impacted by Underlying Geology

Base from U.S. Geological Survey Global 30 arc-second elevation data (1996) and from Natural Earth (2014); Robinson projection; World Geodetic System 1984 datum

Figure 04. World map showing locations of active or recently active rare-earth-element (REE) mines and ongoing advanced exploration projects. The exploration projects are at the assessment stage, meaning that they are being evaluated to determine if they are economic to develop. REE resource estimates, which are usually based on extensive drilling programs, have been conducted on all the projects. Tables 03 and 04 contain additional information about the deposits shown on this map. Mountain Pass Mine in California (United States) was placed on care-and-maintenace status in 2015.

Source: https://pubs.usgs.gov/pp/1802/o/pp18020.pdf

- Ratios of REEs vary with geologic deposits
 - Carbonatites also have very high Ba levels

- Bokan Mountain deposit—Peralkaline igneous dikes and veins
- ----- Thor Lake/Nechalacho deposit-Peralkaline igneous intrusion
- ------ Foxtrot project deposit---Mineralized, metamorphosed felsic volcanics
- Bear Lodge deposit—Hydrothermally altered carbonatite
- Mountain Pass deposit—Magmatic carbonatite

Caution: If Er present, Standard ⁸³Kr Corrections for Se Inaccurate

- ⁸³Kr normally used to correct for isobaric overlap of Kr on ⁷⁸Se and ⁸²Se
 - Only isotope of Kr without isobaric overlap

Krypton (Kr) Isotopes	Abundance	Isobaric Overlap
78	0.35	78Se
80	2.25	80Se,80Ar
82	11.6	82Se
83	11.5	
84	57	85Sr
86	17.3	86Sr

- 166 Er a major isotope of Er (33.6%)
- Formation of ¹⁶⁶Er⁺⁺ (mass 83) will result in overcorrection for Kr
 - Incorrect ⁷⁸Se and ⁸²Se results

Erbium (Er) Isotopes	Abundance	Er++	Interference For
162	0.014	81	81Br
164	1.61	82	82Se, 82Kr
166	33.6	83	83Kr
167	22.95	83.5	
168	26.8	84	84Kr
170	14.9	85	85Rb

- IUPAC isotope abundances generally best measurement on single/selected sample type(s)
- REE's undergo isotopic fractionation during environmental/geochemical processes
 - 2018 study on Mississippi River showed ¹⁴⁷Sm/¹⁴⁴Nd ratio varies from 0.11-0.35
 - Impact stoichiometric corrections such as ½ mass corrections
- 9 This could be an issue for inexperienced/untrained operators...

Caution: If Er Present, Standard ⁸³Kr Corrections for Se Inaccurate

- ⁸³Kr normally used to correct for isobaric overlap of Kr on ⁷⁸Se and ⁸²Se
 - Only isotope of Kr without isobaric overlap

- ¹⁶⁶Er a major isotope of Er (33.6%)
- Formation of ¹⁶⁶Er⁺⁺ (mass 83) results in overcorrection for Kr at ⁷⁸Se and ⁸²Se

STD Mode: With Kr	' isobario	c, no REE	2+	STD Mode: No Kr or REE ²⁺ corrections					
Sample Id	As (75) (ppb)	Se (78) (ppb)	Se (82) (ppb)	Sample Id	As (75) (ppb)	Se (78) (ppb)	Se (82) (ppb)		
10 ppb As+Se	9.817	9.640	9.863	10 ppb As+Se	9.817	9.640	9.867		
10 ppb Er	-0.001	-0.733	-2.297	10 ppb Er	-0.001	-0.710	0.010		
1 ppb As+Se	0.873	1.042	0.950	1 ppb As+Se	0.873	1.043	0.919		
1 ppb As+Se 10 ppb REE	0.955	1.301	-0.607	1 ppb As+Se 10 ppb REE	0.955	1.322	1.405		
10 ppb As+Se 50 ppb REE	9.259	9.908	2.213	10 ppb As+Se 50 ppb REE	9.259	10.012	12.452		

