SW-846 Test Method 3050C Acid Digestion of Inorganics Found in Sediment, Sludges, and Soils

August 4, 2022

Sandip Chattopadhyay¹, Ph.D. Katie Adams² Kim Kirkland¹

U.S. Environmental Protection Agency ¹Office of Land and Emergency Management, Waste Characterization Branch Washington, DC ²Region 10 - Laboratory Services and Applied Sciences Divisions, Port Orchard, WA

Disclaimer

The information in this presentation has not been reviewed and not approved for public dissemination in accordance with U.S. Environmental Protection Agency (EPA). The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the Agency. Any mention of trade names or commercial products does not constitute EPA endorsement or recommendation for use.

Overview

- Method initially developed in 1986
- Two updates with current version finalized in 1996
- Update to SW-846 Method 3050B for the digestion of solids
 - adjustments to the acid addition for digestion
 - timing of the acid addition
- Mini research study
- Draft method plan
- Multiple laboratory validation study
 - Triplicate analyses
 - 5 reference materials
 - 23-elements
 - Digestion by both Methods 3050B and 3050C
 - Determinative methods (ICP-OES and ICP-MS* Methods 6010D or 6020B)

	Laboratory ID		Analytical Instruments				
		С	ICP-OES and ICP-MS				
		J	ICP-MS				
4		G	ICP-OES and ICP-MS				
	U	I	ICP-OES and ICP-MS				
		K	ICP-OES and ICP-MS				
		F	ICP-OES and ICP-MS (limited analytes)				
		В	ICP-OES				
		D	ICP-OES and ICP-MS				
	н		ICP-OES and ICP-MS				
		E	ICP-OES				

^{*} ICP-MS currently uses interference reduction technologies (e.g., Dynamic Reaction Cell, Collision Cell, triple quadrupole) to remove chloride-based interferences, and the addition of HCl improves the recoveries and increases the digestate stability for certain elements (e.g., Ag, Sb).

Reference Materials and Elements

Reference Materials

- NIST[§] 2710a Montana I Soil (highly elevated trace element concentrations),
- NIST[§] 2782 Industrial Sludge,
- NIST[§] 1646a Estuarine Sediment,
- ERA[¥] Metals in Soil Catalog #540, and
- ERA[¥] Metals in Sewage Sludge -Catalog #160
- [§] National Institute of Standards and Technology's (NIST's) Standard Reference Materials (SRMs)
- [¥] ERA: provider of Proficiency Testing (PT) and Certified Reference Materials (CRMs)

Element List					
Aluminum	Magnesium				
Antimony	Manganese				
Arsenic	Molybdenum				
Barium	Nickel				
Beryllium	Potassium				
Calcium	Selenium				
Cadmium	Silver				
Chromium	Sodium				
Cobalt	Thallium				
Copper	Vanadium				
Iron	Zinc				
Lead					

Comparison of Methods 3050B and 3050C

METHOD 3050C ACID DIGESTION OF SEDIMENTS, SLUDGES, AND SOILS

Tiered Statistical Analysis

- Correlation Techniques to show whether, and how strongly, pairs of variables are related.
- Bland and Altman Method to quantify agreement between two quantitative measurements by constructing limits of agreement.

- The Bland-Altman Plot computed by (depending on the study design)
 - Exactly One Data-Pair per Subject (no repeatability parameter can be computed)
 - Multiple Replicates for each Method, No Pairing (overall response mean stays constant)
 - Multiple Replicates for each
 Method Obtained as Pairs
 (response mean varies)

Statistical Analysis - Highlights

- Performed on the dataset to evaluate the performance of the individual laboratories and the group overall:
 - Summary statistics (mean and standard deviation) and calculation of percent relative standard deviation;
 - Grubbs' test of potential outliers; and
 - Standard deviation of repeatability and standard deviation of reproducibility, including *h* and *k* statistics.
- Determine whether preparation method 3050C performed equally as well as 3050B, in concert with either Method 6010D or Method 6020B:
 - Statistical analyses indicated that preparation method 3050C performed equally as 3050B, regardless of the analytical method. The repeatability and reproducibility of all the laboratories, barring the appearance of a low number of potential outliers within the datasets, was approximately the same.