Other Possible Solutions – Mass Shift As Using Oxygen to Mass 91

- NexION 2000 (Single Quad)
- AsO (91) RPq Optimization at Cell Gas = 0.9
 - RPq setting on Quadrupole inside Reaction Cell adjusts mass bandpass inside cell controls reactions
 - RPq Range 0.5 to 0.65 (based on LOD)

11 Can be used to confirm results obtained in Standard and He Collision Modes

Possible Solution – Mass Shift Se Using Oxygen to Mass 93, 94, or 98

- NexION 2000 Single Quad
- 77 Se¹⁶O (93) RPq Optimization at O2 = 0.9
- RPq setting on Quadrupole inside Reaction Cell adjusts mass bandpass inside cell controls reactions
 - RPq Optimum = 0.7

12 Note: Cell Gas and RPq similar for ⁷⁸Se¹⁶O (94) ⁸²Se¹⁶O (98)

NexION 2000 Mixed Mode Method for Standard, He Collision, and Mass Shift

- AsSe Custom resolution tuning file for 0.5 amu
- Did NOT use internal standards
 - Short run
- Put ½ mass corrections for STD and KED
 - As 75 (Nd, Sm)
 - Se 78 (Gd, Dy)
 - Se 82 (Dy)
 - No ½ mass corrections for Er++ on Se(82)
- Initially left in Kr correction for ⁷⁸Se and ⁸²Se

≡	Int Std	Scan Mode	Analyte	Mass	MCA Channels	IGM	Dwell Time Per AMU	Integration Time	Corrections	Profile	Helium	RPa	RPq	Ammonia	Oxygen
1		Peak Hopping	As	74.9216	1	KED QID	50	1000	-mass72.5*0.6795-mass73.5*0.4933	Helium KED	3.7	0	0.25	0	0
2		Peak Hopping	Se (78)	77.9173	1	KED QID	50	1000	- 0.030886*Kr 83 -mass77.5*1.383-mass81.5*0.00241	Helium KED	3.7	0	0.25	0	0
3		Peak Hopping	Se (82)	81.9167	1	KED QID	50	1000	- 1.008122 * Kr 83 - mass81.5*1.132	Helium KED	3.7	0	0.25	0	0
4		Peak Hopping	Ba (137)	136.905	1	KED QID	50	1000		Helium KED	3.7	0	0.25	0	0
5		Peak Hopping	Nd (146)	145.913	1	KED QID	50	1000		Helium KED	3.7	0	0.25	0	0
6		Peak Hopping	Sm (147)	146.915	1	KED QID	50	1000		Helium KED	3.7	0	0.25	0	0
7		Peak Hopping	Gd (157)	156.934	1	KED QID	50	1000		Helium KED	3.7	0	0.25	0	0
8		Peak Hopping	Dy (163)	162.925	1	KED QID	50	1000		Helium KED	3.7	0	0.25	0	0
9		Peak Hopping	Er (167)	166.932	1	KED QID	50	1000		Helium KED	3.7	0	0.25	0	0
10		Peak Hopping	As (75) STD	74.9216	1	STD/DRC	50	1000	-mass72.5*0.6795-mass73.5*0.4933	Standard	0	0	0.25	0	0
11		Peak Hopping	Se (78) STD	77.9173	1	STD/DRC	50	1000	- 0.030886*Kr 83 -mass77.5*1.383-mass81.5*0.00241	Standard	0	0	0.25	0	0
12		Peak Hopping	Se (82) STD	81.9167	1	STD/DRC	50	1000	- 1.008122 * Kr 83- mass81.5*1.132	Standard	0	0	0.25	0	0
13		Peak Hopping	Ba (137) -1	136.905	1	STD/DRC	50	1000		Standard	0	0	0.25	0	0
14		Peak Hopping	Nd (146) -1	145.913	1	STD/DRC	50	1000		Standard	0	0	0.25	0	0
15		Peak Hopping	Sm (147) -1	146.915	1	STD/DRC	50	1000		Standard	0	0	0.25	0	0
16		Peak Hopping	Gd (157) -1	156.934	1	STD/DRC	50	1000		Standard	0	0	0.25	0	0
17		Peak Hopping	Dy (163) -1	162.925	1	STD/DRC	50	1000		Standard	0	0	0.25	0	0
18		Peak Hopping	Er (167) -1	166.932	1	STD/DRC	50	1000		Standard	0	0	0.25	0	0
19		Peak Hopping	AsO (91)	90.9165	1	STD/DRC	50	1000		Oxygen DRC	0	0	0.55	0	0.9
20		Peak Hopping	SeO (93)	93	1	STD/DRC	50	1000		Oxygen DRC	0	0	0.7	0	0.9
21		Peak Hopping	SeO (94)	94	1	STD/DRC	50	1000		Oxygen DRC	0	0	0.7	0	0.9
22		Peak Hopping	SeO (98)	98	1	STD/DRC	50	1000		Oxygen DRC	0	0	0.7	0	0.9

13 Allows Standard, He Collision and O₂ Mass Shift during same acquisition

Comparison Using Proposed REE 1/2 Mass Corrections: He Collision Mode

- Obvious False positives for Se with REE present at 10 ppb and 50 ppb levels
 - Mixed REE spike with Nd, Sm, Gd, Dy, Er, Ba

He Collision Mode: No Kr or REE ²⁺ corrections										
Sample Id	As 75 (ppb)	Se 78 (ppb)	Se 82 (ppb)							
10 ppb As+Se	9.758	10.026	9.351							
10 ppb Nd	0.257	0.045	0.073							
10 ppb Sm	0.178	0.015	0.094							
10 ppb Gd	-0.004	2.284	0.073							
10 ppb Dy	-0.004	0.049	6.203							
10 ppb Ba	-0.003	0.023	0.021							
10 ppb Er	-0.003	0.041	0.377							
1 ppb As+Se	0.851	1.078	1.151							
1 ppb As+Se 10 ppb REE	1.192	2.757	6.893							
10 ppb As+Se 50 ppb REE	10.581	20.339	36.403							

- With REE ½ Mass Corrections
 - Over/under correction for As and Se results

He Collision With REE ²⁺ co	He Collision With REE ²⁺ corrections for Nd, Sm, Gd, Dy										
Sample Id	As 75 (ppb)	Se 78 (ppb)	Se 82 (ppb)								
10 ppb As+Se	9.758	10.011	9.258								
10 ppb Nd	-0.193	0.055	0.026								
10 ppb Sm	-0.120	0.020	0.094								
10 ppb Gd	-0.004	-0.900	0.049								
10 ppb Dy	-0.006	0.045	-4.922								
10 ppb Ba	-0.004	0.033	-0.038								
10 ppb Er	-0.005	0.036	0.376								
1 ppb As+Se	0.850	1.061	1.137								
1 ppb As+Se 10 ppb REE	0.570	-0.009	-2.695								
10 ppb As+Se 50 ppb REE	7.467	6.726	-10.335								

14 Note: Data above shown WITHOUT Kr equations – no Er²⁺ correction (didn't collect data at 83.5 amu)

Other Options: ¹/₂ **Mass REE Corrections vs. O2 Mass Shift (Single Quad)**

- REE ½ Mass Corrections
 - Over correction for As and Se results when tested with mixed REE spikes

 $\mathbf{A} = \mathbf{A} + \mathbf{A} +$

- Nd, Sm, Gd, Dy, Er, Ba

Using O2 Mass shift results in more accurate results for all isotopes of As and Se

 However, some caution is warranted as real samples contain have many more elements present