Tabulated results of statistical tests on Method 3050C multi-laborato	y database (based on laboratory)

]	Lab ID	%RSD	Outliers	h	k
					Both 3050B and 3050C
	С	Greatest variability in the 0-10%	No outliers	1 - h statistic: 3050C	inconsistencies; most are 3050C
	-	Greatest variability in the 0-10%			Both 3050B and 3050C
	_	range; low number of analyses	Both minima and maxima		inconsistencies; most are
	J	performed	outliers; only 3050B	None	3050B
		Greatest variability in the 0-10%			Both 3050B and 3050C
	G	range	Minima outliers are all 3050C	1 -h statistic; 3050C	3050C
		Greatest variability in the 0-10%		Both positive and negative	
		range; three sets of analyses	Maxima outliers are only	inconsistencies; both 3050B and	Both 3050B and 3050C; most
	1	>20%	3050B	3050C	are 3050B
		range: low number of analyses	Maxima outliers are only	Both positive and negative	Both 3050B and 3050C most
	I-a	performed	3050C	inconsistencies; 3050C only	are 3050B
			Both minima and maxima	Both positive and negative	Both 3050B and 3050C
	••	Greatest variability in the 0-10%	outliers; both 3050B and	inconsistencies; both 3050B and	inconsistencies; most are
	K	range; two sets of analyses >20%	3050C	3050C	3050B
		Greatest variability in the 0-10%	Both minima and maxima	Both positive and negative	Both 3050B and 3050C
	F	>20%	3050C	3050C	3050B
			Most outliers of any lab. Both	Both positive and negative	Most 3050B and 3050C
		Greatest variability in the 0-10%	minima and maxima outliers;	inconsistencies; both 3050B and	inconsistencies; most are
	B	range; two sets of analyses >20%	both 3050B and 3050C	3050C	3050C
		Greatest variability in the 0-10%		Both positive and negative	Both 3050B and 3050C
	D	>20%	Maxima outliers are 3050C	3050C	3050C approx equal
	-	- 2070		Both positive and negative	Both 3050B and 3050C
		Greatest variability in the 0-10%	Maxima outliers are both	inconsistencies; both 3050B and	inconsistencies; 3050B v.
	H	range; two sets of analyses >20%	3050B and 3050C	3050C	3050C approx. equal
			Both minima and maxima	Both positive and negative	Both 3050B and 3050C
	_	Greatest variability in the 0-10%	outliers; both 3050B and	inconsistencies; both 3050B and	inconsistencies; most are

E

Tabulated results of statistical tests on Method 3050C multi-laboratory database (based on test protocol)

Test Protocol	%RSD	Outliers	h	k
3050B	Approx. equal variability	Most outliers are maxima;	No. of $-h$ and $+h$	No. of k exceeding a
	between 6010 and 6020;	approx. equal numbers of	exceeding a critical value	critical value less than
	mostly 10% RSD	6010 and 6020	approx. the same as	3050C; mostly 6020
			3050C; mostly 6020	
3050C	Variability greater in 6010	Most outliers are minima;	No. of $-h$ and $+h$	No. of k exceeding a
	than 6020; more variable	more 6010 than 6020	exceeding a critical value	critical value greater than
	than 3050B		approx. the same as	3050B; mostly 6010.
			3050B; mostly 6020	

Correlation of Method 3050B vs. 3050C, Analyzed with Methods a) 6010D and b) 6020B, by SRM respectively for Silver

t-test, and graphical analyses were performed on the dataset from the Method 3050C Multi-Laboratory Validation Study; three graphs were prepared for each analyte: one showing Method 3050B vs. 3050C, Method 6010D vs. Method 6020B, all average concentration data and two showing Method 3050B vs. 3050C, by SRM, Method 6010D and Method 6020B graphed separately. A data table was also prepared of the regression statistics y-intercept, slope, R^2, and t-test.

Method 3050B and Method 3050C data are strongly correlated, with a few exceptions related to the presence of potential outliers. In general, wet preparation data analyzed with Method 6010D (ICP-OES) had smaller differences between 3050B and 3050C than the data analyzed with Method 6020B (ICP-MS).

Representative Data

U.S. Environmental Protection Agency

QA/QC

- Parameters: method blanks; laboratory control samples (LCS); and matrix spike/matrix spike duplicate (MS/MSD)
- Average LCS percent recoveries were within method QC limits of 80%-120%, with a small number of exceptions. MS/MSD were mostly within the QC limits of 75-125%.
- Antimony had low recovery in almost all SRMs prepared with Method 3050B and showed a marked improvement in recovery upon preparation with Method 3050C.
- Little difference between MS/MSD recoveries for silver, barium, and lead.