NeviON 2000 (CO) Heing O2 Meese Chiff

He Collision with REE ²⁺ col	rrections	or Na, Sm	, Ga, Dy						
Sample Id	As 75 (ppb)	Se 78 (ppb)	Se 82 (ppb)	Sample Id	AsO 91 (ppb)	SeO 93 (ppb)	SeO 94 (ppb)	SeO 98 (ppb)	
10 ppb As+Se	9.758	10.011	9.258	10 ppb As+Se	9.841	9.804	9.965	9.940	
10 ppb Nd	-0.193	0.055	0.026	10 ppb Nd	0.005	0.022	0.047	0.139	
10 ppb Sm	-0.120	0.020	0.094	10 ppb Sm	0.001	0.008	0.019	0.024	
10 ppb Gd	-0.004	-0.900	0.049	10 ppb Gd	-0.001	0.011	-0.005	-0.046	
10 ppb Dy	-0.006	0.045	-4.922	10 ppb Dy	-0.001	0.005	-0.001	0.042	
10 ppb Ba	-0.004	0.033	-0.038	10 ppb Ba	-0.002	0.000	-0.008	0.009	
10 ppb Er	-0.005	0.036	0.376	10 ppb Er	-0.002	-0.003	-0.003	0.040	
1 ppb As+Se	0.850	1.061	1.137	1 ppb As+Se	0.869	0.900	0.938	0.908	
1 ppb As+Se 10 ppb REE	0.570	-0.009	-2.695	1ppb As+Se 10ppb REE	0.874	0.906	1.030	0.890	
10 ppb As+Se 50 ppb REE	7.467	6.726	-10.335	10ppb As+Se 50ppb REE	8.964	10.122	10.139	9.362	

15 Note: Data above shown WITHOUT Kr equations – Used single conditions for As/Se mass shift

USGS Reference Sample Comparison – Arsenic Recovery

- Some USGS Reference Water Samples have REE data MPV determined by round robin study
 - At higher As concentrations the effect of REEs on recoveries is negligible
 - At lower concentrations the ½ mass REE corrections (for Nd and Sm) affect results possible overcorrection
- Most results are similar
 - NOTE: Single point calibration at 1 ppb for As and Se
 - Perhaps more accurate results when O₂ Mass Shift is used to move As to AsO at mass 91

		STD Mode	STD Mode	He Collision	He Collision	Mass Shift
Arsenic (ppb)	MPV (error F- σ)	No 1/2 Mass	with 1/2 Mass	No 1/2 Mass	With 1/2 Mass	AsO (91)
T-221	17.1 (1.04)	15.4	15.4	15.5	15.4	15.7
T-227	0.315 (0.04)	0.261	0.255	0.244	0.218	0.265
T-231	3.16 (0.393)	2.56	2.56	2.45	2.44	2.49

Elements (ppb)	Ва	Се	Nd	Sm	Dy	Gd	Dy	Er	Мо	Zr*	Nb*
T-221	29	0.837	0.581	0.101	0.053	0.091	0.053	0.028	0.522	0.024	0.024
T-227	27.4	0.686	0.52	0.114	0.085	0.117	0.085	0.041	0.25	0.011	0.010
T-231	0.408	0.408	0.305	0.048	0.021	0.039	0.021	0.01	0.74	0.014	0.007

*Note: Zr and Nb determined using SurveyScan data

USGS Reference Sample Comparison – Selenium Recovery

- At lower Se concentrations the ½ mass REE (for Dy and Gd only) corrections more significant
- Could argue O₂ Mass Shift results for ⁷⁷Se¹⁶O at mass 93 closer to MPV value
 - NOTE: Single point calibration at 1 ppb for As and Se

Selenium	um			lode	STD Mo	de	He	e Collisio	on	He	Collisio	n 🛽	Mass Shift	Mass Sh	ift
(78) ppb	MPV (e	rror F-σ)	No 1/2	Mass	with 1/2 M	lass	Nc	o 1/2 Mas	SS	Wit	h 1/2 Ma	SS	SeO (94)	SeO (93	3)
T-221	3.80 ((0.297)	2.12	28	2.125		3.377			3.259			4.578	3.941	
T-227	0.172	(0.122)	-1.2	74	-1.281			0.139			0.087		0.580	0.163	
T-231	1.11	(1.01)	-1.3	10	-1.314			0.316			0.310		1.896	0.473	
Selenium			STD N	lode	STD Mod	de	He	e Collisio	on	Не	Collisio	n N	Mass Shift	Mass Sh	ift
(82) ppb	2) ppb MPV (error F-c		No 1/2	Mass	with 1/2 M	ass	Nc	o 1/2 Mas	SS	Wit	h 1/2 Ma	SS	SeO (98)	SeO (93	3)
T-221	3.80 (0.297)	3.307		3.294		3.264		3.047			10.742	3.941		
T-227	0.172	(0.122)	0.09	97	0.080			0.251			0.121		3.479	0.163	
T-231	1.11	(1.01)	0.54	17	0.540			0.408			0.337		10.075	0.473	
Element	lements (ppb) Ba		Се	Nd	Sm	Dy	/	Gd	C	Ŋу	Er	Мо	D Zr*	Nb*	
T-2	21	29	0.837	0.58′	1 0.101	0.05	53	0.091	0.0	053	0.028	0.52	22 0.024	0.024	
T-2	27	27.4	0.686	0.52	0.114	0.08	85	0.117	0.0	085	0.041	0.2	5 0.011	0.010	
T-2	31	0.408	0.408	0.305	5 0.048	0.02	21	0.039	0.0	021	0.01	0.74	4 0.014	0.007	

*Note: Zr and Nb determined using SurveyScan data

17 Note: Results at 94 and 98 affected by Mo and Zr (94) present, no Kr or Er corrections

Advantage of Tunable RPq in Reaction Cell Quadrupole: O₂ Mass Shift for Se

Spectral > Composite > Overlay (1 ppb Mo + Zr.006 and 1ppb MoZr O2 mass shift low RPq.027)

```
🛆 🏟 f(x) 🖶 🔀
```


18 1 ppb Mo and Zr - O₂ Mass shift with RPq=0.7 (Green) and RPq=0.25 (Blue)

NexION 5000: The Case for Multi-quadrupole ICP-MS for O₂ Mass Shifts

- Q1 = 78
- Q3=90-100
- Oxygen Mass Shift: O₂=1.2, RPq=0.80
- 1 ppb As+Se (Green)
- 10 ppb Mo+Zr (Blue)
- No signal at mass 94 except from ⁷⁸Se¹⁶O
 - Q1 setting of 78 excludes all Mo and Zr isotopes from entering cell

NexION 5000: The Case for Multi-quadrupole ICP-MS for O₂ Mass Shifts

- Q1 = 82
- Q3=90-100
- Oxygen Mass Shift:
 - O₂=1.2, RPq=0.80
- 1 ppb As+Se (Green)
- 10 ppb Mo+Zr (Blue)
- No signal at mass 94 except from ⁸²Se¹⁶O
 - Q1 setting of 82 excludes all Mo and Zr isotopes from entering cell

NexION 5000 Multi-Quad: Arsenic Results

- 1 point calibration at 1 ppb, no Int. Std.
- Used REE ½ Mass Corrections for Standard (No Gas) and He Collision Modes
 - Potential over/under correction using ½ mass equations
- Reasonable results using O₂ mass shift to mass 91
 - No signal from Zr at Mass 91

Sample Id	As Standard Mode 75/75 (ppb)	As He Collison Mode 75/75 (ppb)	Mass Shift AsO 75/91 (ppb)
1 ppb Nd	0.0021	0.0219	0.0022
1 ppb Sm	-0.0007	-0.0008	0.0001
1 ppb Gd	0.0005	0.0045	-0.0005
1 ppb Dy	0.0000	-0.0034	-0.0003
1 ppb Er	-0.0001	0.0034	-0.0004
1 ppb Ba	0.0000	0.0011	-0.0005
1 ppb Mixed REE	-0.0029	-0.0140	-0.0003
1 ppb As+Se	0.9875	1.0390	0.9943
1 ppb As+Se 1ppb REE mix	0.9449	0.8767	0.9544
1 ppb As+Se 10ppb REE mix	0.9804	0.7935	0.9997
1 ppb Mo+Zr	0.0025	0.0011	0.0036

Arsenic (ppb)	MPV (error as F-σ)	STD Mode with 1/2 Mass 75/75	He Collision With 1/2 Mass 75/75	Mass Shift AsO 75/91
T-221	17.1 (1.04)	17.0180	18.1077	17.2604
T-227	0.315 (0.04)	0.3051	0.3174	0.2879
T-231	3.16 (0.393)	2.8512	2.7617	2.5824