		LABORATORI	METHODS 3050B	AND 3050C	(
	Element	6010D	6010D	6020B	6020B
		3050B	3050C	3050B	3050C
	Ag	98	97	104	102
	AI	100	99	102	98
	As	98	97	101	100
	Ва	96	99	103	100
	Be	97	96	105	105
	Ca	98	99	102	102
	Cd	98	100	101	102
	Co	95	96	105	102
	Cr	97	96	103	101
	Cu	97	96	102	101
L	Fe	100	98	100	101
	к	99	99	105	103
L	Mg	97	99	104	99
	Mn	97	96	102	101
	Mo	96	96	103	101
	Na	97	96	101	100
	Ni	100	100	101	98
-					

RESULTS OF ANALYSIS OF STANDARD REFERENCE MATERIAL (SRM) NIST 1646a, ESTUARINE SEDIMENT (mg/kg ± Standard Deviation (SDI)

	6010D		6010D		6020B		6020B		SRM Values
Element	305	50B ²	3050C		3050B ²		3050C		(±95% CI)
	Result	SD	Result	SD	Result	SD	Result	SD	[Total Element]
Ag	ND	NA	ND	NA	0.05	0.01	0.12	0.19	<0.3
AI	7,200	1,100	7,600	1,300	6,800	830	7,400	1,300	22,970 ± 180
As	5.6	1.0	5.7	1.2	5.4	0.84	5.3	0.86	6.23 ± 0.21
Ba	20	1.8	24	4.4	21	2.1	22	2.9	210
Be	0.29	0.09	0.29	0.14	0.40	0.04	0.45	0.10	<1
Ca	3,600	390	3,600	410	3,300	460	3,400	540	5,190 ± 200
Cd	0.12	0.02	0.14	0.01	0.16	0.03	0.15	0.02	0.148 ± 0.007
Co	3.7	0.28	3.6	0.34	3.7	0.33	3.7	0.42	5
Cr	21	1.3	21	2.0	24	2.4	24	3.1	40.9 ± 1.9
Cu	9.0	0.57	9.3	0.93	9.7	0.74	10	1.8	10.01 ± 0.34
Fe	16,000	2,400	16,000	2,600	15,000	930	17,000	1,400	20,080 ± 390
к	2,100	240	2,200	350	2,100	140	2,200	240	8,640 ± 160
Mg	3,000	360	3,100	410	3,000	170	3,000	170	3,880 ± 90
Mn	110	7.6	120	13	120	26	130	17	234.5 ± 2.8
Mo	1.3	0.10	1.3	0.19	1.3	0.18	1.5	0.19	1.8
Na	4,300	440	4,200	460	4,200	220	4,200	370	7,410 ± 170
Ni	19	1.2	19	1.4	20	1.9	20	1.9	23
Pb	7.3	0.46	7.3	0.47	7.9	0.60	8.3	1.3	11.7 ± 1.2
Sb1	1.4	0.06	1.5	0.40	ND	NA	0.16	0.03	0.3
Se	ND	NA	ND	NA	0.82	0.67	0.62	0.52	0.193 ±.0.028
TI	ND	NA	ND	NA	0.09	0.005	0.09	0.01	<0.5
V	20	1.9	21	2.5	22	3.5	24	4.9	44.84 ± 0.76
Zn	36	3.4	34	3.3	35	4.8	35	5.8	48.9 ± 1.6
- Confidenc <u>OTE</u> : Genera metals more The S and E	 Interval; ND = N Ily, when certifyin a that are bound u environmentally n RM values were o DXRF. 	Not Detected; NA g NIST SRMs, rig up in minerals (e.g elevant "total reco determined utilizin	Not Applicable. orous methods (e.g. , silicates) that do n verable' results. NI g the following meth	, neutron activatio ot readily dissolve ST certified values ods: CVAAS, ED	on and digestion w a under environme a are provided for ICPMS, ETAAS,	vith hydrofluoric av antal conditions. I comparison purp FAAS, FES, HYD	cid) are used to ac Method 3050C is r oses only. A recor R, ICPMS, ICPOE	thieve a true "tota not intended to yi very of 100% is n S, ID-ICPMS, ID	I element" result, in eld true "total" result ot expected by this -TIMS, INAA, RNA/

Limitations and Uncertainties

- Deviations from the study plan led to limitations in the types of statistical treatments that could be performed.
- Not all laboratories performed all the analyses. Direct laboratory-to-laboratory comparability was not always possible.

"Decisions are based on data, analysis and empirical evidence. This includes both an understanding of the uncertainties present as well as potential limitations of the available data."

 The analysis of five SRMs, each with varied concentrations of the constituents of interest, reduced the power of the dataset, in that segregation of data by SRM and by preparation/analytical method resulted in small sample sizes.

Mechanism Perspectives - Antimony

- Interactions with low molecular weight ligands
 - Both Sb(III) and Sb(V) ions hydrolyze easily in aqueous solution, thus making it difficult to keep antimony ions stable in solution except in highly acidic media (Fiella et al. 2002).
- Hydroxyl
- Chloride Antimony(III) chloride dissolves in strong HCl solutions. Chlorocomplexes, SbCl_x^{[(x-)+3]+}, are formed in solution depending on the chloride concentration present.
- Sulfides
- Organic low molecular weight ligands
- Interactions with solid phase

Current Status

Acknowledgements