21 Note: USGS SRS Samples are natural waters with many other elements present

NexION 5000 Multi-Quad: Selenium Results

- 1 point calibration at 1 ppb (no Internal Standards)
- Mixed REE spike containing Nd, Sm, Gd, Dy, Er and Ba at equal concentrations
- Used REE ½ Mass Corrections for Standard (No Gas) and He KED (Collision) Modes
 - Only Dy correction on ⁸²Se
 - Potential over/under correction using ½ mass equations

Sample Id	Standard Mode Se 77/77 (ppb)	He Collison Se 77/77 (ppb)	Mass Shift SeO 77/93 (ppb)	Standard Mode Se 78/78 (ppb)	He Collison Se 78/78 (ppb)	Mass Shift SeO 78/94 (ppb)	Standard Mode Se 82/82 (ppb)	He Collison Se 82/82 (ppb)	Mass Shift SeO 82/98 (ppb)
1% nitric Blank	-0.082	-0.046	0.000	-1.107	0.015	-0.001	-0.033	0.078	-0.001
1 ppb As+Se	0.954	0.683	1.054	0.012	0.893	1.015	0.930	1.306	1.040
1 ppb As+Se 1ppb REE mix	0.846	1.450	0.996	-0.008	0.961	0.968	0.849	1.002	1.008
1 ppb As+Se 10ppb REE mix	0.914	1.515	1.050	0.127	0.239	1.046	0.521	-10.250	1.024
1 ppb Mo+Zr	-0.056	-0.085	0.005	-1.101	0.032	0.006	-0.025	0.334	0.006

³⁶Ar₂ peak too large in Standard Mode to separate mass 77.5 at 0.5 amu resolution

22 Note: Oxygen mass shift mode gives consistent accurate results for even when Zr and Mo present

NexION 5000 Multi-Quad: Selenium Results (con't)

- USGS Reference Samples
 - Round Robin do NOT know instrument type/mode
 - Note large errors (100% RSD) in reported MPV values for Se < 3 ppb
- Standard and He Collision mode using ½ mass corrections for Nd, Sm, Dy, Gd (not Er)

Sample Id	MPV (error F-σ)	Standard Mode Se 77/77 (ppb)	He Collison Se 77/77 (ppb)	Mass Shift SeO 77/93 (ppb)	He Collison Se 78/78 (ppb)	Mass Shift SeO 78/94 (ppb)	Standard Mode Se 82/82 (ppb)	He Collison Se 82/82 (ppb)	Mass Shift SeO 82/98 (ppb)
T-221	3.80 (0.297)	3.52	4.78	3.38	3.06	3.35	3.40	6.43	3.36
Г-227	0.172 (<mark>0.122</mark>)	0.037	0.056	0.098	0.293	0.104	0.102	0.170	0.095
T-231	1.11 (1.01)	1.28	0.44	0.41	0.43	0.43	0.82	1.68	0.42
1ppb Mo+Zr		-0.057	-0.167	0.005	0.032	0.006	-0.025	0.335	0.006

- He Collision mode with ½ Mass Corrections has some apparent over/under correction
- Oxygen Mass Shifted Results are Consistent for all 3 Se isotopes
 - No contribution to SeO signals at mass 94 and 98 from ⁹⁴Zr/⁹⁴Mo or ⁹⁸Mo isobaric overlaps
 - Setting Q1 to Se mass you are shifting eliminates Zr and Mo from entering the reaction cell

23 So how do we know which values to report???

New Tool: What If You Could See ~ Concentrations of EVERY Element?

- Survey Scan feature can be enabled for all samples
 - FAST semi-quantitative analysis during quantitative data acquisition
 - New Feature for NexION ICPMS Syngistix software
- Gives approximate concentration of all elements
 - Help pinpoint potential interferences in samples, data review, reporting correct result
 - Can also be used to comment or "flag" results if interfering element present

٦Ŗ	ples - C:\Users\WolfRE\OneDrive - PerkinElmer Inc\Documents\ICPMS Info\DGTC Data\042222 DGTC N2K DATA AsSeREE\Ruth AsSe REE Mixed Mode 042122 Survey Scan.sam												
n	ual Batch												
	Analyze Batch Sample Template Summary Build Run List												
Us	Jse Manual Sampling (No autosampler) Export Batch List During Sample Analysis												
h x	A/S Loc.	/S Batch ID Sample ID Measurement Action (*)			Analysis Method (*)	Survey Scan Method (*)							
	301	MIXED MODE CUST	1% nitric	Run Sample	ruth asseree\custom res mixed mode ked low-o2-stdt.mth	ruth methods\environmental\survey scan ruth std 020922.r							
	301	MIXED MODE CUST	1% nitric	Run Blank, Stds., and Sample	ruth asseree\custom res mixed mode ked low-o2-stdt.mth	ruth methods\environmental\survey scan ruth std 020922.r							
	302 MIXED MODE CUST 10 ppb As+Se Run Sample ruth asseree\custom res mixed mode ked low-o2-stdt.mth ruth methods\environmental\survey scan ruth std 020922.												
	303	MIXED MODE CUST 10 ppb Nd Run Samp		Run Sample	ruth asseree\custom res mixed mode ked low-o2-stdt.mth	ruth methods\environmental\survey scan ruth std 020922.r							
	304	MIXED MODE CUST 10 ppb Sm		Run Sample	ruth asseree\custom res mixed mode ked low-o2-stdt.mth	ruth methods\environmental\survey scan ruth std 020922.r							
	205	MIVED MODE CUCT	10 pph Cd	Rup Camala	ruth accordal custom rac mixed made lead low a2 stdt mth								

Reporter Tab: Shows Quant and Survey Scan Data at Same Time

- Concentrations Tab shows Quantitative results
- Can customize how sorted: as in Method, By Analyte, By Mass, By Mode

Report View													
Current	Sample Raw Intensities Ne	et Inte	nsities Conce	ntrations Unfa	actored Concent	rations Intern	al Standards	QC TotalQu	ant Intensities	TotalQuant Co	oncentrations		
Sho	w RSDs 🔽 Show Calibration	n Row	s										
Sample IdRQC StatusAs 75 Helium K (ppb)As (75) S (ppb)Se (78) 78 Helium K (ppb)Se (78) S (ppb)Se (82) 82 Helium K (ppb)As 0 (91) 91 Se (82) S (ppb)Se 0 (93) 93 Se 0 (94) 94 Oxygen D (ppb)										SeO (98) 98 Oxygen D (ppb)			
1	1% Nitric	R											
2	10 ppb As+Se	R		10.000	10.000	10.000	10.000	10.000	10.000	10.000	10.000	10.000	10.000
3	Calibration Curves	R		[[[<u>/</u>	[<u>/</u>	[<u>/</u>	[<u>/</u>	[<u>/</u>	
4	1% nitric	R		0.006	0.006	0.230	0.511	0.119	0.051	0.005	0.009	0.013	0.010
5	10 ppb As+Se	R		10.259	10.331	10.511	10.431	10.254	10.660	10.240	9.720	10.175	9.855
6	10 ppb Nd	R		-0.276	-0.072	0.156	0.599	0.105	0.045	0.004	0.028	0.042	0.201
7	10 ppb Sm	R		-0.153	-0.058	0.216	0.747	0.130	0.033	0.001	0.012	0.022	0.088
8	10 ppb Gd	R		0.004	-0.001	-1.045	0.492	-0.060	0.026	-0.001	-0.003	-2.944E-10	-0.069
9	10 ppb Dy	R		-0.001	-0.001	0.189	0.698	-5.480	-0.544	-0.002	0.003	0.001	0.010
10	10 ppb Ba	R		-0.002	-1.264E-4	0.194	0.842	-0.023	0.012	-0.002	-0.012	-0.001	-0.034
11	10 ppb Er	R		-0.002	-4.658E-4	0.298	1.026	0.345	0.079	-0.002	-0.012	0.001	0.081

TotalQuant Concentrations tab

• Shows semi-quant results in selected units for all elements in periodic table

Re	eport View										
C	Current Sample Raw Intensities Net Intensities Concentrations Unfactored Concentrations Internal Standards QC TotalQuant Intensities TotalQuant Concentrations										
	✓ Hide columns without measured data										
	Sample ID	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	
	1% nitric _survey	26.679	0.003	0.009	0.006	0.040	0.001	0.005	0.026	0.174 ^	
1	1% Nitric_survey	28.069	0.003	1.072	0.006	0.046	0.001	0.009	0.013	0.087	
	10 ppb As+Se_survey	27.934	0.003	1.041	0.004	0.041	0.002	0.000	13.715	11.641	
11	1% nitric _survey	27.516	0.004	1.092	0.006	0.048	0.001	0.001	0.010	0.157	
	10 ppb As+Se_survey	27.232	0.004	0.005	0.008	0.048	0.001	0.010	14.486	12.356	
	10 ppb Nd_survey	26.342	0.003	0.003	0.007	0.041	0.001	0.008	0.103	0.139	
	10 ppb Sm_survey	28.731	0.002	0.003	0.005	0.451	0.000	0.058	0.069	0.157	
	10 ppb Gd_survey	26.463	0.004	0.006	0.004	0.032	0.001	0.010	0.003	0.192	
	10 ppb Dy_survey	28.231	0.003	1.052	0.001	0.068	0.000	0.000	0.000	1.411	

26 More info at: https://resources.perkinelmer.com/lab-solutions/resources/docs/tchtotalquant-analysis-in-nexion-icp-mass-spectrometers.pdf

TotalQuant Concentrations tab

- Indicates concentrations of REEs in my spikes and reference QC samples
 - Helps indicate potential interferences
 - Supports selection of isotope/mode to report
- 10 ppb check shows fairly good accuracy (±15%)

Re	Report View														
_															
Current Sample Raw Intensities Net Intensities Concentrations Unfactored Concentrations Internal Standards QC TotalQuant Intensities TotalQuant Concentrations															
✓ Hide columns without measured data															
	Sample ID	Cs	Ba	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	
	10 ppb As+Se 50 ppb REE_survey	0.001	44.193	0.001	0.000	0.001	44.710	44.271	0.002	41.403	34.316	43.383	0.012	42.498	
	T-221_survey	0.016	25.332	0.493	0.752	0.130	0.479	0.081	0.014	0.077	6.380	0.044	0.009	0.019	
	T-227_survey	0.027	24.928	0.412	0.603	0.104	0.467	0.080	0.024	0.100	8.384	0.073	0.012	0.031	
	T-231_survey	0.024	79.848	0.236	0.336	0.064	0.238	0.040	0.010	0.029	2.378	0.016	0.003	0.006	
	blank_survey	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.059	0.000	0.000	0.000	
	1 ppb As+Se_survey	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.059	0.000	0.000	0.000	
	1 ppb As+Se 10 ppb REE_survey	0.001	8.724	0.000	0.000	0.000	8.998	8.653	0.000	8.454	8.028	8.091	0.003	7.984	
	10 ppb As+Se 50 ppb REE survey	0.001	52.174	0.001	0.000	0.001	47.091	47.063	0.003	43.839	38.004	44.779	0.005	43.756	
	10 ppb TQ check_survey	8.795	8.811	8.528	8.841	8.539	8.656	8.271	9.103	8.679	9.039	8.728	8.638	8.625	

27 Can change order of elements to focus on key items during analysis and export all data ...

Conclusions

- No one-size fits all solution to REE²⁺ interferences
- Options required to ensure good quality data
 - Different gas modes (Standard, He Collision, Reaction Gases)
 - Ability to use ½ Mass corrections when appropriate
 - Must include how validated and tested
 - Consider ALL REEs present and potential for isotopic fractionation
 - Flexibility for non-traditional internal standards
 - Use Mass Shift if/when appropriate
 - Multi-Quad systems superior for elimination of interferences
 - SurveyScan tool to identify other potential interferences
 - Data can support selection of alternate conditions or isotopes reported
- Methods 200.8/6020 need to be performance based
- Operator training/skill/experience critical
 - Blind use of ½ mass corrections could cause new problems

Source: https://www.visualcapitalist.com/visualizing-the-critical-metals-in-a-smartphone/

Thank You and Questions

